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1 Introduction

The Multimodel SuperEnsemble technique (see Krishnamurti et al, 1999 and 2000 for in-
stance) is a powerful post-processing method able to reduce direct model output errors.
Several model outputs are put together with adequate weights to obtain a combined esti-
mation of meteorological parameters. Weights are calculated by square error minimization
in a so-called training period. In a previous paper (Cane and Milelli, 2005), we applied the
Multimodel technique on the operational 00 UTC runs of Local Area Model Italy (LAMI)
by UGM, ARPA-SIM, ARPA Piemonte (nud00), Lokal Modell (LME) by Deutscher Wetter-
dienst (1kd00) and aLpine Model (al.LMo) by MeteoSwiss (alm00). This was one of the first
implementations of Multimodel technique on limited-area models (in this case of 0.0625° res-
olution) and we obtained a strong improvement in temperature forecasts in Piedmont region.
In this work we extend the application of temperature and precipitation to larger periods
and we introduce the method to the calculation of humidity, wind speed and precipitation.

2 Multimodel Theory

As suggested by the name, the Multimodel SuperEnsemble method requires several model
outputs, which are weighted with an adequate set of weights calculated during the so-called
training period. The simple ensemble methods with biased (Eq. 1) or bias-corrected (Eq.
2) data respectively, are given by

1 N
S:6+NZ(Fi_E) (1)
and

1 X _
5:0+WZ<F1»—0) (2)

The conventional superensemble forecast constructed with bias-corrected data is given by
N
S=0+> ai(F;-0) (3)
i=1
where N is the number of models, F} is the it forecast by the model, F; and O are the mean
forecasts and the mean observation during the training period T

The calculation of the parameters a; is given by the minimization of the mean square devi-
ation

G =7 (S -0 (4)
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by derivation (g—g = 0) we obtain a set of N equations, where N is the number of models

involved (i,7 = 1,N):

(S5 -7 5 -0 = (5 -7 00-0)) 5

k=1 k=1

We then solve these equations using the Gauss-Jordan method (see Press et al., 1992).

3 Results
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Figure 1: Mean temperature error (left) and RMSE (right) for Superensemble output
(black continuous line), Ensemble output (black dotted line) and LAMI output (grey con-
tinuous line); low-lying stations (upper panels), middle-mountain stations (middle panels)
and high mountain stations (lower panels).

The Piedmont region is monitored by ARPA Piemonte with a very-dense automatic weather
station network. We used the data from this non-GTS network for the calculation of the
weights in the training period and for validation purposes. In order to obtain more readable
graphs, we do not report all the model outputs, but only the operational one (LAMI 00
UTC run). In order to compare with the unbiased values of SuperEnsemble and Ensemble,
all the direct model output forecasts here shown are bias-corrected, with the exception of
precipitation forecasts since we do not expect to have a systematical error in this case.

Temperature

Stations are grouped by height: 53 low-lying stations (h < 700 m), 34 middle-mountain
stations (700 m < h < 1500 m) and 15 high-mountain stations (h > 1500 m). The training
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period is 90 days (dynamical) and the forecast is on March 2005. We used a bilinear inter-
polation in the horizontal direction and a linear interpolation (with the geopotential) in the
vertical one. In Fig. 1 the BIAS and the RMSE are shown, according to the station elevation.
It has to be pointed out the strong systematic error of the direct model outputs, reaching a
bias of the order of 4 C, with significant increase around noon (+36 hr and +60 hr forecast
time). Multimodel SuperEnsemble substantially eliminates the bias, and the RMSEs also
are lower than direct model outputs’ ones, with values around 2 C. Moreover we observe a
constant performance for all the forecast times.

Relative Humidity
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Figure 2: Mean relative humidity error (left) and RMSE (right) for Superensemble output
(black continuous line), Ensemble output (black dotted line) and LAMI output (grey con-
tinuous line); low-lying stations (upper panels), middle-mountain stations (middle panels)
and high mountain stations (lower panels).

The stations are grouped as before and the training period, the forecast time and the inter-
polation methods are the same used for the temperature forecast. Relative humidity (Fig. 2)
shows strong systematic error of the direct model outputs, as temperature does, with high
biases and RMSEs. Also in this case the errors are strongly dependent from the forecast
time. SuperEnsemble practically eliminates bias, especially for higher elevation stations,
with slightly better performances by SuperEnsemble. We also obtained a good RMSE re-
duction. Both biases and RMSEs are very stable with respect to the forecast time. It has
to be highlighted that relative humidity, due to its non-gaussian error distribution, does not
satisfy Kalman filter hypothesis. In fact Kalman filter post-processing does not improve sig-
nificantly relative humidity forecasts. Multimodel SuperEnsemble, on the other hand, does
not assume any hypothesis and is suitable to be applied to every meteorological parameter.
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Wind Intensity
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Figure 3: Mean wind intensity error (left) and RMSE (right) for Superensemble output
(black continuous line), Ensemble output (black dotted line) and LAMI output (grey con-
tinuous line); low-lying stations (upper panels), middle-mountain stations (middle panels)
and high mountain stations (lower panels).

