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Abstract

Meteosat-8 is the first geostationary satellite that possesses channels at all bandwidths that
are of use for snow mapping. It therefore offers new possibilities for multi-temporal snow
mapping, as well as for snow mapping in short time intervals, which is for example required
for numerical weather prediction models. The spectral capabilities of Meteosat-8 allow an
optimal spectral separation of clouds and surface snow cover, whereas the high temporal
frequency introduces temporal information that might be used in the classification process.
In this work we describe an algorithm that uses a new spectral feature and temporal for
snow mapping and cloud detection.

1 Introduction

Snow cover influences several processes that occur at or near the earth’s surface. It affects
the exchange of energy and moisture between the surface and the atmosphere and is an
important aspect of the hydrological cycle. Furthermore, snow cover extent is an indicator
of climatic change and affects many human activities. Near real-time information about the
surface snow cover is therefore important for studies and applications in many disciplines.
This is particularly the case for Numerical Weather Prediction (NWP) models, which are
initialised several times per day and require the latest information about the state of the
atmosphere and the surface, including snow cover. A valuable tool for detecting snow cover
is remote sensing, because it allows us to monitor large areas of the earth at regular time
intervals.

A regularly encountered problem in remote sensing of snow is the sometimes similar spectral
appearance of snow and clouds. In general, clouds have a similar reflectance as snow, and
when they also have the same brightness temperature and phase (i.e. ice clouds), it can
be difficult to distinguish them from snow with spectral information alone. Some authors
have therefore used the spatial context of satellite pixels to detect clouds, but these methods
are based on spatial inhomogeneity and are mainly suited for differentiating between cloud
types and for detecting clouds over homogeneous surfaces. To differentiate between clouds
and natural land surfaces, which often are quite inhomogeneous themselves, such methods
are less suitable.

Another type of contextual information that can be used to classify satellite images is of
temporal nature. Image classification that uses temporal information is generally referred to
as (digital) change detection. In the literature, this notion generally refers to changes at the
earth’s surface, but there seems no reason why change detection methods might not be used
for detecting clouds. Mostly, change detection involves two images of the same scene acquired
at different dates, but in a number of applications temporal series of images are used. To the
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latter category, which clearly offers more opportunities for detecting change as it uses more
images, belong temporal trajectory analysis and temporal compositing. In temporal trajec-
tory analysis, the temporal trajectory of a pixel is compared with a predefined trajectory,
whereas in temporal compositing a composite is made from a series of individual images by
retaining those pixels that satisfy a certain criterion. Trajectory analysis of high-frequency
images is used for background estimation in video surveillance and photogrammetry. There,
the task is to detect and/or remove objects that temporarily obscure the background, which
is in fact comparable to detecting moving clouds over a static surface. However, background
estimation requires the obscuring object to be present in only a few of a series of images,
whereas clouds often cover large areas and single pixels can be cloud-covered during large
parts of an observation period.

In remote sensing, change detection is generally used to study processes that occur at rather
long time scales of months to years. This is the case for change detection over land, as well
as over the oceans (e.g. sea ice). As a consequence, in most of these studies polar orbiting
sensors have been used, as these have repeat times of hours to weeks and offer a wide range of
spatial and spectral resolutions. In contrast to land surfaces and oceans, clouds often display
a dynamic behaviour at time scales of minutes to hours, and only geostationary satellites
have a frequency that is high enough to monitor this behaviour. However, unlike many polar
orbiting sensors, geostationary platforms did until recently not possess all spectral channels
that are required for optimal spectral separation of snow and clouds.

In 2002, the European Organisation for the Exploitation of Meteorological Satellites (EU-
METSAT), launched the first of a new series of geostationary satellites, called Meteosat
Second Generation (MSG). This new satellite, Meteosat-8 (MSG-1) bridges the gap between
polar orbiting sensors with good spectral resolution and geostationary sensors with high
temporal frequency. It thus offers an unprecedented dataset of spectral and temporal in-
formation, which can be used to detect clouds over cold regions and to map surface snow.
Here we describe an algorithm that uses temporal trajectory analysis in conjunction with
pixel-based spectral classification to detect clouds and to map surface snow cover. This
algorithm is intended for delivering real-time snow cover data to the operational mesoscale
NWP model of MeteoSwiss, the Alpine Model (aLMo).

