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Test of the Moisture Mass Conservation in LM

GUNTHER DoMS

Deutscher Wetterdienst, P.O.Box 100465, 63004 Offenbach a.M., Germany

1 Background

The model equations of LM use a prognostic equation for the pressure perturbation, which
is derived from the continuity equation for total mass and includes some additional approxi-
mations. Consequently, the model lacks an explicit control of conservation properties. Also,
the budget equation for the water species are numerically solved in advection form, and thus
the conservation of water mass cannot be guaranteed (see Part 1 of the LM Documentation).

From a physical point of view, it is of course useful to construct a numerical model around
conservation principles for the basic variables. E.g., water mass conservation is important
to avoid artificial sources and sinks in the hydrological cycle, and total mass conservation is
required to reproduce correctly the hydrostatic pressure field. On the other hand, mass con-
serving numerical schemes do not necessarily guarantee an accurate solution. For instance,
the application of a flux-form upstream scheme for the budget equations will always give a
mass conserving solution, but in many circumstances the solution will be too smooth to be
of any practical use.

Besides the use of the pressure equation and the application of the advective form, there are
several other factors which contribute to an artificial loss and gain of total and water mass.

e The continuity equation is used to derive a prognostic equation for pressure

0 d;
8_§+V. (pv) =0 — d—f = —(de/Cvd)pV'V+(de/Cvd - 1)Qn, (1)

where @)}, is the diabatic heating term appearing in the prognostic equation for tem-
perature T'. In the model equations, however, this term in neglected in (1). Thus, by
reconstructing the continuity equation from the model equations, an artificial source
term related to diabatic heating will arise.

e Additional errors result from numerical discretization (e.g. 3-d advection in the vicinity
of steep topography) and the utilization of numerical filters (e.g. horizontal diffusion).

e All relaxation terms can act as sources or sinks of mass. Examples are the lateral
boundary relaxation technique, the Rayleigh damping layers at the model top or the
nudging analysis scheme.

e The application of a zero boundary condition for the vertical velocity (w = 0) at the
lower boundary is a problem. Since the velocity is defined to be the barycentric velocity,
w will not be zero if there is precipitation fallout or evaporation (dew formation) at
the ground.

Even if the equations are not applied in conservation form, an accurate non-conservative
scheme can in principle closely satisfy conservation. In this paper we address the question
of how accurate is the LM solution is in practice.
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2 Budget Equations

In order to assess the water mass conservation, the rate of change within a vertical column
over a gridpoint will be calculated using the model predicted values of total air density p
and the specific mass fractions gy with & = v (water vapour), k = ¢ (cloud water), k = ¢
(cloud ice), k = r (rain) and k = s (snow) at time level n and n + 1, resulting in a rate of
change per time step. This rate will then be compared with the change that would result if
the mass-budget would be calculated based on the corresponding ’exact’ budget equations.

To do so, we start with the local differential form of the LM budget equations for the water
species (k =v,¢,1,1,8):

000 1 () + 2 O g )

ot z
where v is the barycentric wind vector and Sy, are source rates. Py denotes the precipitation
flux (nonzero only for rain and snow) and Fj, is the turbulent flux of species k (nonzero only
for water vapour, cloud water and cloud ice). Adding the equations (2) for all water species
results in the budget equation for the total water mass fraction ¢ = ), gi:
dpq oF,+F.+F) 0P +PF)

ot + V- (pgv) + % — P =0. (3)

The gridpoint-column budget is obtained by integrating (3) over a control volume V., =
Ac(z — z5), where z; denotes the height of the model domain top, z, is the topographical
height of the surface, and A, = a?cosp ANAy is the discrete horizontal area element repre-
sented by a gridpoint. In this way, local errors can be considered for each column, and —
on the other hand — a large-scale budget is easily obtained by summing up the columnwise
budgets for an arbitrary subdomain. Defining the column water mass per unit area as

1
Mo = - / pqdV, total water per unit area (4)
C

and using (3), the semi-discretized column water mass budget equation may be derived:

dmy,

el > Vi (pgvn)iAz + FY — P. (5)
z

Here, v}, denotes the horizontal wind vector. The flux divergence term is evaluated for each
model layer [ with thickness Az; and then the sum over all layers is calculated. F¢ denotes
the surface flux of water vapour (positive for evaporation, negative for dew formation at the
ground; turbulent transports of cloud water and cloud ice at the ground have been neglected),
and P denotes the total precipitation flux at the ground (rain and snow).

