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Runge-Kutta Time Integration and High-Order Spatial Discretization of
Advection — A New Dynamical Core for the LMK

JOCHEN FORSTNER AND GUNTHER DoMS

Deutscher Wetterdienst, P.O.Box 100465, 63004 Offenbach a.M., Germany

1 New Dynamical Core

LMK is the name for a new development branch of the LM aiming at the meso-gamma
scale (horizontal resolution of 2-3 km) and shortest range (” Kiirzestfrist”) forecasts periods
(3-18 h). The new dynamical core for the LMK is based on different variants of 2-timelevel
Runge-Kutta schemes, which are combined with a forward-backward scheme for integrating
the high-frequency modes of the elastic equations. The first one is the normal 3rd-order
Runge-Kutta scheme used by Wicker and Skamarock (2002) whereas the second one is a
total variation diminishing (TVD) variant of 3rd-order (Liu, Osher and Chan 1994).

For horizontal advection upwind or centered-differences schemes of 3rd- to 6th-order can be
used — the operators are formulated in advection form. The vertical advection is normally
treated in an implicit way using a Crank-Nicolson scheme and centered-differences in space.
Most slow tendencies such as vertical diffusion, thermal/solar heating, parameterized con-
vection and coriolis force are computed only once using values of the prognostic variables
at time step m. These tendencies are fixed during the individual Runge-Kutta steps and
contribute to the total slow-mode tendencies which are integrated in several small time steps
together with the fast-mode tendencies in a time-splitting sense. In contradiction to this,
the whole 3D-advection is computed in each Runge-Kutta step.

In the following the procedures for the two Runge-Kutta schemes are described mathemat-
ically in a simplified form — the treatment of the physical forcing terms is omitted and the
only operators listed are the ones for advection.

Problem to Solve:
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TVD-variant of 3rd-order Runge-Kutta:
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Time-Splitting Method:
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After each Runge-Kutta step the fast modes are integrated forward to the desired point in
time using several small time steps A7 — the slow tendency is fixed. The starting point of
the integration ¢g . depends on the chosen variant of the Runge-Kutta scheme — for the first
variant it is alwa};s equal to ¢}y

1. step:
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remaining steps:
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with X = %, ** and n + 1 in the individual Runge-Kutta steps.

Horizontal and Vertical Operators:
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2 Idealized Advection Test

" An test problem of a tracer in a deformational

flow field (LeVeque 1996) was used to evaluate
the different time integration schemes in combi-
nation with varying high-order spatial discretiza-
tion schemes for advection. The initialized field
was a cone with a maximum of 1.0 and a radius
of 15 grid spacings. In the first half of the sim-
ulation the tracer field is deformed vortex-like
(Figure 1). The flow is reversed in the second
half of the simulation cycle and the analytical
solution at the end would be exactly equal to
the initialized field.
The results of the simulations are given in Fig-
n » » 4« = e wn & o w ure2. The number of time steps used for the sta-
20 ble integration of one deformation cycle is given
Figure 1: Advection of a tracer in a non- jp the caption for each scheme. Especially in the
dwgrg ent def orma{fzo.n'al flow (Le Veq“e 1996). combination with centered-differences the TVD-
Thick contours: initial field; thin contours: . .
field after first half of the deformation cycle. variant s'hows its bene.ﬁts. Unfortu.nately when
actually implemented in LM one still has to use
a certain amount of numerical smoothing in form of artificial horizontal diffusion to control
the small scale oscillations. In this regard the implicit diffusion of the upwind schemes sta-
bilizes the overall integration and even bigger time steps are usable.
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3 Test Case: Winter Storm ”Lothar”

To test the robustness of the scheme, the winter storm case ”Lothar” (26 December 1999)
was simulated with the LM. Results are shown in Figure 3. The maximum horizontal velocity
during the simulation reaches 108 m/s. For this case the new scheme in the combination
TVD-RK-3rd/UP-5th allows a time step of 72 s at a resolution of 7 km compared to a time
step of 40 s of the operational Leapfrog/CD-2nd scheme.

This case was also used in simulations to evaluate a new ”symmetric” formulation of the
thermodynamic equations (described in further detail below). The main change in this
formulation lies in the use of a prognostic equation for 7% — the temperature perturbation —
instead of the whole temperature T'. It was necessary to use a smoother formulation of the
relaxation at the lateral boundaries to control numerical problems. In addition the result for
a simulation with a higher resolution of 2.8 km is shown.