2 Data

Meteosat-8 is currently situated at 3.4° western longitude at an altitude of 36.000 km. It
carries the Spinning Enhanced Visible and Infrared Imager (SEVIRI), which has improved
spectral, spatial and temporal resolution with respect to its predecessors on board of the
previous Meteosat satelites. It continuously monitors the entire earth disk with a frequency
of 15 minutes. SEVIRI has twelve spectral channels, most of which measure radiation from
the surface. Only the water vapour absorption channels, at 6.25 and 7.35 um, contain
no information about the surface at all. The ozone absorption channel (9.66 jm) measures
radiation from the troposphere and the surface and is also sensitive to ozone concentration in
the lower stratosphere. The COq absorption channel (13.4 pm) mainly measures radiation
from the troposphere with only a small contribution from the surface. Some COs is also
detected by the 3.9 um channel, which slightly overlaps with one of the CO5 absorption
bands. Channel 12 is a high resolution visible (hrv) channel, which has a spatial resolution
of 1 km at the sub-satellite point. All of the other channels have a spatial resolution of 3 km
at the sub-satellite point. The region of interest in this study is the model domain of al.Mo,
which corresponds to western and central Europe. The spatial resolution of Meteosat-8 over
this area is 1.5 to 2 km for the hrv channel and 5 to 6 km for the other channels.
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For testing and validation we selected a three-day period in March 2004. During the selected
period, March sth i1l March 1Oth7 all mountainous regions of Europe were covered with
snow, as well as large parts of Central, Eastern and Northern Europe. The weather was
variable, with low pressure activity over Central Europe and the Mediterranean. Clouds,
some of them containing ice particles, bare land and snow covered land were therefore all well
represented over Europe, making this period suitable for testing a snow mapping algorithm.

3 Pre-processing

The Meteosat-8 data that we use are provided in Level 1.5 Native Format. These consist
of raw satellite counts, which need to be calibrated and converted into reflectances (r) and
brightness temperatures (BT'). We also apply a sea mask to the data, which is based on the
SRTM30 Digital Elevation Model (DEM) of NASA and the United States Geological Survey.
This global DEM has a horizontal resolution of 1 km, and we resampled it to the Meteosat-
8 grid with bicubic interpolation. Because of the large viewing angles of Meteosat-8 over
Europe, it is furthermore necessary to ortho-rectify the data.

3.1 Correction for atmospheric effects and anisotropy

Further pre-processing of the measured reflectances involves correcting for the influence of
the atmospheric and for anisotropy of reflection at the surface. The atmospheric influence
depends on the state of the atmosphere and on the solar and satellite viewing angles, and
can be described with Radiative Transfer Models (RTMs). However, state-of-the-art RTMs
are not very reliable for solar zenith angles over 70°, whereas snow cover is mainly present
during the winter season, when the sun remains rather low above the horizon. Also, RTMs
require the atmospheric aerosol content and atmospheric profiles of water vapour, ozone and
COa2, which are generally not available. Water vapour can be provided by NWP models,
but always with some degree of uncertainty. We therefore only apply one correction for all
angular effects, including those caused by atmospheric radiative transfer and by anisotropic
reflection at the surface. For this correction, a semi-empirical model that describes bi-
directional surface reflectance is used. The model has five coefficients that can be related to
the Normalised Differential Vegetation Index (NDVI). From Meteosat-8 SEVIRI data, the
NDVT can be computed for the low resolution channels. For the hrv channel, we use the
downscaled low-resolution NDVTI values.

The temporal behaviour of the reflectances at two cloud-free locations, illustrating the an-
gular effects, is shown in Fig. 1. The first location was snow-free, whereas the second was
partially snow-covered. At both locations the reflectances display a peak in the early after-
noon, which corresponds to the hot spot in the BRDF. Also, the angular effects increase
with wavelength at both locations. This is most clearly the case over the snow-free loca-
tion, whereas it is less obvious over snow-cover. Over snow the 1.6 um reflectance is much
lower than the other reflectances, so that the absolute effect of anisotropy is not very large.
The relative effect, however, is largest for the 1.6 pm reflectance, and this increase with
wavelength corresponds with the observations of other authors.

