
2 Working Group on Numerical Aspects 19

A linear solution for flow over mountains and its comparison with the
COSMO model

Michael Baldauf

Deutscher Wetterdienst, Frankfurter Str. 135, 63067 Offenbach, Germany

1 Introduction

Comparing against analytical solutions for the equations of motion is one of the main testing
tools during the development of dynamical cores. The broadest class of analytical solutions
are linearisations and the most important ones are the solutions for flow over mountains. Such
solutions are well known since several decades (e.g. Queney, 1948, Smith, 1979, 1980). The
problem in the application of model testing lies in the choice of the approximations made for
them. Whereas for a physical understanding of the atmosphere the challenge lies in the choice
of profound approximations to get simple but still realistic solutions (or better say: simple
formulae). In contrast for the testing of dynamical cores as few as possible approximations
should be made, or better say, the system of equations used for the analytic solution should be
as close as possible to the equations underlying the numerical model. It is not important that
the analytic solution (or formula) is simple, but that it can be calculated with a much higher
numerical confidence than the numerical solution of PDE’s, e.g. by numerically calculating
integrals or Fouriertransforms.

During the COSMO priority project ’Runge-Kutta’ a program for calculating linear solutions
for flow over mountains of the compressible Euler-equations for a stably stratified atmosphere
with a constant Brunt-Vaisala frequency was developed. The prerequisites are: adiabasy, no
friction, no Coriolis force, dry atmosphere, and no earth curvature. Further on the prereq-
uisite is made, that the inflow does not change direction with height. The only a priori
approximation done is that of linearisation about the mountain height. These prerequisites
are easily fulfilled for the dynamical core by switching off the other processes; the approx-
imation is easily fulfilled by choosing a very small hill. The only additional (a posteriori)
approximation is to neglect a small height dependency of the vertical wavelength kz. The
error induced by this is estimated by the program.

All in all the requirements are stronger than those which can be found in the literature, but
this allows to reduce the number of approximations only to the two mentioned before, which
can be easily controlled.

2 Linearised equations

This section presents the derivation of the solution for linear flow over mountains. The
starting point are the papers of Smith (1979, 1980) with the following prerequesites:

• no friction

• only adiabatic processes (in particular no phase changes)

• ideal gas law

• cp = const., cv = const., R = const.
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• All movements are taking place on a plane (no earth curvature)

• no Coriolis force

This leads to the following system of equations (Smith, 1979):

ρ
du

dt
= −∂p

∂x
, (1)

ρ
dv

dt
= −∂p

∂y
, (2)

δ1ρ
dw

dt
= −∂p

∂z
− ρg, (3)

δ2
∂ρ

∂t
+ δ3v · ∇ρ + ρ∇ · v = 0, (4)

dp

dt
= c2 dρ

dt
, c2 :=

cp

cV

p

ρ
, (5)

p = ρRT. (6)

Here some tracer-parameters were introduced:

• δ1 = 0/1 : hydrostatic / non-hydrostatic approximation

• δ2 = 0/1 : incompressible / compressible model

• δ3 = 0/1 : shallow / deep atmosphere

To linearize these equations a base state has to be chosen: it has to be stationary, hydrostatic
and at most dependent from z (the last choice requires the neglection of the Coriolis force)

u0 = u0(z), (7)
v0 = 0, (8)
w0 = 0, (9)
T0 = T0(z), (10)
p0 = ρ0RT0, (11)

∂p0

∂z
= −gρ0. (12)

Later on we will consider an atmosphere with a constant Brunt-Vaisala frequency N . This
leads to the base state temperature profile

T0(z) = T0(z = 0)
(
a− (a− 1)ez/H

)
, (13)

H :=
g

N2
∼ 100 km, (14)

a :=
g2

N2 cp T0(z = 0)
∼ 3. (15)

Such an atmosphere has negative values of temperature above zmax = H log a/(a−1) ∼ 35 km
for realistic values.
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Perturbation equations The above chosen base state leads to the perturbation equations

ρ0

(
∂u′

∂t
+ u0

∂u′

∂x
+ w′

∂u0

∂z

)
= −∂p′

∂x
, (16)

ρ0

(
∂v′

∂t
+ u0

∂v′

∂x

)
= −∂p′

∂y
, (17)

