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Abstract

A lake model capable of predicting the surface temperature in lakes of various depth on
the time scales from a few hours to a year is developed. The model is based on a two-
layer parametric representation of the temperature profile, where the structure of the
stratified layer between the upper mixed layer and the basin bottom, the lake thermo-
cline, is described using the concept of self-similarity of the evolving temperature profile.
The same concept is used to describe the temperature structure of the thermally active
upper layer of bottom sediments and of the ice and snow cover. The model incorporates
the heat budget equations for the four layers in question, viz., snow, ice, water and bot-
tom sediments, developed with due regard for the vertically distributed character of the
short-wave radiation heating. An entrainment equation is used to compute the depth
of a convectively-mixed layer. A relaxation-type equation is used to compute the wind-
mixed layer depth in stable and neutral stratification, where a multi-limit formulation
for the equilibrium mixed-layer depth accounts for the effects of the earth’s rotation, of
the surface buoyancy flux and of the static stability in the thermocline. Simple thermo-
dynamic arguments are invoked to develop the evolution equations for the ice and snow
depths. The result is a computationally efficient bulk model that incorporates much of
the essential physics.

Empirical constants and parameters of the proposed model are estimated, using inde-
pendent empirical and numerical data. They should not be re-evaluated when the model
is applied to a particular lake. The only lake-specific parameters are the lake depth,
the optical characteristics of lake water, the temperature at the bottom of the thermally
active layer of bottom sediments and the depth of this layer. In this way, the model does
not require re-tuning, a procedure that may improve an agreement with a limited amount
of data but should generally be avoided. The proposed lake model is intended for use in
numerical weather prediction, climate modelling, and other numerical prediction systems
for environmental applications. The present paper (Part 1) contains an overview of pre-
vious studies and the model description. In a companion paper (Part 2), the proposed
model is tested against observational data through single-column numerical experiments.

1 Introduction

Lakes significantly affect the structure of the atmospheric surface layer and therefore the
surface fluxes of heat, water vapour and momentum. This effect has not been systemati-
cally studied so far and is poorly understood. In most numerical weather prediction (NWP)
systems, the effect of lakes is either entirely ignored or is parameterized very crudely. At
present, a large number of small-to-medium size lakes are indistinguishable sub-grid scale
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features. These lakes will become resolved scale features as the horizontal resolution is in-
creased. Then, a physically sound model is required to predict the lake surface temperature
and the effect of lakes on the structure and transport properties of the atmospheric surface
layer. Apart from being physically sound, a lake model must meet stringent requirements of
computational economy.

The problem is twofold. For one thing, the interaction of the atmosphere with the
underlying surface is strongly dependent on the surface temperature and its time-rate-of-
change. It is common for NWP systems to assume that the water surface temperature
can be kept “frozen” over the forecast period. That is, once the NWP model has been
initialised, the surface temperature of the grid points of the type “water” is kept constant in
time. The assumption is to some extent justified for seas and deep lakes. It is doubtful for
small-to-medium size relatively shallow lakes, where the short-term variations of the surface
temperature (with a period of several hours to one day) reach several degrees. A large number
of such lakes will become resolved scale features as the horizontal resolution is increased.
The use of a horizontal grid size of about three kilometres or even less will soon become a
common practice in short-range weather forecast. In NWP systems with coarser resolution,
many small-to-medium size lakes remain sub-grid scale features. However, the presence of
these lakes cannot be ignored due to their aggregate effect on the grid-scale surface fluxes.
This also holds for climate modelling systems concerned with the time scales ranging from
many days to many years.

Another important aspect of the problem is that lakes strongly modify the structure
and the transport properties of the atmospheric surface layer. A major outstanding question
is the parameterization of the roughness of the water surface with respect to wind and to
scalar quantities, such as potential temperature and specific humidity. This second aspect
of the problem is beyond the scope of the present paper. It should be a subject for future
studies.

A renewed interest in the problem of lakes has led to the development of several lake
models for use in NWP and climate modelling systems (e.g. Ljungemyr et al. 1996, Goyette
et al. 2000, Tsuang et al. 2001). Some models assume a complete mixing down to the
lake bottom and characterise the entire water column by a single value of temperature.
Although this assumption results in a bulk model that is very cheap computationally, it is
an oversimplification from the physical point of view. As most lakes are stratified over a
considerable part of the year, using a bulk model where the mixed layer is assumed to always
reach the bottom, i.e. neglecting the lake thermocline, results in large errors in the surface
temperature. Turbulence closure models, e.g. models based on the transport equation for
the turbulence kinetic energy (Tsuang et al. 2001), would do the work of describing the lake
thermocline better. However, closure models are expensive computationally. Their use to
treat a large number of lakes can hardly be afforded. Thus, a lake model is required that is
physically sound, but at the same time computationally efficient.

In the present paper, a lake model capable of predicting the surface temperature in lakes
of various depth on the time scales from a few hours to a year is developed. The model is
based on a two-layer parameterization of the temperature profile, where the structure of the
stratified layer between the upper mixed layer and the basin bottom, the lake thermocline,
is described using the concept of self-similarity of the evolving temperature profile. The
same concept is used to describe the interaction of the water column with bottom sediments
and the evolution of the ice and snow cover. This approach, that is based on what could
be called “verifiable empiricism” but still incorporates much of the essential physics, offers
a very good compromise between physical realism and computational economy. In section
2, the concept of self-similarity of the temperature profile is outlined and a brief overview
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of previous studies along this line is given. A lake model is developed in section 3. In
section 4, we draw conclusions from the present study. In a companion paper (Part 2), the
proposed lake model is tested against observational data through single-column numerical
experiments. Future work should include (i) developing and testing the atmospheric surface-
layer parameterization scheme that accounts for specific features of the surface air layer over
lakes, and (ii) integrating and testing the new lake model and the new surface-layer scheme in
the full three-dimensional NWP system environment. Results will be described in subsequent
papers.

2 Background

2.1 The Concept of Self-Similarity of the Temperature Profile

The concept of self-similarity of the temperature profile θ(z, t) in the thermocline was put
forward by Kitaigorodskii and Miropolsky (1970) to describe the vertical temperature struc-
ture of the oceanic seasonal thermocline. The essence of the concept is that the dimensionless
temperature profile in the thermocline can be fairly accurately parameterized through a “uni-
versal” function of dimensionless depth, that is

θs(t)− θ(z, t)
∆θ(t)

= Φθ(ζ) at h(t) ≤ z ≤ h(t) + ∆h(t). (1)

Here, t is time, z is depth, θs(t) is the temperature of the upper mixed layer of depth h(t),
∆θ(t) = θs(t) − θb(t) is the temperature difference across the thermocline of depth ∆h(t),
θb(t) is the temperature at the bottom of the thermocline, and Φθ ≡ [θs(t)− θ(z, t)] /∆θ(t)
is a dimensionless “universal” function of dimensionless depth ζ ≡ [z − h(t)] /∆h(t) that
satisfies the boundary conditions Φθ(0) = 0 and Φθ(1) = 1. In what follows, the arguments
of functions dependent on time and depth are not indicated, unless it is indispensable. The
temperature profile given by Eq. (1) is illustrated in Fig. 1.

The idea of self-similarity of the temperature profile in the thermocline can be traced
back to the famous work of Munk and Anderson (1948). Although these authors did not
present Eq. (1) in its explicit form, the following quotation is a qualitative statement of the
idea (Munk and Anderson 1948, p. 276):

. . . the upper layers are stirred until an almost homogeneous layer is formed,
bounded beneath by a region of marked temperature gradient, the thermocline.
. . . If the wind increases in intensity the thermocline moves downward, but the
characteristic shape of the temperature-depth curve remains essentially unchanged.
(Original authors’ italic.)

In this connection, the work of Ertel (1954) should be mentioned. Ertel considered the
formation and deepening of the thermocline in a fresh-water lake during the summer heating
period, using an analytical solution to the linear heat transfer equation. Following Birge,
he defined the thermocline (“thermische Sprungschicht” – the temperature jump layer, as
termed in op. cit.) as a layer where the vertical temperature gradient exceeds 1 K·m−1. Ertel
did not present his results in the form given by Eq. (1). He found, however, that the ratio of
the depth from the upper boundary of the thermocline to the bend point of the temperature
profile to the depth from the bend point to the bottom of the thermocline is constant. In
other words, the shape of the temperature-depth curve in the thermocline is independent of
time.
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Notice that the concept of self-similarity of the temperature profile in the thermocline can
be considered as a natural extension of the concept of the temperature uniform mixed layer
that has been successfully used in geophysical fluid dynamics over several decades. Indeed,
using the mixed-layer temperature θs and its depth h as appropriate scales, the mixed-layer
concept can be expressed as θ(z, t)/θs(t) = ϑ[z/h(t)], where a dimensionless function ϑ is
simply a constant equal to one. The use of ∆θ and ∆h as appropriate scales of tempera-
ture and depth, respectively, in the thermocline leads to Eq. (1), where Φθ is not merely a
constant but a more sophisticated function of ζ. We emphasise that neither the mixed-layer
concept nor the concept of self-similarity of the thermocline is well justified theoretically.
Both concepts heavily rely on empirical evidence and should therefore be considered phe-
nomenological. However, this phenomenological approach appears to describe the observed
temperature structure to a degree of approximation that is sufficient for many applications.