An additional assumption made for (5) is that the barycentric vertical velocity vanishes at
the top and bottom of a column. At the lower boundary, however, w is zero only when both
F? and P are zero — which usually is not the case. Taking the impact of vapour diffusion
and precipitation fallout into account more precisely would result in a correction factor p,/p
for the terms F? and P in the budget equation (5), where p, denotes the density of dry
air. Since this factor is very close to 1, we will neglect this effect in the present context. A
detailed investigation of the use of continuity equations for water species and on the impact
of the lower boundary condition for the barycentric vertical velocity on the total mass budget
has been recently presented by Wacker and Herbert (2003).

We can now proceed to check the water mass budget of the model by evaluating the rate
of change at a timestep t, as given by the right hand side of (5) and comparing this result
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with the rate of change as resulting from the model integration. The latter rate will be
denoted as (dm,,/dt)s and is evaluated as (my,(t,+1) — my(t,))/At, using the predicted
model variables to calculate m,, at time level n + 1 and n (At is the time step). Because of
model and discretization errors, the model predicted value for the change in m,, will differ
form the ’exact’ mass-conserving rate of change (5) by a residuum value R:

dmy, _dmy,
(—dt )M_ " | R, ©)

Whenever the residuum R is positive, the model predicted change in water mass is larger
than the mass-conserving change would prescribe — that is there is an artificial erroneous
gain of mass. Values R < 0 indicate an artificial loss of water mass. Equation (6) can also
be integrated in time resulting in a column mass-budget for a certain time period. Denoting
the start and end time of an arbitrary time period by ¢y (with time step index ng) and t;
(with time step index n1), respectively, yields

ni ni
M (t1) s — My (to)r = Y _(—Div+ FY — P)pAt+ Y RyAt. (7)
) no

The term Div on the right hand side denotes the column integrated water mass divergence
as given by the first term on the rhs of Eq. (5). We use second-order centered differences
to evaluate Div such that outflow from one cell is counted as inflow to the corresponding
neighboring cell. Thus, it is easy to obtain the budget (7) also for an arbitrary model
subdomain by simply adding over all gridpoints within the subdomain. All flux-contributions
from Div will cancel except for the outer boundaries where they define the net lateral outflow
(Div > 0) or inflow (Div < 0). All components to calculate the mass budget are available
by standard model output (i.e. the vertically integrated water mass m,, at output time and
the time-integrated values of Div, F{ and P), the residuum R can thus be calculated in a
simple post-processing program.
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Figure 1: Left: 24-h LM-forecast starting from 4 May 2002 00 UTC; mean sea-level pressure (isolines)
and 24-h accumulated total precipitation (shaded). Right: 4 subdomains chosen to calculate area-
average water mass budgets.
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3 Water Mass Budget Results

As a first (arbitrary) test case to calculate the LM water mass budget we have chosen a 48-h
forecast starting on 4 May 2002 00 UTC. The initial conditions have been interpolated from
the corresponding GME analysis. The weather situation (see Fig. 1, left) is characterized
by two weak low pressure systems over the North Sea and over northern Italy. Whereas the
northern system is associated with mostly stratiform precipitation, the southern system is
of convective nature with heavy thunderstorms along the southern Alpine ridge.