4 Metric Coefficients and ” Symmetric” Thermodynamic Equations

The new the dynamic core uses a different formulation of the metrics. Instead of the former
pressure based one a formulation based on the geometrical height is applied:

dpo 0z 1
N P A S
T="a¢ o~ gpo V"

In addition, the averaging to the half level positions is now done by a simple arithmetic mean
and not a weighted mean any more.

To come to a consistent treatment of the gravity wave modes in the fast waves solver a
”symmetric” formulation of the thermodynamic equations was implemented. Therefore we

COSMO Newsletter No. 4



9 Model Development and Application 171

100{3
0

90 ﬂﬁ@}%@z&i Q%'BU g ’ : 2030 3 v:
80 %‘%?%%QZ qé@io

Q:

"/ O
©
) 0 0
Mg?u N S04
0 J
70 %’% 07
%) A 00
2 0.
N
60 020 Z) 0 Q G558
oo % 0 RN

10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70 100
(a) RK-3rd / CD-4th — 670 time steps. (b) RK-3rd / CD-4th with 4th-order artificial
horizontal diffusion — 550 time steps.
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(¢) TVD-RK-3rd / UP-5th — 380 time steps. (f) TVD-RK-3rd / UP-3rd — 310 time steps.

Figure 2: Advection of a tracer in a non-divergent deformational flow (Le Veque 1996). Results
after 5 s simulation (one deformation cycle).
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change to a prognostic equation for the temperature perturbation T*:

T = T"=T-Tyx).

The resulting term of the advection of the reference temperature Ty

_ 9% gm,, _ 4T
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7-VTy =

is treated in the fast modes part of the model.
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(a) TVD-RK-3rd / UP-5th — Az, Ay = 7 km; (b) Leapfrog / CD-2nd — Az, Ay = 7 km; At =
At = 72 s. Prognostic equation for T' (stan- 40 s. Prognostic equation for T' (standard).

dard).
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(c) TVD-RK-3rd / UP-5th — Az, Ay = 7 km; (d) TVD-RK-3rd / UP-5th — Az, Ay = 2.8 km;
At = T2 s. Prognostic equation for T*; At = 30 s. Prognostic equation for T
smoother relaxation LBC. smoother relaxation LBC.

Figure 3: Winter storm ”Lothar”: mean sea level pressure in hPa — 26 December 1999,
16 UTC.
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Now the equations for the pressure and temperature perturbation are formulated
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and semi-implicitly coupled with the prognostic equation of the vertical velocity
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in a "symmetric” way.

The ”symmetric” treatment of the temperature equation is still under development. While
several tests look quite promising, others reveal big differences between this and the former
treatment. For example tests cases of convective storm development (Weisman and Klemp
1982) — which are not shown here — clearly show the great sensitivity of the model results
with respect to the treatment of the buoyancy term. And we do not know yet, which is the
correct one — at least in a numerical sense.

5 Mountain Flow: Analytic and Numeric Solutions

As a further test of the different 2-timelevel Runge-Kutta cores 2D-simulations of the flow
over a bell shaped mountain were performed and compared to an analytic solution (as well
as the old 3-timelevel Leapfrog core). The results are given in Figure 4. For this case the
best match with the analytic solution is accomplished with the Runge-Kutta scheme using
T* as prognostic variable. This looks promising for the new ”symmetric” treatment, but
one has to keep in mind, that the vertical advection of Ty is equal to zero in this case of
an isotherm atmosphere. Therefore the buoyancy-related sensitivity of the model mentioned
before has minor influence here.

6 Numerical Experiment: ” Testsuite 2”

In addition to the first test suite (see paper by Doms and Forstner, this volume) in another
numerical experiment the model with the new dynamical core was run in an operational
forecast setup for the period 1 December to 31 December 2003. The Experiment was called
”Testsuite 2”. Besides the dynamical core the only other change we had to make was to use
the old turbulent diffusion and transfer schemes. This was due to numeric instabilities in
the new turbulence scheme, which uses a prognostic equation for the TKE to compute the
diffusion coefficients.