2.2 Empirical Evidence

In order to obtain an analytical approximation of the dimensionless function Φθ(ζ) in Eq. (1),
Kitaigorodskii and Miropolsky (1970) took a geometrical approach similar to what is often
referred to as the Polhausen method in the boundary-layer theory. They expressed Φθ as a
fourth-order polynomial in ζ and invoked five boundary conditions to specify the polynomial
coefficients. Apart from the above two conditions Φθ(0) = 0 and Φθ(1) = 1 that simply
follow from the definition of Φθ and ζ, they assumed neutral temperature stratification at
the bottom of the thermocline, Φ′θ(1) = 0, and a smooth matching to the temperature profile
in the underlying layer, Φ′′θ(1) = 0. Furthermore, they assumed that the temperature-depth
curve has a maximum curvature at the upper boundary of the thermocline, Φ′′′θ (0) = 0. The
resulting expression,

Φθ =
8

3
ζ − 2ζ2 +

1

3
ζ4, (2)

was tested against monthly-mean temperature profiles recorded at the ocean weather ships
“Papa” (Kitaigorodskii and Miropolsky 1970) and “Tango” (Kitaigorodskii 1970).

A reasonable polynomial approximation of Φθ(ζ) was proposed by Arsenyev and Felzen-
baum (1977). These authors also took a geometrical approach (the Polhausen method) but,
unlike Kitaigorodskii and Miropolsky (1970), did not make use of the condition Φ ′′′θ (0) = 0.
The resulting third-order polynomial,

Φθ = 1− (1− ζ)3, (3)

has subsequently enjoyed wide popularity.

The concept of self-similarity of the temperature profile in the thermocline received
support through laboratory studies (Linden 1975, Voropaev 1977, Wyatt 1978). Linden
(1975) modified the Kitaigorodskii and Miropolsky (1970) expression (2) in order to account
for the stable density stratification in a quiescent layer below the thermocline. He proposed
the expression (in op. cit., it is given in terms of density)

Φθ = ζ + (1− Γ)

(
5

3
ζ − 2ζ2 +

1

3
ζ4
)
, (4)

where Γ = −(∆θ/∆h)−1(∂θ/∂z)|h+∆h is the temperature gradient just below the thermocline
relative to the mean temperature gradient within the thermocline [by virtue of a smooth
matching of the temperature profile in the thermocline and in the layer below, Γ = Φ ′θ(1)].
Equation (4) revealed a good agreement with data from measurements in a laboratory tank,
where turbulence was generated by an oscillating grid.
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Empirical data taken in natural conditions (Miropolsky et al. 1970, Nesterov and Kalatsky
1975, Kharkov 1977, Reshetova and Chalikov 1977, Efimov and Tsarenko 1980, Filyushkin
and Miropolsky 1981, Mälkki and Tamsalu 1985, Tamsalu and Myrberg 1998) also lent sup-
port to the concept of self-similarity of the thermocline. However, the scatter of data around
the temperature-depth curves proved to be quite large. Reshetova and Chalikov (1977) at-
tempted to extend the self-similarity concept to parameterize the vertical profile of salinity
in the ocean.

Filyushkin and Miropolsky (1981) noticed that the shape of the temperature-depth curve
depends on the mixed-layer state. They proposed to differentiate between the two cases: the
mixed-layer deepening, dh/dt > 0, and its stationary state or retreat, dh/dt ≤ 0. Mälkki and
Tamsalu (1985) developed the following empirical approximations for these two cases:

Φθ =

{
1− (1 − ζ)3 if dh/dt > 0
1− 4(1 − ζ)3 + 3(1 − ζ)4 if dh/dt ≤ 0.

(5)

These expressions were tested against data from measurements in the Baltic Sea (Mälkki and
Tamsalu 1985, Tamsalu and Myrberg 1998). The first line of Eq. (5) that corresponds to the
mixed-layer deepening coincides with Eq. (3) developed from simple geometrical arguments
by Arsenyev and Felzenbaum (1977). In case of the mixed-layer stationary state or retreat,
the form of the temperature-depth curve is essentially different. The temperature profiles
in the thermocline and in the mixed layer match smoothly, and the vertical temperature
gradient is a maximum within the thermocline, not at its upper boundary. Data taken in
Lake Ladoga, Russia, and Lake Sevan, Armenia, corroborated the occurrence of two types of
self-similar temperature profiles in the thermocline (Zilitinkevich 1991).

2.3 Theoretical Explanation

A plausible theoretical explanation for the observed self-similarity of the temperature profile
in the thermocline was offered in case of the mixed-layer deepening (Barenblatt 1978, Turner
1978, Shapiro 1980, Zilitinkevich et al. 1988, Zilitinkevich and Mironov 1989, Mironov 1990,
Zilitinkevich and Mironov 1992). These authors analysed the heat transfer equation

∂θ

∂t
=

∂

∂z
KH

∂θ

∂z
, (6)

where KH is the temperature conductivity (the heat conductivity divided by the density ρ
and specific heat c of the medium in question). Introducing a vertical co-ordinate moving
with the mixed layer-thermocline interface, z ′ = z − h(t), they considered a travelling wave-
type solution to Eq. (6). Assuming constant temperatures at the upper and lower boundaries
of the thermocline, ∂θs/∂t = ∂θb/∂t = 0, Eq. (6) becomes

−ḣ dθ
dz′

=
d

dz′
KH

dθ

dz′
, (7)

where ḣ ≡ dh/dt > 0 is the rate of the mixed-layer deepening.

Barenblatt (1978) took KH to be constant and considered a solution to Eq. (7) in a
half-space z′ > 0. Using boundary conditions θ = θs at z′ = 0 and θ = θb at z′ = ∞, the
solution reads

Φθ = 1− exp(−ḣz′/KH). (8)

Since the thermocline has an infinite thickness, the above solution cannot be recast in terms
of Φθ(ζ). However, Eq. (8) appears to be a fairly close approximation to the empirical
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polynomials proposed by Kitaigorodskii and Miropolsky (1970) and Arsenyev and Felzenbaum
(1977) at certain values of ḣ/KH .

Turner (1978) examined both the simplest case of KH = const and a more sophisticated
case, where KH is proportional to the vertical temperature gradient,

KH = − ḣl
2

∆θ

∂θ

∂z
, (9)

l being a characteristic eddy length scale. Assuming KH ∝ −∂θ/∂z, he added the factor
ḣl2/∆θ to the r.h.s. of Eq. (9) “to be consistent dimensionally”. In support of Eq. (9), Turner
considered generation of turbulence by breaking internal gravity waves. He wrote (Turner
1978, p. 6): “It seems likely that the energy required to produce this addition mixing below
the surface layer will be supplied by internal waves propagating into the gradient region,
and then breaking. . . . Clearly, the wave breaking and the density distribution must be
intimately linked: for a given energy level breaking will occur preferentially in regions where
the density gradient is high.” Numerical experiments with a mixed-layer model (Kamenkovich
and Kharkov 1975, Gill and Trefethen, unpublished manuscript referred to by Turner 1978)
lend some support to this idea. They show an improved fit to ocean data if the effective
temperature conductivity in the thermocline is taken proportional to the vertical temperature
(density) gradient. Taking l = const and using boundary conditions θ = θs at z = h and
θ = θb at z = h + ∆h, and an additional condition ∂θ/∂z = 0 at z = h+ ∆h that serves to
determine l, the solution to Eqs. (7) and (9) is

Φθ = 1− (1− ζ)2, l =
1

2
∆h. (10)

Obviously, it is difficult to give preference to the above expression for Φθ(ζ) over the ex-
pressions developed by Kitaigorodskii and Miropolsky (1970) and Arsenyev and Felzenbaum
(1977), or vice versa, on purely empirical ground by virtue of a large scatter of empirical
data.