Fig. 1 (right) illustrates the position of four different subdomains where we calculate hourly
area average water mass budgets according to (7) — normalized by the area of the subdomains
in order to avoid too large numbers. Domain 1 corresponds closely to the total model domain
but excludes the lateral boundary relaxation zone in order to avoid errors from the boundary
treatment. Domain 2 has been chosen over the North Sea, where errors resulting from sloping
model surfaces due to topography will not occur. Domain 3 covers the northern parts of
Germany, the impact from topography is expected to be noticeable but quite small. Finally,
Domain 4 is positioned directly over the Alps. Here we expect the largest discretization
errors related to very steep topography.

We first look at the results for subdomain 2 (North Sea) as shown in Figure 2 (left). Ex-
cept for the first 12h of integration, the contributions of surface evaporation (yellow) and
precipitation (red) balance approximately. Consequently, the total rate of change in water
mass (black) closely follows the change due to net inflow (blue). During the first and last 15
hours of integration, the model predicted change in water mass (black line) follows the mass-
conserving change (green) as calculated from (5) almost exactly — the residuum (purple) is
practically zero. However, in the 15-33h forecast range (mostly during night) a noticeable
positive deviation of the residuum can be noticed. The artificial mass gain rate is up to 5% of
the total water mass change. Since the physical forcing for this subdomain is relatively small
and errors due to topography can be excluded, the reason for this error might be attributed
to the discretization of transport terms.

Domain 2: North Sea Domain 3: Germany
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Figure 2: Normalized hourly area average water mass budget (mm/m? per hour) as a function
of forecast time (hours). Left: subdomain 2 (North Sea). Right: subdomain 3 (Germany). The
black line indicates the model predicted rate of change in water mass and the green line represents
the ’exact’ rate of change as calculated from (5) with the contributions from surface evaporation
(yellow), precipitation (red) and horizontal total moisture convergence (-Div, blue). The residuum
term is colored in purple.
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Figure 3: As in Fig. 3, but for subdomain 4 (Alps) and subdomain 1 (total domain excluding the
relaxation zone).

A similar behaviour can be noticed in the water mass budgets for subdomain 3 (Germany).
As for subdomain 2, the contributions from precipitation and evaporation balance approx-
imately and the total change in water mass follows more or less the net inflow or outflow.
Surface evaporation now has a clear diurnal cycle with a maximum around noon which is
reflected in the area average precipitation. Bearing in mind the mass-flux closure condition
in the Tiedtke convection parameterization, this indicates the presence of convection forced
by surface evaporation. In contrast to subdomain 2, the maximum values for the residuum
do now occur during daytime, most pronounced for the 9-15h forecast range. Also the net
residuum has negative values, which means that the model looses water mass in this area.

The model behaviour is quite different in the Alpine region, where deep moist convection
occurs during the integration (see Fig. 3, left). Evaporation from the ground has also a
clear diurnal cycle as for subdomain 3, but now the mass loss due to precipitation is mainly
balanced total moisture convergence — this reflects the moisture convergence closure of the
convection scheme. The large amplitude of convergence and precipitation in the first 12
hours of integration is due to dynamic adaption of the unbalanced interpolated initial fields,
which does not occur when starting from the LM nudging analysis. The value of the water
mass residuum for the Alpine subdomain is surprisingly small. In a region, where we had
expected the largest errors, the time-evolution of the model predicted water-mass change is
almost identical to the diagnosed ’exact’ budget (except for a short time period at about 5h
and 46 h forecast time).

When looking at the water mass budget for the total domain excluding the lateral boundary
zone (subdomain 1; see Fig. 3, right), we notice that precipitation is on the average approx-
imately balanced by surface evaporation, and the total change in mass follows closely the
total moisture inflow or outflow of the domain. Whereas the mass conservation appears to be
very good during the first 18 hours of integration, the solution deteriorates in the following
hours and the residuum becomes and stays slightly positive until the end of the forecast.
This differs from the model behaviour in the smaller subdomains considered so far, where
a nonzero residuum occurred only during relative short time periods. Thus, there must be
other subdomains where the mass error behaviour is systematically different from the error
evolution in the subdomains considered so far.
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Figure 4: Left: Rate of change of the vertical integrated (column) water mass between 19-20 hours
of forecast time. Right: Spatial distribution of the water mass residuum for the same time period.

