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1 Introduction

At the Deutscher Wetterdienst the numerical weather forecast model LMK (LM-Kiirzestfrist)
is currently under development. It is based on the LM (Lokal Modell) and shall be used for
very short range forecasts (up to 18 hours) and with a resolution on the meso-y-scale (about
2.8 km). Among other new parameterizations, e.g. a 6-class cloud microphysics scheme
with graupel and a shallow convection parameterization, LMK shall contain a 3-dimensional
(3D) turbulence model instead of the 1-dimensional column physics designed for the current
LM resolution (Raschendorfer 2004). An appropriate 3D turbulence formulation is already
contained in LLM, the large eddy simulation version of LM (Herzog, 2002a, and Herzog,
2002b) which was transferred into LMK (Forstner, 2005). Despite the fact, that it is not yet
clear if a 3D turbulence is really required at the meso--y-scale, for further applications of the
model with increasing horizontal resolutions a 3D formulation of turbulence will surely be
necessary.

The LLM was mainly designed for very small scale climatology studies with horizontal res-
olutions of about Az ~ 100 m and therefore it uses cartesian coordinates instead of terrain
following coordinates required for regional numerical weather prediction models. As a first
step, this work derives the terms associated with terrain following coordinates both for the
fluxes of momentum and arbitrary scalars and for the divergence of these fluxes. In principle,
these terms were already derived in the LM documentation (Doms and Schéttler, 2002; Doms
et.al., 2005), but an error was found in their derivation: especially the divergence of a vector
and a second-order tensor was handled identical there, which is not correct. Consequently a
new derivation of these terms is presented here.

2 The flux divergences

To derive the coordinate transformation of the diffusion terms, in the equation of motion
we only consider the time derivative of the velocity components and the divergence of the
momentum fluxes
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This equation is valid in every arbitrary coordinate system (e.g. Stephani, 1988). T% are
the 2-fold contravariant components of the momentum flux tensor, ©* are the contravariant
components of the velocity vector. I‘fj are the Christoffel-symbols of 2. kind, defined by

1
T = §9kh (Ging + Gjnsi — Gij,h) - (2)
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g% is the metric tensor; partial derivatives are denoted by a comma ’;’

A special quality of the LM coordinate system consists in the fact, that on the one hand
it is spherical and terrain-following, but on the other hand it uses base vectors of a purely
spherical coordinate system. Beyond this, not the contravariant components are used, but
the so called physical components (i.e. they are related to normalized base vectors). Because
of that, the elegant and compact formulation in (1) is lost, unfortunately.

To express equation (1) in the special LM coordinate system, it turns out to be convenient
to apply it in purely spherical coordinates z* = (r, A, ¢). This reflects on the one hand the
usage of the spherical base vectors. On the other hand, the metric tensor and the Christoffel
symbols are well known for spherical coordinates and can be found in many text books
(see also Appendix A) instead of deriving them for the fully spherical and terrain-following
coordinates.

Starting from Eq. (1) we first introduce physical components. Here we denote them with a
star , in contrast to the LM-documentation (Doms et.al., 2005), e

v = g(ii)vi- (3)

A bracket (..) around indices means, that the summation convention must not be applied
to them. A summation is only carried out if there is also a double occurence of the same
indices without brackets, so that they only 'run in common’ (one should not confuse this
with symmetrising brackets, partially used in the literature).

From Eq. (1) follows
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The transition to terrain following coordinates (denoted with z'*) only means an application
of the chain rule in the first term on the right side. Simultaneous application of the product
rule delivers
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Derivatives of the metric tensor can be expressed by Christoffel-symbols (by solving Eq. (2))
to derive the equation
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This equation generally describes the temporal change and the diffusion term of the physical
components refered to a (normalized) base (in a coordinate system z7), where all the fields
are defined in a coordinate system z".

Now we will specify the LM coordinate system. In Appendix A the metric tensor and
Christoffel-symbols for spherical coordinates z* are given; in Appendix B the transformation
to terrain-following coordinates z'*. Equations (46), (47) and (49) have to be inserted in Eq.
(7) and after cumbersome, but uncomplicated calculation one finally arrives at
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Now the diffusion terms for scalar quantities s with an appropriate diffusion flux H* shall be
derived:

0s ~ 0 . '
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The derivation is analogous to the former, but now some terms can be neglected from the
starting point and it remains
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This corresponds obviously to the terms (a), (c) and (e) in Eq. (7). By insertion of the
terms from Appendices A and B, it follows
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The single terms of this equation can be interpreted descriptive. The 1st, 3rd, and 5th term
in the first line are corresponding completely to the x-, y-, and z-derivative in the calculation
of the divergence in cartesian coordinates:
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The 2nd and 4th terms give a correction from the terrain-following coordinate system, which
obviously is given alone from the {-derivative
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One has to obey, that the relations (14) - (18) are valid only on a local tangential plane
(with dx = rcos ¢ dX, and dy = r d¢) and are presented here only for illustration purposes.
Analogous relations follow for the momentum flux divergences (8)-(10) above.