Zilitinkevich et al. (1988) pointed out that Eq. (9) is not consistent with the proposed
wave breaking mechanism of mixing in the thermocline, although the mechanism per se is
physically credible. The point is that Eq. (9) does not contain the buoyancy parameter β =
gαT , where g is the acceleration due to gravity and αT is the thermal expansion coefficient,
which must obviously be taken into account. Indeed, there would be no internal gravity waves
and no wave breaking mechanism of mixing were it not for the density changes associated
with the temperature changes and not for the gravity that cause the buoyancy effects in a
temperature-stratified fluid. Using β, ∂θ/∂z and l as the governing parameters, Zilitinkevich
et al. (1988) invoked dimensional arguments to obtain the following expression for the effective
temperature conductivity in the thermocline:

KH = l2N, (11)

where N = (−β∂θ/∂z)1/2 is the buoyancy frequency (the constant of proportionality is
incorporated into l). It is easy to verify that Eqs. (7) and (11) subject to the same boundary
conditions as used by Turner (1978) have the following solution:

Φθ = 1− (1− ζ)3, l = 3−3/4(β∆θ)−1/4∆h3/4ḣ1/2. (12)

The above expression for the temperature profile shape function Φθ(ζ) appears to coincide
with the third-order polynomial (3) developed earlier from simple geometrical arguments by
Arsenyev and Felzenbaum (1977) and on the basis of empirical data by Mälkki and Tamsalu
(1985).
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In the models of Turner (1978) and Zilitinkevich et al. (1988), the eddy length scale
l was treated as a bulk quantity characteristic of the thermocline as a whole. Zilitinkevich
and Mironov (1992, see also Zilitinkevich and Mironov 1989, and Mironov 1990) proposed to
treat l as a depth-dependent quantity. To this end, they employed the transport equation for
the turbulence kinetic energy (TKE) in its stationary form,

∂e

∂t
= −∂F

∂z
− βQ− ε = 0, (13)

where e is the TKE per unit mass, F is the vertical TKE flux (the sum of the third-order
velocity correlations and the pressure-velocity correlation), Q is the vertical turbulent tem-
perature flux, and ε is the TKE dissipation rate. The temperature flux is also referred to as
the kinematic heat flux, that is the heat flux divided by the density ρ and specific heat c.
A calligraphic letter is used to avoid confusion with the heat flux Q = ρcQ. The following
expression that is known to hold in strongly stable layers (see e.g. Zeman and Tennekes 1977,
Brost and Wyngaard 1978, Otte and Wyngaard 2001) was used to relate the length scale to
the TKE:

l =
e1/2

N
. (14)

The problem was closed through the use of a down-gradient approximation for the fluxes,

Q = −KH
∂θ

∂z
, F = −KE

∂e

∂z
, (15)

and the Kolmogorov-Heisenberg hypothesis for the eddy exchange coefficients and the TKE
dissipation rate,

KH

CH
=
KE

CE
= le1/2, ε = Cε

e3/2

l
, (16)

where CH , CE and Cε are dimensionless constants.

Considering the problem in a half-space z ′ > 0, the travelling wave-type solution to
Eqs. (7), (13), (14), (15) and (16) subject to boundary conditions θ = θs, e = eh at z′ = 0
and θ = θb, e = 0 at z′ =∞ is

Φθ = 1− exp(E∗ −E∗/η), 61/2 exp(−E∗)
∫ 1

η
η′2 exp(E∗/η

′)dη′ = ξ. (17)

Here, η2 = e−1
h e and ξ = C

−1/2
e e

−1/2
h Nhz

′ are the dimensionless TKE and the dimensionless

vertical co-ordinate, respectively, E∗ = C−1
H (6Ce)

1/2e
−1/2
h ḣ is the dimensionless rate of the

mixed-layer deepening, eh and Nh are the TKE and the buoyancy frequency, respectively, at
the mixed layer-thermocline interface z = h, and Ce = CE(CH + Cε)

−1 is a dimensionless
constant. The solution (17) describes a family of the temperature-depth curves where the
shape of the curve depends upon E∗. At E∗ ≥ 2, the vertical temperature gradient is a max-
imum at the mixed layer-thermocline interface, z = h, whereas at E∗ < 2, the temperature
gradient is a maximum at z > h. The temperature profile given by Eq. (17) is quite similar
to the third-order polynomial (3) at certain values of E∗.

An extension of the KH = const solution to Eq. (7) was developed by Shapiro (1980).
He assumed that the mixed-layer temperature θs and the rate of the mixed-layer deepening
ḣ do not remain constant, as in the case considered by Barenblatt (1978) and Turner (1978),
but experience small-amplitude fluctuations. Then, an additional term appears on the r.h.s.

of Eq. (7), namely
〈
ḣ”∂θs”/∂z

〉
, where the angle brackets denote an ensemble mean and a
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quotation mark denotes a fluctuation therefrom. An analysis of the resulting solution showed
an increase of the temperature gradient just below the mixed layer-thermocline interface and
an overall cooling of the thermocline as compared to the case of constant θs and ḣ when the
fluctuations of θs and of ḣ are coherent.

The analytical travelling wave-type solutions considered above are conditioned by a
constant rate of the mixed-layer deepening and constant temperatures at the upper and
lower boundaries of the thermocline. If these quantities are not constant but vary slowly with
time, the analytical solutions are not exact but approximate. If these quantities undergo fast
changes, a travelling wave-type solution to the heat transfer equation can no longer serve
as a theoretical explanation for the observed self-similarity of the temperature profile in the
thermocline. It should be pointed out that all the above theoretical models apply to the
case of the mixed-layer deepening. No theoretical explanation for the self-similarity of the
temperature profile in case of the mixed-layer stationary state or retreat has been offered
so far. The self-similarity at dh/dt ≤ 0 is based on the empirical evidence only and should
therefore be considered purely phenomenological.

2.4 Bottom Sediments

A distinctive feature of shallow lakes is a strong thermal interaction between the water body
and the bottom sediments. A sizable portion of the heat received from the atmosphere
during spring and summer can be accumulated in the thermally active upper layer of bottom
sediments. This heat is then returned back to the water column during autumn and winter,
leading to a hysteresis-like behaviour of the seasonal temperature cycle of the water column-
bottom sediment system. A straightforward approach to describe the evolution of the thermal
structure of bottom sediments is to use the equation of heat transfer with a priori knowledge
of the thermal diffusivity of sediments (see e.g. Gu and Stefan 1990, Fang and Stefan 1996,
1998, and references therein). The major shortcoming of this approach is that the thermal
diffusivity is strongly dependent on the composition of the sediments and on the amount of
organic matter they contain and is, therefore, rarely well known.

Golosov and Kreiman (1992) proposed an alternative way of describing the vertical tem-
perature structure of bottom sediments. Their approach is based on a two-layer self-similar
parametric representation of the evolving temperature profile in the sediments that is concep-
tually similar to a parametric representation of the temperature profile in the thermocline.
Observations suggest (a summary of observational studies is given in Ryanzhin 1997) that
the temperature profile in the bottom sediments has the form of a travelling thermal wave.
Typical temperature profiles in the lake bottom sediments are illustrated in Fig. 2. The wave
starts at the water-sediment interface z = D and propagates downward as the lake water
and the bottom sediments are heated during spring and summer. When heating ceases and
cooling sets in, a new wave starts at z = D. It propagates downward as the lake water and
the sediments are cooled during autumn and winter, thus closing the annual cycle. The layer
D ≤ z ≤ L, where seasonal temperature changes take place, is the thermally active layer
of bottom sediments. Importantly, a characteristic shape of the temperature-depth curve
remains approximately the same. Motivated by this empirical evidence, a two-layer para-
metric representation of the temperature profile in the bottom sediments was proposed by
Golosov and Kreiman (1992) and further developed by Golosov et al. (1998). The expression
of Golosov et al. (1998) reads

θ(z, t) =

{
θb(t)− [θb(t)− θH(t)] ΦB1(ζB1) at D ≤ z ≤ H(t)
θH(t)− [θH(t)− θL] ΦB2(ζB2) at H(t) ≤ z ≤ L. (18)

Here, θL is the (constant) temperature at the outer edge z = L of the thermally active layer
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of the sediments, θH is the temperature at the depth H where the vertical temperature gra-
dient is zero, and ΦB1 ≡ (θb − θ)/(θb − θH) and ΦB2 ≡ (θH − θ)/(θH − θL) are dimensionless
functions of dimensionless depths ζB1 ≡ (z−D)/(H−D) and ζB2 ≡ (z−H)/(L−H), respec-
tively. Using empirical polynomial approximations of ΦB1(ζB1) and ΦB2(ζB2), Golosov et al.
(1998) developed a simple procedure for calculating the heat flux through the water-sediment
interface. Simulations of the seasonal cycle of temperature in the bottom sediments of several
lakes using this procedure showed a satisfactory agreement with observations (Golosov et al.
1998, Kondratiev et al. 1998). In the present study, the approach of Golosov and Kreiman
(1992) and Golosov et al. (1998) is used to develop a simple parameterization for calculating
the heat flux through the water-sediment interface. It is presented in section 3.3.