For each of the solar channels (channel 1, 2, 3 and 12), the coefficients ¢; were derived by
tuning the bi-directional reflectance model to the cloud-free pixels in the available satellite
images. Because the true value of r (the actual hemispherical reflectance of the surface) is
unknown, r is set equal to 1 in the tuning procedure. The resulting BRDF’s can then be used
to bring all observed reflectances to a reference viewing and illumination geometry. Over
vegetated surfaces without snow cover the model performs well, but for pixels that contain
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Figure 1: Reflectances as a function of local time at two cloud-free locations on March
10th, 2004. Only data with corresponding solar zenith angles below 75° are shown.
Temporal profiles are shown for a vegetated location (a) and for a vegetated location
that was partially covered with snow (b). Temporal profiles that have been corrected
for angular effects are shown in ¢ and d, respectively.

snow cover, mostly mixed with vegetation in our images, it could not be adequately tuned.
We therefore determined the tuning coefficients only for pixels without snow, which display
a smooth dependence of the coefficients on NDVI. These dependencies can be described by
simple polynomial or exponential functions and we let these functions approach zero for
very low NDVTI (corresponding to pixels with snow). This approach means that over mixed
pixels, we only apply BRDF’s for vegetation and not for snow. At the locations for which
the time series are shown in Fig. 1la and b, the BRDF’s that we use remove a large part
of the temporal variation (Fig. 1c and d). The most variation remains at the partly snow
covered location (Fig. 1d), which may be caused by anisotropic reflectance of the snow. It
could also be due to melting of snow and an increasingly lower snow fraction during the
afternoon, as suggested by the temporal behaviour of the reflectances. If the snow fraction
would remain constant throughout the day and the temporal behaviour was only caused by
angular effects, all reflectance channels would follow a similar pattern. Here, however, the
visual reflectances are constant in the morning and decrease during the afternoon, whereas
the near infrared reflectance is slightly increased during the afternoon. Both effects are well
explained by a lower snow fraction.

4 Classification
4.1 Temporal features

Examples of the temporal behaviour of clouds are shown in Fig. 2. The first location (Fig. 2a
and b) was covered with ice clouds in the morning, as indicated by the low 1.6 um reflectance,
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Figure 2: Reflectances and brightness temperatures as a function of local time at two
cloudy locations on March 10th, 2004. Only data with corresponding solar zenith angles
below 75° are shown. Temporal profiles are shown for a location that was covered with
ice clouds (a, b) and for a location that was covered with ice and water clouds (c, d).

and in the afternoon with water clouds. There is considerable temporal variability in most of
the spectral channels. The second location (Fig. 2c and d) was also covered with clouds, but
here the cloud cover consisted entirely of water clouds that were fairly homogeneous in space
and time. Consequently, the overall temporal variability is lower. At both locations, the in-
frared absorption channels, in which information from the surface and the lower atmosphere
has been (partly) filtered out, display less variation than the other infrared channels. As a
measure of temporal variability we use the standard deviation in time. We found that it is
also useful to take same temporal information from the eight surrounding pixels into account
by averaging the standard deviation in time over each block of nine pixels. Although this
classifier considers the eight surrounding pixels, it does not quantify spatial variability, and
can therefore be regarded as a quasi three-dimensional classifier. To illustrate the usefulness
of the temporal standard deviation, scatter plots of this classifier against the near-infrared
reflectance are shown in Fig. 3. Pixels that represent water clouds, which have a high near-
infrared reflectance, appear on the right hand sides of these plots. Ice clouds and snow have
low infrared reflectances (on the left), whereas mixed clouds and snow-free surfaces display
intermediate values. The cluster in the bottom left corners could be identified as surface
snow, and the cluster next to it as snow-free surface. These pixels display a low tempo-
ral variability. Mixed clouds and ice clouds generally display larger temporal variabilities,
whereas water clouds, represented by the cluster on the right-hand side of both plots, display
low variabilities. This is especially the case for the brightness temperature (Fig. 3b).