The two terms in the second line of (13) are given by the spherical basis and can be illustrated
in the following manner. We prescribe a constant (in the spherical base) scalar flux field

H* = const. = (0,0, h), that means a radially outside directed vector field with constant
absolute value. Starting from the integral form of the balance equation (11)
0
/—SdV:— H-do (19)
v ot ov
and choosing an infinitesimal spherical segment as integration volume
dV =do - dr (20)

with the surface element

do = (rdg¢) - (rcos pd)) (21)

it follows
os cos pdpdrridr = —H*3 [((r 4 dr)de) - ((r + dr) cos pd)) — (rdg) - (rcos pdN)]  (22)
ot

and finally by expansion
% - _ H*?’g
ot r
Therefore this correction term follows from the divergence of the radial base vectors in the

spherical coordinate system. Obviously, this term is not contained in the original derivation
in Doms, et.al., 2005, [Eq. (3.3)].

... (23)
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Analogously the 2nd term in the second line of Eq. (13) can be explained by the convergence
(on the northern hemisphere) of the meridional base vectors. To see this, one chooses H** =
const. = (0, h,0) and the same infinitesimal volume element; the flux divergence now arises
from the lateral boundary surfaces (this term also arises in Doms, et.al., 2005, [Eq. (3.3)],
but without the factor 2). This also explains, why there are no such terms for the H*!-
component: the zonal base vectors do not possess such a convergence/divergence.

The same considerations can be made for the equations of motion (8)-(10). Again, the terms
in the second line arise by the spherical basis due to the curvature of the earth. Nevertheless
the vectorial character of these equations complicates a quantitative illustration compared
to the scalar equation.

How strong is the practical relevance of these terms? Let us first look to the terms which
are only addressed to the earth curvature. In the equations of motion, we have terms of
the form 7% /r/p. For rough estimations we can set T*%/p ~ TKE, where we can limit
TKE < 10 m?/s?; this occurs in nearly neutral boundary layers with very strong winds.
Now we can estimate (where we take the biggest occuring coefficient of 3)

3|14 | TKE _10m?/s?

~ 3 ~3
rp fax Rg 6-106m

_5m
max ~0.5-10 53_2 (24)
(Rg = earth radius). Even this extreme case is more than one order less than a Coriolis
force for small wind velocities with 2Q x v ~ 107*s~1-1m/s ~ 10~* m/s? and therefore such
terms can be neglected.

In the equation for the scalar flux divergence, we roughly estimate H*' ~ |s| - vTKE and
find

3m/s max |s|  max|s|

6-106m  2-106s  20d

max ~ max |s| - ~ max |s| - (25)
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T Rg
These terms mean at most a very slow change of the scalar variable in the order of about 20
days and therefore can be neglected, too.

Next, we look at the terms connected with the terrain-following coordinate. At least near
the bottom, we can estimate for the typical LMK resolution and area (Germany and the
most part of the Alpines) a maximum terrain slope of

~ |AR| 1000
= Az~ 2800m

oz

(26)

max

Normally, the vertical part of the flux divergences are stronger than the horizontal parts,
therefore, as can be seen from Eq. (17), terms connected with the terrain-following coordinate
cannot be neglected.