A plausible theoretical explanation for the observed self-similarity of the temperature
profile in bottom sediments was offered by Mironov et al. (2003). Assuming a travelling
wave-type behaviour of the temperature profile, these authors considered the temperature
distribution in the layer from the water-sediment interface z = D to the depth z = H
penetrated by the wave. They showed that in the simplest case of constant temperature
diffusivity KH the heat transfer equation (6) subject to the boundary conditions ΦB1(0) = 0
and ΦB1(1) = 1 has an analytical solution in the form

ΦB1 =
ΠD

ΠD −ΠH

(
1 +

exp
(−Eζ2

B1/4
)

ζ
1/2
B1

×

{
P

[
Wp,1/4(E/2)

Mp,1/4(E/2)
Mp,1/4(Eζ2

B1/2)−Wp,1/4(Eζ2
B1/2)

]
− ΠH

ΠD
exp(E/4)

})
. (19)

Here, E = K−1
H (H −D)dH/dt is the dimensionless rate of propagation of the thermal wave,

and ΠD = K−1
H (θb − θH)−1(H −D)2dθb/dt and ΠH = K−1

H (θb − θH)−1(H −D)2dθH/dt are
the dimensionless time-rates-of-change of the temperature at the water-sediment interface
z = D and at the depth z = H penetrated by the wave, respectively, P = 21/4π−1/2E−1/4

Γ [(2E + ΠD −ΠH)/2E], p = − [2(ΠD −ΠH) +E] /4E, Γ is the Gamma function, and M
and W are the Whittaker functions (Abramowitz and Stegun 1964, Chapter 13).

The solution (19) is conditioned by a constant dimensionless propagation rate of the
thermal wave and constant time-rates-of-change of the temperature at the water-sediment
interface and at the depth penetrated by the wave. In case E, ΠD and ΠH are not constant
but vary slowly with time, Eq. (19) is not exact but approximate. If these quantities undergo
fast changes, the analytical solution (19) can no longer serve as a theoretical explanation for
the observed self-similarity of the temperature profile in bottom sediments. Equation (19)
appears to compare favourably with data from measurements in a number of lakes, with data
from laboratory experiments and with a phenomenological polynomial approximation of the
temperature profile in bottom sediments developed by Golosov et al. (1998) on the basis of
empirical data.

2.5 Ice and Snow Cover

Many lakes are frozen over a considerable part of the year so that the atmosphere does not di-
rectly communicate with the lake water. The atmosphere-lake interaction occurs through the
air-ice or, if snow is present, through the air-snow interface. An ice-snow model is therefore
required to predict the surface temperature. Use of sophisticated ice models with rheology is a
standard practice in climate modelling where the integration is performed over many decades.
The reader is referred to http://stommel.tamu.edu/~baum/ocean_models.html, where de-
tailed descriptions of several dynamic-thermodynamic ice models and further references can
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be found. For NWP and related applications, a sophisticated dynamic-thermodynamic ice
model is not required (and most often cannot be afforded because of the high computation
cost). A simplified thermodynamic model is usually sufficient. Such model is developed in
section 3.4. As regards the thermodynamics of ice and snow, the model is broadly similar
to most other models developed to date (summaries are given by Leppäranta 1993, and Lau-
niainen and Cheng 1998). A distinguishing feature of the present model is the treatment of
the heat transfer through the ice-snow cover. Most currently used ice models carry the heat
transfer equation that is solved on a finite difference grid where the number of grid points
and the grid spacing differ with the application. We use the integral, or bulk, approach. It
is based on a parametric representation of the temperature profile within ice and snow and
on the (integral) heat budgets of the ice and snow layers.

2.6 Applications

A number of computationally-efficient models based on the self-similar representation of the
temperature profile have been developed and successfully applied to simulate the evolution
of the mixed layer and seasonal thermocline in the ocean (Kitaigorodskii and Miropolsky
1970, Miropolsky 1970, Kitaigorodskii 1970, Kamenkovich and Kharkov 1975, Arsenyev and
Felzenbaum 1977, and references therein, Kharkov 1977, Filyushkin and Miropolsky 1981).
Filyushkin and Miropolsky (1981) assumed that both the temperature profile and the profile
of the vertical heat flux in the thermocline can be represented in a self-similar form. We return
to this issue in section 3.2.1. The self-similarity concept has also been applied to model the
atmospheric convectively mixed layer capped by the temperature inversion (Deardorff 1979,
Fedorovich and Mironov 1995, Mironov 1999, Pénelon et al. 2001).

Models of the seasonal cycle of temperature and mixing in medium-depth fresh-water
lakes, based on the self-similar representation of the evolving temperature profile, have been
developed and successfully applied by Zilitinkevich and Rumyantsev (1990), Zilitinkevich
(1991), Mironov et al. (1991), Zilitinkevich et al. (1992), Mironov (1992), Golosov et al.
(1998) and Kondratiev et al. (1998). A first attempt has been made to apply the above
self-similarity concept to shallow lakes and to consider short-term (diurnal) variations of
temperature and mixing conditions (Kirillin 2001a,b). This issue is addressed in the present
study. As different from the ocean and the atmosphere, where the thermocline (capping
inversion) is underlain (overlain) by a deep stably or neutrally stratified quiescent layer, the
above lake models assume a two-layer temperature structure, where the thermocline extends
from the bottom of the mixed layer down to the basin bottom. This assumption is fair for
most lakes, except for very deep lakes such as Lake Baikal.

3 Model Description

In this section, we develop a lake model based on a self-similar parametric representation
(assumed shape) of the evolving temperature profile in the water column, in the bottom
sediments and in the ice and snow. The same basic concept is used to describe the temperature
structure of the four media in question (snow, ice, water and sediment). The lake model
proposed by Mironov et al. (1991) is taken as a starting point. It is modified and further
developed to account for specific features of shallow lakes and to consider both long-term
(seasonal) and short-term (diurnal) variations of temperature and mixing conditions. The
lake water is treated as a Boussinesq fluid, i.e. the water density is taken to be constant
equal to the reference density except when it enters the buoyancy term in the TKE equation
and the expression for the buoyancy frequency. The other thermodynamic parameters are
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considered constant except for the snow density and the snow heat conductivity (see section
3.5.3 and Appendix B).

The model presented in what follows is a bulk model. It incorporates the heat budget
equations for the layers in question. An entrainment equation for the depth of a convectively-
mixed layer and a relaxation-type equation for the depth of a wind-mixed layer in stable and
neutral stratification are developed on the basis of the TKE equation integrated over the
mixed layer. Simple thermodynamic arguments are invoked to develop the evolution equa-
tions for the ice and snow depths. The resulting system of ordinary differential equations for
the time-dependent prognostic quantities that characterise the evolving temperature profile,
see Fig. 3, is closed with algebraic (or transcendental) equations for diagnostic quantities,
such as the heat flux through the lake bottom or the equilibrium wind-mixed layer depth.
Finally, we end up with a lake model that is very cheap computationally but still incorporates
much of the essential physics.

3.1 Equation of State

We utilise the quadratic equation of state of the fresh water,

ρw = ρr

[
1− 1

2
aT (θ − θr)2

]
, (20)

where ρw is the water density, ρr = 999.98 ≈ 1.0 · 103 kg·m−3 is the maximum density of the
fresh water at the temperature θr = 277.13 K, and aT = 1.6509 · 10−5 K−2 is an empirical
coefficient (Farmer and Carmack 1981). Equation (20) is the simplest equation of state that
accounts for the fact that the temperature of maximum density of the fresh water exceeds
its freezing point θf = 273.15 K. According to Eq. (20), the thermal expansion coefficient αT
and the buoyancy parameter β depend on the water temperature,

β(θ) = gαT (θ) = gaT (θ − θr), (21)

where g = 9.81 m·s−2 is the acceleration due to gravity.

3.2 The Water Temperature

3.2.1 Parameterization of the Temperature Profile and the Heat Budget

We adopt the following two-layer parameterization of the vertical temperature profile:

θ =

{
θs at 0 ≤ z ≤ h
θs − (θs − θb)Φθ(ζ) at h ≤ z ≤ D, (22)

where Φθ ≡ (θs − θ) / (θs − θb) is a dimensionless function of dimensionless depth
ζ ≡ (z − h) / (D − h). The thermocline extends from the mixed-layer outer edge z = h
to the basin bottom z = D.

According to Eq. (22), h, D, θs, θb and the mean temperature of the water column,
θ ≡ D−1

∫D
0 θdz, are related through

θ = θs − Cθ(1− h/D)(θs − θb), (23)

where

Cθ =

∫ 1

0
Φθ(ζ)dζ (24)
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is the shape factor.

The parameterization of the temperature profile (22) should satisfy the heat transfer
equation

∂

∂t
(ρcθ) = − ∂

∂z
(Q+ I), (25)

where Q is the vertical turbulent heat flux, and I is the heat flux due to short-wave radiation.