ρ0

(
δ1

∂w′

∂t
+ δ1u0

∂w′

∂x

)
= −∂p′

∂z
− gρ′, (18)

δ2
∂ρ′

∂t
+ δ3u0

∂ρ′

∂x
+ δ3w

′∂ρ0

∂z
= −ρ0

(
∂u′

∂x
+

∂v′

∂y
+

∂w′

∂z

)
, (19)

∂p′

∂t
+ δ4u0

∂p′

∂x
+ w′

∂p0

∂z︸ ︷︷ ︸
=−gρ0w′

= c2
0

(
∂ρ′

∂t
+ u0

∂ρ′

∂x
+ w′

∂ρ0

∂z

)
. (20)

where a 4th tracer-parameter was introduced (Pichler, 1997):

• δ4 = 0/1 : small / big Mach-numbers.

These perturbation equations are fouriertransformed, i.e. the fields are represented by waves
of the form

φ′(x, y, z, t) = φ′(kx, ky, z, ω) · ei(kxx+kyy−ωt). (21)

This leads to

−iωu′ + ikxu0u
′ +

∂u0

∂z
w′ = −ikx

1
ρ0

p′, (22)

−iωv′ + ikxu0v
′ = −iky

1
ρ0

p′, (23)

δ1

(−iωw′ + ikxu0w
′) = − 1

ρ0

∂p′

∂z
− ρ′

ρ0
g, (24)

−δ2iωρ′ + δ3ikxu0ρ
′ + δ3

∂ρ0

∂z
w′ = −ρ0

(
ikxu′ + ikyv

′ +
∂w′

∂z

)
, (25)

−iωp′ + δ4ikxu0p
′ − gρ0w

′ = c2
0

(
−iωρ′ + ikxu0ρ

′ +
∂ρ0

∂z
w′

)
. (26)

We first express u′, v′ and ρ′ through the other variables

u′ =
1

ω − kxu0

(
kx

1
ρ0

p′ − i
∂u0

∂z
w′

)
, (27)

v′ =
1

ω − kxu0

(
ky

1
ρ0

p′
)

, (28)

ρ′ =
1

ω − kxu0

(
1
c2
0

(ω − δ4kxu0)p′ − iρ0

(
g

c2
0

+
1
ρ0

∂ρ0

∂z

)
w′

)
. (29)

It is common practice to introduce the following denotations:

Heterogenity (Queney, 1947)

S0 :=
1
ρ0

dρ0

dz
≡ d log ρ0

dz
(30)

Stability parameter

β0 :=
1

Θ0

dΘ0

dz
≡ d log Θ0

dz
(31)
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Mach-number
Ma :=

u0

c0
(32)

We are interested only in the stationary case ω = 0 and to begin with we consider the case
kx 6= 0.

(29) simplifies to

ρ′ =
1
c2
0

δ4p
′ − iρ0

1
kxu0

β0w
′ (33)

and (26) leads to

p′ = i
kx

k2
x + k2

y

ρ0u0

µ0

([
δ3

g

c2
0

+
1
u0

∂u0

∂z

]
w′ − ∂w′

∂z

)
, (34)

where

µ0 := 1− δ3δ4
k2

x

k2
x + k2

y

Ma2 (35)

was defined. Both inserted into (24) delivers an ODE of 2nd order for w′(kx, ky, z, ω)

d2w′

dz2
+

dw′

dz

(
d

dz
log d(z)

)
+ b(z)w′ = 0 (36)

with

d(z) =
∂

∂z
log

ρ0

µ0
+ (δ4 − δ3)

g

c2
0

=





ρ0

µ0
, if δ4 = δ3

1
Θ0µ0

, if δ4 = 1, δ3 = 0
Θ0ρ2

0
µ0

, if δ4 = 0, δ3 = 1
(37)

b(z) = −δ1µ0k
2
h −

[
δ3

g

c2
0

+
∂

∂z
log u0

](
∂

∂z
log

ρ0u0

µ0
+ δ4

g

c2
0

)

−
[
δ3

∂

∂z

g

c2
0

+
∂2

∂z2
log u0

]
+

gβ0

u2
0

µ0
k2

h

k2
x

(38)

With the variable transformation

w′(z) =
1√
d
W (z) (39)

this can be transformed into an ’oscillation equation’

d2W

dz2
+ k2

zW = 0, (40)

k2
z(kx, ky) :=

1
4

d′2

d2
− 1

2
d′′

d
+ b (41)

Therefore the main task is to solve this ODE with the appropriate boundary conditions,
then to calculate the fields w′, p′, u′, v′, and ρ′ by the above given formulas and to carry out
a Fourier backtransformation to get these fields in the physical space.