We found the optimal number of time steps for separating clouds from surface snow by
calculating a divergence parameter, which indicates the ability of a feature to separate two
classes. When the temporal standard deviation at one pixel is used, for most channels the
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Figure 3: Scatter plots of the quasi 3-D temporal standard deviation against the
near-infrared reflectance on March 1Oth7 2004, 12:12. Displayed are scatter plots for
the 1.6 um reflectance (a) and for the 10.8 pm brightness temperature (b).

divergence is largest when 7 successive images are used. Shorter time series obviously include
too little temporal information. On the other hand, the temporal variability of pixels that
are cloud-free in the current image and clouded several time steps earlier or later (or vice
versa), will increase for longer time series. Such pixels will be classified as clouds when the
temporal variability at the beginning and/or at the end of the time series is large. When
the temporal standard deviation of the eight surrounding pixels is also taken into account,
the divergence improves and only 5 successive image are needed for the best results.

Table 1: The twelve channels of the SEVIRI instrument on board of Meteosat-8.

Channel | Spectral band ym | Description
centre | min. | max.
1 0.635 | 0.56 | 0.71 | visual
2 0.81 0.74 | 0.88 | visual
3 1.64 1.50 | 1.78 | near infrared
4 3.90 3.48 | 4.36 | solar + terrestrial infrared
5 6.25 | 5.35 | 7.15 | infrared (water vapour absorption)
6 7.35 | 6.85 | 7.85 | infrared (water vapour absorption)
7 8.70 8.30 | 9.10 | infrared
8 9.66 | 9.38 | 9.94 | infrared (ozone absorption)
9 10.80 | 9.80 | 11.80 | infrared
10 12.00 | 11.00 | 13.00 | infrared
11 13.40 | 12.40 | 14.40 | infrared (CO2 absorption)
12 0.75 0.60 | 0.90 | high resolution visual broadband

We found higher divergences for the reflectance channels than for the infra red channels,
which is caused by the often static behaviour of water clouds (Fig. 3b). When we omit all
cloudy pixels with a near infrared reflectances above 0.5, we find comparable divergences
for all channels (Table 1). The highest divergence is found for the reflectance in the hrv
channel, which detects the most detailed information. The other three solar channels also
display high divergences whereas the infrared channels display somewhat lower divergences.
As expected, the lowest values are found for the water vapour absorption channels at 6.2
and 7.3 pm. These channels measure mid-atmospheric water content, and changes in this
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quantity can occur independently of cloudiness at lower levels. These channels are therefore
not suitable for detecting clouds. Significantly larger divergences are found for the other
absorption channels at 9.7 and 13.4 pm, which detect significant amounts of information
from low atmospheric levels. Thus, we use all channels except the water vapour absorption
channels for temporal detection of clouds.

4.2 Spectral features

SEVIRI has channels in more spectral bands that can be used for cloud detection and snow
mapping than any other currently available sensor, apart from MODIS on board of NASA’s
Terra and Aqua satellites. An existing cloud mask for the MODIS snow product uses .64,
r1.6, BT35.9—BTi08, BT134 and the Normalised Differential Snow Index (NDST), which equals
(ro.6a—71.6)/(ro.64a+71.6). In addition to these features we also use the 3.9 - 13.4 pm thermal
difference. The latter feature often reveals water clouds, but it does not detect optically thick
ice clouds, as illustrated by Fig. 4a. Water clouds have a large BT59 — BT19.g and appear
bright, whereas unclouded regions, which have a small or even negative BT59 — BTlgs,
appear dark. Clouds with a high ice content, some of which are indicated in Fig. 4a, appear
as dark as or somewhat brighter than snow-covered areas. A similar picture arises when we
compute BT39 — BTi34 (Fig. 4b), but now many ice clouds tend to be darker than snow.