Integrating Eq. (25) over z from 0 to D yields the equation of the total heat budget,

D
dθ

dt
=

1

ρwcw
[Qs + Is −Qb − I(D)] , (26)

where cw is the specific heat of water, Qs and Is are the values of Q and I, respectively, at
the lake surface, and Qb is the heat flux through the lake bottom. The radiation heat flux Is
that penetrates into the water is the surface value of the incident short-wave radiation flux
from the atmosphere multiplied by 1 − αw, αw being the albedo of the water surface with
respect to the short-wave radiation. The surface flux Qs is a sum of the sensible and latent
heat fluxes and the net heat flux due to long-wave radiation at the air-water interface. It is
a rather sophisticated function of the surface air layer parameters, of cloudiness and of the
surface temperature.

Integrating Eq. (25) over z from 0 to h yields the equation of the temperature budget
in the mixed layer,

h
dθs
dt

=
1

ρwcw
[Qs + Is −Qh − I(h)] , (27)

where Qh is the heat flux at the bottom of the mixed layer.

Given the surface fluxes Qs and Is (these are delivered by the driving atmospheric model
or are known from observations), and the decay law for the flux of short-wave radiation
(section 3.5.3), Eqs. (23), (26) and (27) contain seven unknowns, namely, h, θ, θs, θb, Qh, Qb
and Cθ. The mixed layer depth, the bottom heat flux and the shape factor are considered
in section 3.2.2, section 3.3 and section 3.5.1, respectively. One more relation is required.
Following Filyushkin and Miropolsky (1981, see also Tamsalu et al. 1997, and Tamsalu and
Myrberg 1998), we assume that in case of the mixed layer deepening, dh/dt > 0, the profile of
the vertical turbulent heat flux in the thermocline can be represented in a self-similar form.
That is

Q = Qh − (Qh −Qb)ΦQ(ζ) at h ≤ z ≤ D, (28)

where the shape function ΦQ satisfies the boundary conditions ΦQ(0) = 0 and ΦQ(1) = 1.
Equation (28) is suggested by the travelling wave-type solution to the heat transfer equation.
If the mixed layer and the thermocline develop on the background of a deep stably or neutrally
stratified quiescent layer (this situation is encountered in the ocean and in the atmosphere),
the travelling wave-type solution shows that both the temperature profile and the profile of
the turbulent heat flux are described by the same shape function, i.e. Φθ(ζ) = ΦQ(ζ). In lakes,
the thermocline usually extends from the bottom of the mixed layer down to the basin bottom.
In this case, the travelling wave-type solution to the heat transfer equation also suggests self-
similar profiles of the temperature and of the heat flux, however the relation between the
shape functions Φθ(ζ) and ΦQ(ζ) is different. The issue is considered in Appendix A.

Integrating Eq. (25) with due regard for Eqs. (22) and (28) over z ′ from h to z > h,
then integrating the resulting expression over z from h to D, we obtain

1

2
(D − h)2 dθs

dt
− d

dt

[
Cθθ(D − h)2(θs − θb)

]
=
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1

ρwcw

[
CQ(D − h)(Qh −Qb) + (D − h)I(h) −

∫ D

h
I(z)dz

]
, (29)

where

CQ =

∫ 1

0
ΦQ(ζ)dζ (30)

is the shape factor with respect to the heat flux, and

Cθθ =

∫ 1

0
dζ

∫ ζ′

0
Φθ(ζ

′)dζ ′ (31)

is the dimensionless parameter. The analysis in Appendix A suggests that CQ = 2Cθθ/Cθ.

In case of the mixed-layer stationary state or retreat, dh/dt ≤ 0, Eq. (28) is not justified.
Then, the bottom temperature is assumed to be “frozen”,

dθb
dt

= 0. (32)

If h = D, then θb = θs = θ and the mean temperature is computed from Eq. (26).

3.2.2 The Mixed-Layer Depth

Convection
Convective deepening of the mixed layer is described by the entrainment equation. This
equation is conveniently formulated in terms of the dependence of the so-called entrainment
ratio A on one or the other stratification parameter. The entrainment ratio is a measure of
the entrainment efficiency. It is commonly defined as a negative of the ratio of the heat flux
due to entrainment at the bottom of the mixed layer, Qh, to an appropriate heat flux scale,
Q∗. In case of convection driven by the surface flux, where the forcing is confined to the
boundary, the surface heat flux Qs serves as an appropriate flux scale. This leads to the now
classical Deardorff (1970a, 1970b) convective scaling, where h and |hβQs/(ρwcw)|1/3 serve as
the scales of length and velocity, respectively.

The Deardorff scaling is unsuitable for convective flows affected by the short-wave radi-
ation heating that is not confined to the boundary but is distributed over the water column.
If the mixed-layer temperature exceeds the temperature of maximum density, convective
motions are driven by surface cooling, whereas radiation heating tends to stabilise the wa-
ter column, arresting the mixed layer deepening (Soloviev 1979, Mironov and Karlin 1989).
Such regime of convection is encountered in the oceanic upper layer (e.g. Kraus and Rooth
1961, Soloviev and Vershinskii 1982, Price et al. 1986) and in fresh-water lakes (e.g. Imberger
1985). If the mixed-layer temperature is below that of maximum density, volumetric radiation
heating leads to de-stabilisation of the water column and thereby drives convective motions.
Such regime of convection is encountered in fresh-water lakes in spring. Convective mixing
often occurs under the ice, when the snow cover overlying the ice vanishes and solar radiation
penetrates down through the ice (e.g. Farmer 1975, Mironov and Terzhevik 2000, Mironov et
al. 2002, Jonas et al. 2003).

In order to account for the vertically distributed character of the radiation heating, we
make use of a generalised convective heat flux scale

Q∗ = Qs + Is + I(h)− 2h−1
∫ h

0
I(z)dz, (33)
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and define the convective velocity scale and the entrainment ratio as

w∗ = [−hβ(θs)Q∗/(ρwcw)]1/3 , A = −Qh/Q∗, (34)

respectively. In order to specify A, we employ the entrainment equation in the form

A+
Cc2
w∗

dh

dt
= Cc1, (35)

where Cc1 and Cc2 are dimensionless constants (the estimates of these and other empirical
constants of our model are discussed in section 3.5.2 and summarised in Appendix B). The
second term on the l.h.s. of Eq. (35) is the spin-up correction term introduced by Zilitinkevich
(1975). This term prevents an unduly fast growth of h when the mixed-layer is shallow. If
the spin-up term is small, Eq. (35) reduces to a simple relation A = Cc1 that proved to
be a sufficiently accurate approximation for a large variety of geophysical and laboratory
convective flows (Zilitinkevich 1991).

Equations (33), (34) and (35) should be used to compute the mixed-layer depth when
the buoyancy flux B∗ = β(θs)Q∗/(ρwcw) is negative. The quantity −hB∗ ≡ w3

∗ is a measure
of the generation rate of the turbulence kinetic energy in a layer of depth h by the buoyancy
forces (see a discussion in Mironov et al. 2002). A negative B∗ indicates that the TKE is
generated through convective instability. Otherwise, the TKE is lost to work against the
gravity. This occurs when the density stratification is stable. A different formulation for the
mixed-layer depth is then required.

Stable and Neutral Stratification
Mironov et al. (1991) used a diagnostic equation to determine the wind-mixed layer depth
in stable and neutral stratification. That is, h was assumed to adjust to external forcing on
a time scale that does not exceed the model time step. This assumption is fair if seasonal
changes of temperature and mixing conditions are considered and the model time step is
typically one day. The assumption is likely to be too crude to consider diurnal variations.
To this end, we utilise a relaxation-type rate equation for the depth of a stably or neutrally
stratified wind-mixed layer. It reads

dh

dt
=
he − h
trh

. (36)

Here, he is the equilibrium mixed-layer depth, and trh is the relaxation time scale given by

trh =
he

Crhu∗
, (37)

where u∗ = |τs/ρwcw|1/2 is the surface friction velocity, τs being the surface stress, and Crh is
a dimensionless constant. A rate equation (36) with the relaxation time scale proportional to
the reciprocal of the Coriolis parameter was favourably tested by Zilitinkevich et al. (2002a)
and Zilitinkevich and Baklanov (2002) against data from atmospheric measurements and was
recommended for practical use.