Figure 4 (left) depicts the spatial distribution hourly change of vertically integrated water
mass between 19 and 20 hours of forecast time. We notice larger local increases and decreases
of atmospheric water in the vicinity of the northern low pressure system, which is associated
with precipitation formation and transport caused by the frontal structures. Within the
southern low pressure system, the change in water mass is much smaller. This indicates
a good local balance of moisture convergence and convective precipitation — which is not
surprising since this type of local balance is used as a closure condition to parameterize deep
convection.

The distribution of the local error in the column water mass budget is also shown in Figure 4
(right). Over sea and flat terrain, the residual errors are close to zero with some small-scale
structure. However, large local errors can be noticed over steep terrain (e.g Alps, Pyrenees,
Apennin and east Adriatic coast) but a also over some mid-range mountain systems in
Germany, France and Eastern Europe. Within these regions, the local error may be of the
same order of magnitude as the vertically integrated change in water mass itself — which is a
worrying result. Since these large errors do not show up in the area average budgets discussed
above, they are presumably caused by model deficiencies related to horizontal transport:
when the Div-terms are added over a subdomain, the horizontal fluxes will cancel in the
inner area such that related errors will be counted only along the outer boundary of the
subdomain. Nevertheless, the spatial error distribution clearly indicates that the LM model
formulation is problematic over steep terrain.

Besides the use of terrain-following coordinates with corresponding errors in the discretiza-
tion, the neglection of the diabatic heating term in the pressure equation (1) may be another
possible reason for errors in the water mass budget (neglecting the heating term will mainly
affect the total air density which is used in the definition of m,,). Recently, Bryan and
Fritsch (2002) investigated the impact of this (and other) approximation to the basic ther-
modynamic equations on the simulation of a rising moist bubble. They noticed remarkable
differences in the time evolution compared to their benchmark solution using the full non-
approximated thermodynamic equations. However, for the simulation of more complex real
cases, the differences between various thermodynamic model formulations revealed to be
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much smaller. By evaluating a LM-simulation which retains the diabatic heating term in the
pressure equation, we can in principle confirm this finding. The impact is relatively small
and the structure of the water mass budget error is almost identical to the example in Fig.
4 (not shown): the area mean values as well as the maximum and minimum values of the
residuum are reduced by about 10 - 15%. But even if the error reduction is relatively small,
we will consider the inclusion of the heating term in a future version of LM for consistency
reasons.

4 Conclusions

The case study considered here reveals that the column water budget of LM may behave
quite different for various model subdomains, depending on the geographical location and
the prevailing weather type. Of course, a number of additional cases must be evaluated
in future to specify and confirm systematic differences. And also, a clear identification of
causes for mass budget errors cannot be drawn by this type of diagnostic studies, but some
useful hints may be obtained. The basic results form one case study considered so far are
summarized below.

e The large-scale area-average budgets of water mass appears to be 'reasonable’ for short-
range NWP purposes since the magnitude of the area-average residuum is in general
small compared to the absolute rate of change.

e Local imbalances in vertical columns can be much larger, especially over steep terrain
— this indicates severe numerical problems related to the utilization of terrain-following
coordinates.

e The inclusion of the diabatic heating term in the pressure equation improves the water
mass budget slightly, but does not cure the principal problems.

A methodology to remove budget errors is the use of the basic continuity equations in
flux form and conserving numerical schemes to calculate 3-d transport. This strategy is
applied in the new WRF-model of the US meteorological community. However, a number
of inherent accuracy problems related to terrain-following coordinates will remain (e.g. the
discretization of the pressure gradient terms). Within COSMO, the LM_Z-project (see the
paper New Developments Concerning the Z-coordinate Version of LM by J. Steppeler et al.
in Section 9) tries to tackle the accuracy problem by developing a z-coordinate version of
the model using a shaved-element finite-volume discretization.
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