Due to model data availability, for this parameter only the ECMWEF IFS and the Italian
LAMI (00 UTC and 12 UTC operational runs) were used. Stations are grouped in the same
groups as for temperature and the training period and the forecast time are the same used for
the temperature forecast but here we used the model grid point nearest to the observation.
Direct model outputs (Fig. 3) show again strong, forecast time dependent errors. Multimodel
permits a strong improvement both in biases and RMSEs, very stable with respect to the
forecast time. In this case there is room for improvements: in fact in this work we used
model outputs on pressure level, due to data availability, but it would be interesting to check
the performance with the model level fields.

Precipitation

Precipitation cannot be easily interpolated to station location without introducing huge
errors. For this reason we grouped the same stations we used before in 11 warning areas
defined for the regional Civil Protection warning system (see Cane and Milelli, 2005). For
each warning area we calculated the 6-hour average and maximum precipitation values. We
extracted the same precipitation from the models, calculating the average and maximum
values of the grid points covering each warning area. The same method is used operationally
for standard precipitation verification at ARPA Piedmont. For further details see Milelli et
al., 2003. The training period is 180 days (dynamical). We applied Multimodel Ensemble
and SuperEnsemble technique on the average and maximum values, considering as forecast
the period July 2004 - March 2005, in order to achieve a good statistics with at least 40
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Figure 4: Mean values (upper panels) and maximum values (lower panels) of precipitation
in 24h (from +12 to +36) for Superensemble output (black continuous line), Ensemble
output (black dotted line)and LAMI output (grey continuous line); BIAS (left panels) and
ETS (right panels).

events for each precipitation threshold. We compared the models and Multimodel results
by Normalized Bias and Equitable Threat Score (ETS) (see for instance Wilks, 1995). In
Piedmont the models usually overestimate average precipitation, as we can see by the BIAS
values higher than 1 (Fig. 4 and Fig. 5). Multimodel SuperEnsemble gives a good BIAS
reduction. The best improvement is obtained in the spatio-temporal localization of the
precipitation events, as described by ETS, for which it shows the highest values. Moreover
Multimodel performances are very stable with respect to forecast time, with almost the same
BIAS and ETS values for 12-36 UTC and 36-60 UTC forecasts.

4 Conclusions and future perspectives

The Multimodel SuperEnsemble technique has been applied on limited-area and global model
in a complex orography alpine region and verified against a large number of weather sta-
tions for several weather parameters. For each of them the Multimodel results show good
error improvements with respect to the direct model outputs, providing a new powerful
post-processing tool. In particular, SuperEnsemble is always superior to Ensemble, except
for mean precipitation over warning areas and for ETS in general. The possible future
implementations of this technique can be here summarized:

e Extension to other areas and/or variables (observation = ECMWF analysis):

— Geopotential
— MSLP
— Tracking of cyclones (original purpose, see Krishnamurti et al, 1999 and 2000).
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Figure 5: Mean values (upper panels) and maximum values (lower panels) of precipitation
in 24h (from +36 to +60) for Superensemble output (black continuous line), Ensemble
output (black dotted line)and LAMI output (grey continuous line); BIAS (left panels) and
ETS (right panels).

e Study of a spread interval in the forecast of any variable by the introduction of the
MultiModel for maximum, mean and minimum values over predefined areas (analogous
to precipitation)

e Application to vertical profiles

Moreover, in the framework of the Interreg IIIB-Medocc project Amphore the Multimodel
technique will be applied on the Italian LM, Aladin (from MeteoFrance), MM5 (from the
University of Balearic Islands), Bolam (from ARPA Liguria) and ECMWF global model for
the prediction of 2m temperature and total precipitation.

Acknowledgements

We wish to thank the Deutscher Wetterdienst and MeteoSwiss for providing the model
outputs for this research work.

References

Krishnamurti, T. N. et al., Science, 285, 1548-1550, 1999

Krishnamurti, T. N. et al., J. Climate, 13, 4196-4216, 2000

Cane, D. and Milelli, M., COSMO Newsletter, No. 5, 2005

Press, et al., Numerical Recipes in Fortran, Cambridge University Press, 1992

Milelli, M., Oberto, E., Bertolotto, P., Pelosini, R., Proc. of the ECAM/EMS Annual
Meeting, Rome, Italy, September, 2003

Wilks, D., Academic Press, 1995

COSMO Newsletter No. 6