In order to specify he, we make use of a multi-limit formulation for the equilibrium depth
of a stably or neutrally stratified boundary layer proposed by Zilitinkevich and Mironov
(1996). Based on the analysis of the TKE budget, these authors proposed a generalised
equation for the equilibrium boundary-layer depth that accounts for the combined effects of
rotation, surface buoyancy flux and static stability at the boundary-layer outer edge [Eq. (30)
in op. cit.]. That equation reduces to the equations proposed earlier by Rossby and Mong-
tomery (1935), Kitaigorodskii (1960) and Kitaigorodskii and Joffre (1988) in the limiting
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cases of a truly neutral rotating boundary layer, the surface-flux-dominated boundary layer,
and the imposed-stability-dominated boundary layer, respectively. It also incorporates the
Zilitinkevich (1972) and the Pollard, Rhines and Thompson (1973) equations that describe
the intermediate regimes, where the effects of rotations and stratification essentially interfere
and are roughly equally important. We adopt a simplified version of the Zilitinkevich and
Mironov (1996) equation [Eq. (26) in op. cit.] that does not incorporate the Zilitinkevich
(1972) and the Pollard et al. (1973) scales. It reads

(
fhe
Cnu∗

)2

+
he
CsL

+
Nhe
Ciu∗

= 1, (38)

where f = 2Ω sinφ is the Coriolis parameter, Ω = 7.29 ·10−5 s−1 is the angular velocity of the
earth’s rotation, φ is the geographical latitude, L is the Obukhov length, N is the buoyancy
frequency below the mixed layer, and Cn, Cs and Ci are dimensionless constants. We use
a generalised formulation for the Obukhov length, L = u3

∗/(βQ∗/ρwcw), that accounts for
the vertically distributed character of the radiation heating (note that we do not include
the von Kármán constant in the definition of L). A mean-square buoyancy frequency in the

thermocline, N =
[
(D − h)−1

∫D
h N2dz

]1/2
, is used as an estimate of N in Eq. (38).

One further comment is in order. Zilitinkevich et al. (2002a) reconsidered the problem
of the equilibrium stable boundary-layer depth. They concluded that the Zilitinkevich (1972)
scale, |u∗L/f |1/2, and the Pollard et al. (1973) scale, u∗/|Nf |1/2, are the appropriate depth
scales for the boundary layers dominated by the surface buoyancy flux and by the static sta-
bility at their outer edge, respectively. In other words, he depends on the Coriolis parameter
no matter how strong the static stability. This is different from Eq. (38) where the limiting
scales are L and u∗/N , respectively. The problem was examined further by Mironov and
Fedorovich (2005). They showed that the above scales are particular cases of more general
power-law formulations, namely, h/L ∝ (|f |L/u∗)−p and hN/u∗ ∝ (|f |/N)−p for the bound-
ary layers dominated by the surface buoyancy flux and by the static stability at their outer
edge, respectively. The Zilitinkevich (1972) and Pollard et al. (1973) scales are recovered
with p = 1/2, whereas the Kitaigorodskii (1960) and Kitaigorodskii and Joffre (1988) are
recovered with p = 0. Scaling arguments are not sufficient to fix the exponent p. It should
be evaluated on the basis of experimental data. Available data from observations and from
large-eddy simulations are uncertain. They do not make it possible to evaluate p to sufficient
accuracy and to conclusively decide between the alternative formulations for the boundary
layer depth. Leaving this for future studies, we utilise Eq. (38). This simple interpolation
formula is expected to be a sufficiently accurate approximation for most practical purposes
(Mironov and Fedorovich 2005).

One more limitation on the equilibrium mixed-layer depth should be taken into account.
Consider the situation where the mixed-layer temperature exceeds the temperature of maxi-
mum density, the surface flux Qs is negative, whereas the heat flux scale Q∗ given by Eq. (33)
is positive (this can take place if −Qs/Is < 1). A positive Q∗ indicates the the mixed layer
of depth h is statically stable. A negative Qs, however, indicates that convective instability
should take place, leading to the development of a convectively mixed layer whose deepening
is arrested by the radiation heating. The equilibrium depth hc of such mixed layer is given
by (see e.g. Mironov and Karlin 1989)

Q∗(hc) = Qs + Is + I(hc)− 2h−1
c

∫ hc

0
I(z)dz = 0. (39)

This regime of convection is encountered on calm sunny days. If the wind suddenly ceases,
Eq. (38) predicts a very shallow stably-stratified equilibrium mixed layer to which the mixed
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layer of depth h > he should relax. In fact, however, the mixed layer would relax towards a
convectively mixed layer whose equilibrium depth is given by Eq. (39). In order to account
for this constraint, we require that he ≥ hc if Q∗(h) > 0 and θs > θr.

3.3 The Water - Bottom Sediment Interaction

3.3.1 Parameterization of the Temperature Profile and the Heat Budget

We adopt a two-layer parametric representation, Eq. (18), of the evolving temperature profile
in the thermally active layer of bottom sediments proposed by Golosov et al. (1998). The
parameterization (18) should satisfy the heat transfer equation (25), where the heat flux
Q is due to molecular heat conduction and the bottom sediments are opaque to radiation.
Integrating Eq. (25) over z from z = D to z = H with due regard for Eq. (18), we obtain

d

dt
[(H −D)θb − CB1(H −D)(θb − θH)]− θH

dH

dt
=

1

ρwcw
[Qb + I(D)] , (40)

where the heat flux at z = H is zero by virtue of the zero temperature gradient there.

Integrating Eq. (25) over z from z = H to z = L, we obtain

d

dt
[(L−H)θH − CB2(L−H)(θH − θL)] + θH

dH

dt
= 0, (41)

where the heat flux at z = L, the geothermal heat flux, is neglected.

The shape factors CB1 and CB2 are given by

CB1 =

∫ 1

0
ΦB1(ζB1)dζB1, CB2 =

∫ 1

0
ΦB2(ζB2)dζB2. (42)

3.3.2 Heat Flux through the Bottom

The bottom heat flux Qb is due to molecular heat conduction through the uppermost layer
of bottom sediments and can be estimated as the product of the negative of the temperature
gradient at z = D + 0 and the molecular heat conductivity. The uppermost layer of bottom
sediments is saturated with water. Its water content typically exceeds 90% and its physical
properties, including the heat conductivity, are very close to the properties of the lake water.
Then, the heat flux through the lake bottom is given by

Qb = −κw
θH − θb
H −D Φ′B1(0). (43)

This relation closes the problem.

It should be stressed that Eqs. (40), (41) and (43) do not contain the molecular heat
conductivity of bottom sediments, a quantity that is rarely known to a satisfactory degree of
precision. It is through the use of the integral (bulk) approach, based on the parameterization
(18) of the temperature profile, that the molecular heat conductivity of bottom sediments is
no longer needed.

3.4 Ice and Snow Cover

In this section, we describe a two-layer thermodynamic (no rheology) model of the ice and
snow cover. It is based on a self-similar parametric representation of the temperature pro-
file within ice and snow and on the (integral) heat budgets of the ice and snow layers.
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The approach is, therefore, conceptually similar to the approach used above to describe the
temperature structure of the lake thermocline and of the thermally active layer of bottom
sediments. Notice that the assumption about the shape of the temperature profile within the
ice, the simplest of which is the linear profile, is either explicit or implicit in many ice models
developed to date. A model of ice growth based on a linear temperature distribution was
proposed by Stefan as early as 1891.

3.4.1 Parameterization of the Temperature Profile and the Heat Budget

We adopt the following parametric representation of the evolving temperature profile within
ice and snow:

θ(z, t) =

{
θf − [θf − θI(t)]ΦI(ζI) at −HI(t) ≤ z ≤ 0
θI(t)− [θI(t)− θS(t)]ΦS(ζS) at −[HI(t) +HS(t)] ≤ z ≤ −HI(t).

(44)

Here, z is the vertical co-ordinate (positive downward) with the origin at the ice-water in-
terface, HI is the ice thickness, HS is the thickness of snow overlaying the ice, θf is the
fresh-water freezing point, θI is the temperature at the snow-ice interface, and θS is the tem-
perature at the air-snow interface. Notice that the freezing point of salt water is a decreasing
function of salinity. An extension of the present model that accounts for this dependence
and is applicable to the ice over salt lakes or seas is presented by Mironov and Ritter (2004).
Dimensionless universal functions ΦI ≡ (θf − θ)/(θf − θI) and ΦS ≡ (θI − θ)/(θI − θS) of
dimensionless depths ζI ≡ −z/HI and ζS ≡ −(z+HI)/HS , respectively, satisfy the boundary
conditions ΦI(0) = 0, ΦI(1) = 1, ΦS(0) = 0 and ΦS(1) = 1.

According to Eq. (44), the heat fluxes through the ice, QI , and through the snow, QS,
due to molecular heat conduction are given by

QI = −κi
θf − θI
HI

dΦI

dζI
, QS = −κs

θI − θS
HS

dΦS

dζS
, (45)

where κi and κs are the heat conductivities of ice and snow, respectively.