This difference can be attributed to CO4 absorption, which occurs in the 3.9 and 13.4 um
channels. It reduces the amount of observed radiation, leading to lower observed brightness
temperatures. The effect is far larger at 13.4 um than at 3.9 pm and consequently, BT39 —
BTis4 is always strongly positive. No COs absorption takes place at 10.8 um so that
BTig.g is much higher than BTi34 and BT59 — BTyyg always smaller than BT39 — BTi3.4.
Furthermore, more CO4 absorption takes place when the atmospheric path length is longer,
so that in general it has a stronger cooling effect over the surface than over clouds. The
difference between BT59 — BT19g and BT59 — BT3.4 is therefore smallest for high altitude
pixels. A scatter plot of the two brightness temperature differences (Fig. 5) clearly shows
two bands of pixels, one corresponding to ice clouds and one corresponding to surface pixels.
The use of both features should thus improve the separation of ice clouds and snow, which
can be visualised by computing the ration between them. A plot of this ratio (Fig. 4c) clearly
reveals many ice clouds that are not detectable with each separate brightness temperature
difference (Fig. 4a and 4b).
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Figure 4: Normalised Meteosat-8 brightness temperature differences over the study
area on March 10th, 2004, 12:12 UTC. Shown are BT59— BTi0s (a), BT39— BT134
(b) and (BT39 — BTios — 5)/(BT59 — BT13.4) (c¢). This scene could be visually

classified by making use of the multi-spectral and multi-temporal information that
is available.
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Figure 5: Scatter plot of BT39 — B1134 against BT59 — BT1pg for the same scene
as shown in Fig. 3.

4.3 Classification method

In remote sensing of snow cover, often threshold based classification trees are used. The
spectral properties of clouds and snow are well known, which makes it straight-forward
to choose threshold tests and to set values for the thresholds. This classification method
generally gives good results and is easy to implement. Here we choose another standard
classification method, namely maximum likelihood classification. With this method each
pixel is assigned to the class for which the conditional probability of the pixel is highest.
The advantage of this method is that it can adequately classify pixel distributions like the
one shown in Fig. 5. Also, maximum likelihood classification gives probabilities in stead of
rigid values (e.g. snow or cloud), which can be used for assigning quality flags to the pixels.

When we assume that the features are normally distributed, the conditional Probability Den-
sity Functions (PDFs) are given by the multi-variate normal distribution. For each images
class, this distribution is described be the mean feature values and the feature covariance
matrix. We chose four classes to which pixels can be assigned: snow-free land, snow, ice
clouds and water clouds. Although we are not interested here in distinguishing between
different cloud types, we do make the division between ice clouds and water clouds in order
to improve the separation of clear and cloudy pixels. Clouds containing ice particles differ
in appearance from water clouds in several ways: 116, B139 — BT19g and B159 — BTi34
are lower (see Fig. 3 and 5) when ice particles are present. There is also a difference in mean
temporal variability between ice clouds and water clouds (Fig. 3). A simple threshold of for
r1.¢ is used for differentiating between training areas for ice clouds and water clouds.

In order to determine for all classes the means of the features and the covariance matrices, we
first classified all images with a simple threshold-based classification using only the spectral
features. The values of the thresholds were chosen such that the best classification results
were obtained, as could be subjectively judge by visual inspection. For the threshold-based
classification we use a simple scheme that includes the ratio between BT39 — BTigg and
BT3.9 — BTi3.4, which we found very suitable for detecting clouds (Fig. 4c). Pixels that are
not classified as cloudy in this way, are checked for the presence of snow by a second suite
of tests.

The threshold-based classification missed some clouds that were misinterpreted as snow, but
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the overall quality was judged acceptable. The classification results of all images were then
used as training areas for computing the means and covariances for all features and classes.
Then, the images were classified again, now with the maximum likelihood method. In the
new results the misclassified clouds were no longer present and these results were therefor
used for a final determination of the means and covariances.

5 Results

For analysing the performance of the algorithm, we focus on March IOth, 2004, 12:12 UTC.
An RGB image for this image which we found very useful for visual inspection is shown in
Fig. 6a. Most image classes are clearly discernible from each other in this RGB combina-
tion. Only the colour ranges of snow (red) and ice clouds (red/pink) slightly overlap. For
visual discrimination between these two classes one can view animated time-series of this
RGB combination, which visualise both the spectral and the temporal component. On the
project web-site (www.photogrammetry.ethz.ch/research/snow/index.html) examples of
such animated time series are available. Before we discuss the classification result of this
image, it is worthwhile to have a look at the conditional probabilities. Three of these con-
ditional probabilities can be combined into one RGB image, and this is shown for snow-free
surfaces, snow and water clouds in Fig. 6b. The three classes very clearly emerge in different
colour groups, and even snow and ice clouds are now clearly distinguishable from each other.
Pixels that have comparable conditional probabilities for all three classes appear in grey
tones. In this RGB combination, this is the case for water surface and for some ice clouds,
which both appear in white.