There remain two special cases. The first one is ω = 0, kx = 0, ky 6= 0. The original
fouriertransformed perturbation equations (22)-(26) deliver successively p′ = 0, ρ′ = 0,
w′ = 0, and v′ = 0. It is remarkable that no statement can be given for u′. This describes
the fact that in a frictionless flow over a flat plane an arbitrary vertical shear can occur. The
second special case is ω = 0, kx = 0, ky = 0. Now u′ and v′ can be chosen arbitrarily. p′ and
ρ′ are connected by (24). In the case δ3 = 0 (shallow atmosphere approximation) it follows
from the lower boundary condition (see below) w′ = 0. In the case δ3 = 1 (deep atmosphere)
also only w′ = 0 leads to an equation system without contradictions.
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Boundary conditions We prescribe an orography h(x, y). The lower boundary condition
consists in the free-slip condition. Its linearisation in z = h(x, y) leads to

w′(x, y, z = 0) ≈ U0
∂h

∂x
. (42)

A horizontal Fourier transform delivers

w̃′(kx, ky, z = 0) ≈ ikxU0h(kx, ky), (43)

and with the above variable transformation follows

W (kx, ky, z = 0) ≈ ikxU0h(kx, ky)
√

d(z = 0). (44)

The upper boundary condition is a little bit more delicate. We assume that k2
z does not

depend from z. In this case we can solve the oscillation equation directly

W (kx, ky, z) = Aeikzz + Be−ikzz (45)

Two cases have to be distinguished:

• case k2
z < 0: only a solution which decays with height seems to be physical. We define

kz := i
√
−k2

z and omit the term ∼ B.

• case k2
z > 0: the reuirement is that no energy transport to the ground takes place.

Again we omit the term ∼ B and define kz := sgn(U0kx) ·
√

k2
z (Smith, 1980).

Therefore for height independent k2
z we get the solution

W (kx, ky, z) = ikxU0h(kx, ky)
√

d(kx, ky, z = 0) · eikzz. (46)

3 A Case Study

A first test with the COSMO-model was done with the case described in Schär et al.
(2002)[section 5b]. A 2D-flow over a modulated Gaussian hill

h(x) = h0 e−
x2

b2 cos2 π
x

λ
(47)

with b = 5 km and λ = 4 km is considered. The atmospheric conditions are: inflow velocity of
U0 = 10 m/s, a constant Brunt-Vaisala-frequency N = 0.01 1/s, and a surface temperature of
T (z = 0) = 288 K. The maximum height of the mountains is h0 = 25 m (reduced by a factor
of 10 compared to Schär et al., 2002). This results in a small inverse vertical Froude number
of 1/Fr = Nh0/U0 = 0.025 and therefore allows the application of a linearized solution.

Simulations with two resolutions were made: the first uses ∆x = 500 m, ∆z = 300 m with a
time step of ∆t = 8 s as in Schär et al. (2002), the second uses ∆x = 250 m, ∆z = 200 m, and
therefore a slightly smaller time step of ∆t = 6 s. The first setup uses 80 vertical levels, the
second one 120 levels, therefore in both setups the upper model boundary lies in z = 24 km.
The upper relaxation zone starts in z = 13 km with a thickness of 11 km. Such a thick
relaxation zone is crucial to damp out perturbations to be able to properly compare with the
analytical solution. The COSMO-version 4.6 was used with the Runge-Kutta dynamical core
(Namelist-Parameters irunge kutta=1, irk order=3). Simulation results after 24 h and the
appropriate analytic solution are shown in figure . The similarity with the analytical solution
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Figure 1: Comparison of the vertical velocity w between the COSMO-model (coloured) and the analytic
solution (black lines) for the Schär et al. (2002) test case. Above: ∆x = 500m, ∆z = 300m, below:
∆x = 250m, ∆z = 200m.

is very close for both resolutions. Therefore even with ∆x = 500 m , a good convergence has
been reached.
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