The parameterization of the temperature profile (44) should satisfy the heat transfer
equation (25). Integrating Eq. (25) over z from the air-snow interface z = −(HI + HS) to
just above the ice-water interface z = −0 with due regard for the parameterization (44), we
obtain the equation of the heat budget of the snow-ice cover,

d

dt
{ρiciHI [θf − CI(θf − θI)] + ρscsHS [θI − CS(θI − θS)]} − ρscsθS

d

dt
(HI +HS) =

Qs + Is − I(0) + κi
θf − θI
HI

Φ′I(0). (46)

Here, ρi and ρs are the densities of ice and of snow, respectively, ci and cs are specific heats
of these media, and Qs and Is are the values of Q and I, respectively, at the air-snow or, if
snow is absent, at the air-ice interface. The radiation heat flux Is that penetrates into the
interior of snow-ice cover is the surface value of the incident short-wave radiation flux from
the atmosphere multiplied by 1 − αi, αi being the albedo of the ice or snow surface with
respect to short-wave radiation. The dimensionless parameters CI and CS , the shape factors,
are given by

CI =

∫ 1

0
ΦI(ζI)dζI , CS =

∫ 1

0
ΦS(ζS)dζS . (47)
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The heat flux at the snow-ice interface is assumed to be continuous, that is

−κi
θf − θI
HI

Φ′I(1) = −κs
θI − θS
HS

Φ′S(0). (48)

Equations (46) and (48) serve to determine temperatures at the air-snow and at the
snow-ice interfaces, when these temperatures are below the freezing point, i.e. when no melting
at the snow surface (ice surface, when snow is absent) takes place. During the snow (ice)
melting from above, the temperatures θS and θI remain equal to the freezing point θf , and
the heat fluxes QS and QI are zero.

3.4.2 Snow and Ice Thickness

The equations governing the evolution of the snow thickness and of the ice thickness are
derived from the heat transfer equation (25) that incorporates an additional term on its
right-hand side, namely, the term fM(z)LfdM/dt that describes the rate of heat release/con-
sumption due to accretion/melting of snow and ice. Here, M is the mass of snow or ice per unit
area, Lf is the latent heat of fusion, and fM (z) is a function that satisfies the normalization

conditions
∫HI+HS
HI

fM (z)dz = 1 and
∫HI
0 fM (z)dz = 1 for snow and ice, respectively.

The accumulation of snow is not computed within the ice-snow model. The rate of snow
accumulation is assumed to be a known time-dependent quantity that is provided by the
atmospheric model or is known from observations. Then, the evolution of the snow thickness
during the snow accumulation and no melting is computed from

dρsHS

dt
=

(
dMS

dt

)

a
, (49)

where MS = ρsHS is the snow mass per unit area, and (dMS/dt)a is the (given) rate of snow
accumulation.

When the temperature θI at the upper surface of the ice is below the freezing point
θf , the heat conduction through the ice causes the ice growth. This growth is accompanied
by a release of heat at the lower surface of the ice that occurs at a rate LfdMI/dt, where
MI = ρiHI is the ice mass per unit area. The normalization function fM is equal to zero
throughout the snow-ice cover except at the ice-water interface where fM = δ(0), δ(z) being
the Dirac delta function. Integrating Eq. (25) from z = −0 to z = +0 with due regard for
this heat release yields the equation for the ice thickness. It reads

Lf
dρiHI

dt
= Qw + κi

θf − θI
HI

Φ′I(0), (50)

where Qw is the heat flux in the near-surface water layer just beneath the ice. If the r.h.s. of
Eq. (50) is negative, i.e. the negative of the heat flux in the water, Qw, exceeds the negative
of the heat flux in the ice, QI |z=0, ice ablation takes place.

As the atmosphere heats the snow surface, the surface temperature eventually reaches
the freezing point and the snow and ice melting sets in. This process is accompanied by a
consumption of heat at rates LfdρsHS/dt and LfdρiHI/dt for snow and ice, respectively.
Notice that the exact form of the normalization function fM is not required by virtue of the
normalization conditions given above. Integrating Eq. (25) from z = −(HI + HS) − 0 to
z = −HI with due regard for the heat loss due to snow melting and adding the (given) rate
of snow accumulation yields the equation for the snow thickness,

Lf
dρsHS

dt
= −(Qs + Is) + I(−HI) + Lf

(
dMS

dt

)

a
+ csθfHS

dρs
dt
, (51)
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where the last term on the r.h.s. originates from the dependence of the snow density on the
snow depth (see section 3.5.3).

Integrating Eq. (25) from z = −HI to z = +0 with due regard for the heat loss due to
ice melting yields the equation for the ice thickness,

Lf
dρiHI

dt
= Qw + I(0) − I(−HI), (52)

If the ice melts out earlier than snow, the snow depth is instantaneously set to zero.

3.4.3 The Temperature Profile beneath the Ice

The simplest assumption is to keep the temperature profile unchanged over the entire period
of ice cover. This assumption is fair for deep lakes, where the heat flux through the bottom
is negligibly small. In shallow lakes, this assumption may lead to an underestimation of the
mean temperature. The heat accumulated in the thermally active upper layer of bottom
sediments during spring and summer is returned back to the water column during winter,
leading to an increase of the water temperature under the ice. The water temperature under
the ice can also increase due to heating by solar radiation penetrating down through the
ice. The thermodynamic regimes encountered in ice-covered lakes are many and varied.
Their detailed description requires a set of sophisticated parameterizations. The use of such
parameterizations in the framework of our lake model is, however, hardly justified. The
point is that it is the snow (ice) surface temperature that communicates information to the
atmosphere, the water temperature is not directly felt by the atmospheric surface layer. It is,
therefore, not vital that the temperature regimes in ice-covered lakes be described in great
detail. Only their most salient features should be accounted for, first of all, the heat budget
of the water column.

When the lake is ice-covered, the temperature at the ice-water interface is fixed at the
freezing θs = θf . In case the bottom temperature is less than the temperature of maximum
density, θb < θr, the mixed-layer depth and the shape factor are kept unchanged, dh/dt =
0 and dCθ/dt = 0, the mean temperature θ is computed from Eq. (26) and the bottom
temperature θb is computed from Eq. (23). If the entire water column appears to be mixed
at the moment of freezing, i.e. h = D and θs = θ = θb, the mixed layer depth is reset to zero,
h = 0, and the shape factor is set to its minimum value, Cθ = 0.5 (see section 3.5.1). The
heat flux from water to ice is estimated from

Qw = −κw
θb − θs
D

, (53)

if h = 0, and Qw = 0 otherwise. Here, κw is the molecular heat conductivity of water. Notice
that the estimate of Qw given by Eq. (53) and the shape factor Cθ = 0.5 correspond to a
linear temperature profile over the entire water column. A linear profile is encountered in
ice-covered shallow lakes when θb < θr and heat flows from the bottom sediments to the
water column.

As the bottom temperature reaches the temperature of maximum density, convection
due to bottom heating sets in. To describe this regime of convection in detail, a convectively
mixed layer whose temperature is close to θr, and a thin layer adjacent to the bottom, where
the temperature decreases sharply from θb > θr to θr, should be thoroughly considered. We
neglect these peculiarities of convection due to bottom heating and adopt a simpler model
where the bottom temperature is fixed at the temperature of maximum density, θb = θr.
The mean temperature θ is computed from Eq. (26). If h > 0, the shape factor Cθ is kept
unchanged, and the mixed-layer depth is computed from Eq. (23). As the mixed-layer depth
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approaches zero, Eq. (23) is used to compute the shape factor Cθ that in this regime increases
towards its maximum value Cmax

θ . The heat flux from water to ice is estimated from

Qw = −κw
θb − θs
D

max
[
1,Φ′θ(0)

]
, (54)

if h = 0, and Qw = 0 otherwise.

One more regime of convection is often encountered in ice-covered lakes. In late spring,
the snow overlying the ice vanishes and solar radiation penetrates down through the ice.
As the mixed-layer temperature is below that of maximum density, the volumetric radiation
heating leads to de-stabilisation of the water column and thereby drives convective motions.
Such regime of convection was analysed by Farmer (1975), Mironov and Terzhevik (2000),
Mironov et al. (2002) and Jonas et al. (2003), among others. A parameterization of convection
due to solar heating (e.g. a parameterization based on a bulk model developed by Mironov
et al. 2002) can, in principle, be incorporated in our lake model. We do not do so, however,
considering that the major effect of convection in question is to redistribute heat in the
vertical and that it takes place over a very limited period of time.

3.5 Empirical Relations and Model Constants

3.5.1 The Shape Functions

In the lake model proposed by Mironov et al. (1991), a polynomial approximation of the
shape function with respect to the temperature profile in the thermocline was used. The
temperature-depth curve was assumed to be bounded by the two limiting curves given by
Eq. (5). The shape function Φθ(ζ) evolves towards the first line of Eq. (5) during the mixed-
layer deepening, and towards the second line of Eq. (5) during the mixed-layer stationary
state or retreat. The corresponding limiting values of the shape factor Cθ are 0.75 and 0.6,
respectively. The adjustment of the temperature-depth curve occurs on a certain relaxation
time scale that was estimated on the basis of the similarity theory for stably stratified tur-
bulent flows (see Mironov et al. 1991 for details).