As an example Figure 5 shows a comparison of the Runge-Kutta and the operational version
of the 00 UTC run for 20 December 18 UTC. We see, that the pressure field looks good
and corresponds well to the operational version. For precipitation the new core generates
systematically smaller amounts in the mean. In this context it is noticeably, when we look at
the integrated cloud condensate, that we have less clouds particularly over the sea. Further
verification and comparison with precipitation measurements (of high quality) have to show,
if that is desirable. The only bigger problem so far — revealed by a quick verification of the
first eight days — is a bad forecast of the 2m-temperature. But that is rather an effect of the
old turbulence scheme than the new dynamical core.
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7 Outlook

In the meantime Matthias Raschendorfer has solved the problems leading to the numeric
instabilities and the changes will probably be integrated in the operational source code of
LM commencing with version 3.9. The next step is ”Testsuite 3” — using the 2.8 km LMK
setup, a time step of 30 s, prognostic precipitation, prognostic TKE and certainly the new
TVD-Runge-Kutta core combined with 5th-order upwind for horizontal advection.

The ongoing development of LMK aims at the implementation of a 3D-turbulence scheme
(Herzog et al. 2003) and further investigation of the ”symmetric” formulation of the thermo-
dynamic equations with a set of idealized test cases proposed at the last SRNWP-workshop
(Bad Orb, 2003).

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

(b) Leapfrog / CD-2nd — At = 40 s. Prog-
nostic equation for T' (standard).

(¢) TVD-RK-3rd / UP-5th — At = 72 s. (d) TVD-RK-3rd / UP-5th — At = 72 s.
Prognostic equation for T' (standard). Prognostic equation for 7*; smoother relax-
ation LBC.

Figure 4: Vertical cross section of 2D flow over a mountain of 100 m height and a half
width of 4 grid spacings. Shown is the vertical wind velocity w. Incoming flow: U = 10 m/s;
stratification: isotherm — Ty = 285.15 K.

Fig. (b)-(d): Results of LM simulations after a simulation time of 30 h - Ax,Ay =7 km. The
analytic solution is given in thin dashed contours.
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initial: 20 DEC 2003 00 UTC initial: 20 DEC 2003 00 UTC
valid: 20 DEC 2003 18 UTC valid: 20 DEC 2003 18 UTC

(1) 6h PRECIPITATION (>0.1mm) (2) PMSL

(1) Mean: 1.27809  Min: O Max: 28.5488 Var: 6.81295 (1) Mean: 1.64289 Min: 0 Max: 32.0176 Var: 9.6483
(2) Mean: 1012.52  Min: 986.254 Max: 1030.02 (2) Mean: 1012.52  Min: 986.541 Max: 1029.82
—1 T T 1
02 05 1 2 5 75 10 15 20 30 40 02 05 1 2 5 75 10 15 20 30 40
(a) LM-RK: Precipitation — 12-18 UTC. (b) LM: Precipitation — 12-18 UTC.
initial: 20 DEC 2003 00 UTC initial: 20 DEC 2003 00 UTC
valid: 20 DEC 2003 18 UTC valid: 20 DEC 2003 18 UTC

(1) iwv (blue) (2) iwater—iwv (red)
¥ —

(1) Mean: 14.2633  Min: 2.36313 Max: 31.0609 Var: 30.9961 (1) Mean: 14.4468 Min: 2.32555 Max: 31.0609 Var: 31.4762
5 75 10 125 15 175 20 225 25 275 30 5 75 10 125 15 175 20 225 25 275 30
(2) Mean: 0.03214 Min: —2.2888 Max: 1.22361 Var: 0.00562 (2) Mean: 0.04443 Min: —0.0003 Max: 1.34045 Var: 0.00737
0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3
(¢) LM-RK: Integrated water vapor (green- (d) LM: Integrated water vapor (green-
blue) and cloud water and ice (yellow-red) — blue) and cloud water and ice (yellow-red) —
18 UTC. 18 UTC.

Figure 5: Numerical experiment ” Testsuite 2”7 to evaluate the new dynamical core — Ax, Ay =
7 km; initial time of the simulation: 20 December 2003 - 00 UTC.

LM-RK: New dynamical core — TVD-RK-3rd / UP-5th — At = 72 s. Old (diagnostic) TKE
scheme (itype_turb=1, itype_tran=1).

LM: Routine version — Leapfrog / CD-2nd — At = 40 s. Prognostic TKE scheme
(itype_turb=3, itype_tran=2).
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