The result for the full maximum likelihood classification, i.e. including both spectral and
temporal features, is shown in Fig. 7a. There are no false positives, i.e. no snow is detected
where it is not present. However, a few false negatives occur: these are transparent and/or
sub-pixel clouds over snow that are missed. When a binary snow map is requested the latter
aspect is an advantage, as more snow is detected, but when fractional snow cover is to be
derived pixels should be completely cloud-free. The influence of each type of information,
spectral and temporal, upon the classification result can be investigated by using only one
of these types of information for the classification. In Fig. 7b the result is shown for the
case when only spectral information is used. Now, more snow is detected in some places
and less snow in other. The reason for this is that some clouds display very low temporal
variability, which lowers the conditional probability for clouds. These clouds may therefor
not be detected when temporal information is used, whereas they are detected when no
temporal information is used. For clouds with high temporal variability the opposite may be
true. When only temporal information is used to mask clouds with the maximum likelihood
method, we found that many clouds are missed. The cause of this poor performance is that
whereas all temporal features display low values over cloud-free pixels, the opposite is not
necessarily true over cloudy pixels. Slightly better results are obtained when we obtain a
temporal cloud mask in each single channel and then stack all single channel cloud masks.
A more substantial improvement is obtained when in each single channel the decision rule
is changed in favour of the conditional probability for clouds. For example, when pixels are
masked as cloud when the conditional probability of the temporal classifier is twice as high
for clouds as for cloud-free surfaces, we obtain the temporal cloud mask that is shown in
Fig. 7c. This cloud mask can be used to check all pixels that were classified as snow in the
spectral classification (Fig. 7b) for high temporal variability. As a result (Fig. 7d) many
mixed pixels near cloud edged that were previously classified as snow, are now classified as
cloud.
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Figure 6: Meteosat-8 RGB images of central Europe, acquired on March IOth, 2004,
12:12 UTC. (a) combination of 79 ¢4 (red), r1.6 (green) and (BT3.9—BT0s)/(B13.9—
BT3.4) (blue). Snow-free surfaces are green, snow is read, water clouds are white,
optically thin ice clouds (cirrus) tend to be purple and optically thick ice clouds are
pink or red. (b) combination of the conditional probabilities for snow-free surfaces
(red), snow (green) and water clouds (blue). Here, snow-free surfaces appear blue,
snow appears green or yellow and clouds appear pink. Note that water appears
black in (a) and white in (b).
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Figure 7: Classification results for March 1Oth7 2004. (a) maximum likelihood clas-
sification with spectral and temporal features; (b) maximum likelihood with only
spectral features; (c) temporal cloud mask, obtained from stacking all single channel
cloud masks; (d) as (b), but now the temporal cloud mask of plot (c) is used to mask
snowy pixels with high temporal variability.

6 Conclusions

With the spectral features that we use for maximum likelihood classification, all pixels that
were classified as snow actually contained snow, as judged by visual inspection. Many of these
pixels were of mixed type, representing both snow and snow-free land, and sometimes also
transparent and/or sub-pixel clouds, mainly near cloud edges. This type of classification thus
produces a liberal snow map, in the sense that it detects the highest amount of pixel where
snow is to some extent present. No false positives and only some false negatives are present
in this snow map. When temporal information is used to filter out pixels with high temporal
variability, false negatives are removed and the snow map becomes more conservative (more
mixed snow/cloud pixels are classified as clouds). The liberal snow map could be of use when
one wants to obtain a binary snow map, i.e. a snow map that simply indicates whether snow
is present or not. When a fractional snow map is required, the conservative snow map is
more appropriate, because then the detected snow pixels are more likely to be cloud free and
to contain only contributions from surface classes.

Apart from improving the detection of clouds during day-light, we anticipate that temporal
information can also be used for cloud detection during the night. Of course, the solar chan-
nels can not be used during the night, but the temporal variability will still be measurable
in the infrared channels. For the purpose of detecting surface snow cover however, which is
not possible during the night, this is of no importance.
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