3 The transformation of the turbulence closure

For calculating the momentum fluxes we start from a formulation with a scalar eddy viscosity
K, which connects the fluxes with the deformation tensor D" in a gradient ansatz:

T = —pKD" = —pK(¢"Vv’ + ¢/'Vi'). (27)

Often, a diagonal term 2/3¢” E, where E is the turbulent kinetic energy, is added to the
right hand side. Such a term guaranties consistency for an incompressible (and therefore
divergence free) medium; this can be seen by taking the trace of (27). We neglect it here,
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because it is not used in Herzog, 2002a. But because of its simple form (E is a scalar), it
is not affected by the following transformations and can be implemented directly. Using the
physical components delivers

T*tj 0 ,U*j o ,U*lc 0 ’U*i o ,U*k
———— =K Qdm — |+ gdrfki + gng — |+ g]ll_‘;k
VI9(ii)/9(j) z 9(4) 9(kk) z 9() VI(kk)

(28)

and introduction of terrain-following coordinates, application of the product rule and Eq.
(6) yields
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By inserting the metric tensors and Christoffel symbols from Appendices A and B, the
components
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follow. Here, the last terms in the right hand sides of each of the equations (30), (32), (33)
and (35) are not contained in Doms, et.al., 2005. Analogous to this, the (much more simple)
derivation for the scalar fluxes follows

H' = —pK,g"V;s, (36)
from which the physical components can be derived
336 ™ Qs
H* = —pK,. /909" 507 B (37)
or for the single components
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1 33
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which agrees to Doms, et.al., 2005.

Again, we want to estimate the relevance of the terms. In principle LMK shall resolve the
bigger parts of deep convection. Therefore all the velocity components can have the same
order and we can roughly estimate

[v*|  100m/s 51
~ ~107°2 41
max 6-105m s (41)
Compared to this any vertical deformations are much bigger, for example
1 ot Av 1 1
v v m/s ~102L (42)

VG ¢~ Az " 100m s

(we used an arbitrary value of Av ~ 1 m/s, which is certainly not very much, because we
assumed a strong wind case). Even horizontally we would expect

Av  0.3m/s
Az 2800m
Again, all the terms connected with the earth curvature are at least one order less than the

gradient terms and therefore can be neglected. But, as before, all the terms connected with
the terrain slope cannot be neglected.

4l (43)

4 Conclusions

Turbulent fluxes and flux divergences of momentum and arbitrary scalars were derived for
the special LM/LMK coordinate system und base vectors. It occurred, that there are dis-
crepancies between this derivation and the original LM documentation. A test of correctness
of this derivation is the fact, that some of the 'new’ terms can be motivated illustratively.

Nevertheless, the discrepancies are not of practical importance, because they occur only
in terms corresponding to the earth curvature. The neglection of terms connected with
the earth curvature can be motivated also by the following qualitative consideration. The
maximum vertical length scale of turbulence is on the one hand determined by the depth
of the planetary boundary layer (L, ~ 1 km) and on the other hand is sureley not greater
than the depth of the troposphere (L, ~ 10 km), if one regards deep convection as a kind
of turbulence, too. The horizontal length scale of turbulence cannot exceed very much this
vertical length scale. Therefore, we have a maximum turbulence length scale of the order
Liyrp < 10 km. This is almost 3 orders less than the earth radius R ~ 6400 km. Therefore
all the terms connected with the pure earth curvature can be neglected.

In summary, in the flux divergences of momentum (8)-(10) and arbitrary scalars (13) all the
terms which contain the fluxes themself and not their spatial derivatives can be neglected
(that means, all the second lines can be neglected). Similarly, in the turbulent fluxes of
momentum (30)-(35) all the terms which contain the velocities itself and not their spatial
derivatives can be neglected. In contrast, terms connected with the terrain slope have to be
maintained.

Appendix A: Spherical coordinates

We use a spherical coordinate system with coordinates

st=) 22=¢, =r (44)
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If one compares this with the literature, one should obey a possibly different relation with
the cartesian coordinates. Here we use

T =71CoSpCcosSA, y=rcos¢sin), z=rsing. (45)

Note, that we define ¢ € [—7/2,7/2] and therefore cos ¢ > 0.

For completeness we list the metric tensor

7"2 COS2 QZS 0 0 72cos2 & 0 0
9ij = 0 r?2 0 & g7 = 0 5 0|, (46)
0 0 1 0 0 1
and the Christoffel symbols
0 —tan ¢ 1/7‘
I‘le =| —tan¢ 0 )
1/r
cos¢-sing 0 0 —rcos’¢ 0 0
s = 0 0 1r |, Tj= 0 -r 0 (47)
0 1/r 0 0 0 0
Appendix B: Terrain-following coordinates
The transition to terrain-following coordinates is described by
ot =21 =), ? =127 =¢, 3 =r()\¢,0). (48)
Therefore we get for the required derivatives
n n n
Or” 9, 9T
ox! Ox? o0z
2 12 2
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where we introduced the abbreviations Jy, Jy and VG analogous to the LM-documentation
(Doms and Schittler, 2002).
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