Recall that the approximations (5) are based on the observational data taken in the
Baltic Sea. Theoretical analysis of Zilitinkevich et al. (1988) also holds for the ocean or sea,
where the thermocline is underlain by a deep quiescent layer. Shallow and medium-depth
lakes usually have a two-layer temperature structure, where the thermocline extends from
the bottom of the mixed layer down to the basin bottom. Empirical data indicate a greater
variety of shapes of the temperature-depth curve in lakes than in the ocean or sea (Kirillin
2001a,b). During the mixed-layer deepening, the dimensionless temperature gradient just
below the mixed layer-thermocline interface and the shape factor often exceed their limiting
values of Φ′θ(0) = 3 and Cθ = 0.75, respectively, suggested by the first line of Eq. (5).
These findings are corroborated by the theoretical analysis in Appendix A. Based upon these
empirical and theoretical findings, we allow a wider range of variation in Φθ.

We adopt the following polynomial approximation of the shape function Φθ(ζ) with
respect to the temperature profile in the thermocline:

Φθ =

(
40

3
Cθ −

20

3

)
ζ + (18− 30Cθ) ζ

2 + (20Cθ − 12) ζ3 +

(
5

3
− 10

3
Cθ

)
ζ4. (55)

The shape factor Cθ is computed from

dCθ
dt

= sign(dh/dt)
Cmaxθ − Cminθ

trc
, Cminθ ≤ Cθ ≤ Cmaxθ , (56)
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where trc is the relaxation time scale, and sign is the signum function, sign(x)=−1 if x ≤ 0
and sign(x)=1 if x > 0. The minimum and maximum values of the shape factor are set to
Cminθ = 0.5 and Cmax

θ = 0.8. The shape functions Φθ(ζ) given by Eq. (55) are illustrated in
Fig. 4. As seen from the figure, the dimensionless temperature profiles lie in the area bounded
by the lower and the upper solid curves. During the mixed-layer deepening, dh/dt > 0, the
temperature profile evolves towards the limiting curve, characterised by a maximum value
of the shape factor, Cmax

θ = 0.8, and the maximum value of the dimensionless temperature
gradient at the upper boundary of the thermocline, Φ′θ(0) = 4. During the mixed-layer
stationary state or retreat, dh/dt ≤ 0, the temperature profile evolves towards the other
limiting curve, characterised by a minimum value of the shape factor, Cmin

θ = 0.5, and the
zero temperature gradient at the upper boundary of the thermocline, Φ′θ(0) = 0. Notice that
Cminθ = 0.5 is consistent with a linear temperature profile that is assumed to occur under
the ice when the bottom temperature is less than the temperature of maximum density
(see section 3.4.3). According to Eq. (55), the dimensionless parameter Cθθ defined through
Eq. (31) is given by

Cθθ =
11

18
Cθ −

7

45
. (57)

The relaxation time trc is estimated from the following scaling arguments. The time
trc is basically the time of the evolution of the temperature profile in the thermocline from
one limiting curve to the other, following the change of sign in dh/dt. Then, a reasonable
scale for trc is the thermal diffusion time through the thermocline, that is a square of the
thermocline thickness, (D − h)2, over a characteristic eddy temperature conductivity, KH∗.
With due regard for the stable stratification in the thermocline, KH∗ is estimated from
Eqs. (14) and (16). Using a mean-square buoyancy frequency in the thermocline, N =[
(D − h)−1

∫D
h N2dz

]1/2
, as an estimate of N and assuming that the TKE in the thermocline

scales either on the convective velocity w∗, Eq. (34), or on the surface friction velocity u∗, we
propose

trc =
(D − h)2N

Crcu2
T

, uT = max(w∗, u∗), (58)

where Crc is a dimensionless constant tentatively estimated at 0.003.

We adopt the following polynomial approximations of the shape functions ΦB1(ζB1)
and ΦB2(ζB2) with respect to the temperature profile in bottom sediments (cf. Golosov et al.
1998):

ΦB1 = 2ζB1 − ζ2
B1, ΦB2 = 6ζ2

B2 − 8ζ3
B2 + 3ζ4

B2. (59)

which are the simplest polynomials that satisfy a minimum set of constraints. The conditions
ΦB1(0) = ΦB2(0) = 0 and ΦB1(1) = ΦB2(1) = 1 follow from the definition of ζB1, ζB2, ΦB1

and ΦB2. The conditions Φ′B1(1) = Φ′B2(0) = Φ′B2(1) = 0 provide a zero temperature gradient
at the depths z = H and z = L, and the condition Φ′′B2(1) = 0 follows from the requirement
that the temperature θL at the outer edge z = L of the thermally active layer of the sediments
is constant in time. The shape functions given by Eq. (59) are illustrated in Fig. 5. The shape
factors that correspond to Eq. (59) are CB1 = 2/3 and CB2 = 3/5.

As a zero-order approximation, the simplest linear temperature profile within snow and
ice can be assumed, ΦS(ζS) = ζS and ΦI(ζI) = ζI . This gives CS = CI = 1/2. Although a
linear profile is a good approximation for thin ice, it is likely to result in a too thick ice in
cold regions, where the ice growth takes place over a long period, and in a too high thermal
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inertia of thick ice. A slightly more sophisticated approximation was developed by Mironov
and Ritter (2004) who assumed that the ice thickness is limited by a certain maximum value
Hmax
I and that the rate of ice grows approaches zero as HI approaches Hmax

I (the snow layer
over the ice was not considered). They proposed

ΦI =

[
1− HI

Hmax
I

]
ζI +

[
(2− Φ∗I)

HI

Hmax
I

]
ζ2
I +

[
(Φ∗I − 1)

HI

Hmax
I

]
ζ3
I , (60)

where Φ∗I is a dimensionless constant. The shape factor that correspond to Eq. (60) is

CI =
1

2
− 1

12
(1 + Φ∗I)

HI

Hmax
I

. (61)

The physical meaning of the above expressions can be elucidated as follows. The relation
Φ′I(0) = 1−HI/H

max
I that follows from Eq. (60) ensures that the ice growth is quenched as

the ice thickness approaches its maximum value. Equation (61) suggests that the shape factor
CI decreases with increasing ice thickness. A smaller CI means a smaller relative thermal
inertia of the ice layer of thickness HI [the absolute thermal inertia is measured by the term
CIHI that enters the l.h.s. of Eq. (46)]. This is plausible as it is mostly the upper part of
thick ice, not the entire ice layer, that effectively responds to external forcing. For use in the
global numerical weather prediction system GME of the German Weather Service, Mironov
and Ritter (2004) proposed an estimate of Hmax

I = 3 m. This value is typical of the central
Arctic in winter. The allowable values of Φ∗I lie in the range between −1 and 5. Φ∗I > 5
yields an unphysical negative value of CI as the ice thickness approaches Hmax

I . Φ∗I < −1
gives CI that increases with increasing HI . There is no formal proof that this may not occur,
but it is very unlikely. A reasonable estimate is Φ∗I = 2. With this estimate CI is halved
as HI increases from 0 to Hmax

I . Notice that the linear temperature profile is recovered as
HI/H

max
I � 1, i.e. when the ice is thin. The polynomial (60) is illustrated in Fig. 6.

One further comment is in order regarding the shape functions Φθ, ΦB1, ΦB2, ΦS and
ΦI . These functions have been determined using a geometrical approach (the Polhausen
method). The essence of the approach is to use a polynomial approximation of the function
in question and to invoke a minimum set of physical constraints to determine the polynomial
coefficients. In spite of the utter simplicity of this approach, it often yields very accurate
results. Prominent examples are the boundary-layer similarity models developed by Long
(1974) and Zilitinkevich (1989a, 1989b). Notice finally that, although the shape functions
are useful in that they provide a continuous temperature profile trough the snow, ice, water
and bottom sediments, their exact shapes are not required in our model. It is not Φθ(ζ),
ΦB1(ζB1), ΦB2(ζB2), ΦS(ζS) and ΦI(ζI) per se, but the shape factors Cθ, CB1, CB2, CS and
CI , and the dimensionless gradients Φ′θ(0), Φ′B1(0), Φ′S(0), Φ′I(0) and Φ′I(1), that enter the
model equations. The estimates of these parameters are summarised in Table 1.

3.5.2 Constants in the Equations for the Mixed-Layer Depth

The estimates of Cc1 = 0.2 and Cc2 = 0.8 in Eq. (35) were recommended by Zilitinkevich
(1991). They were obtained using laboratory, atmospheric and oceanic data. Apart from
being commonly used in mixed-layer models of penetrative convection driven by the surface
buoyancy flux, these values were successfully used by Mironov and Karlin (1989) to simulate
day-time convection in the upper ocean that is driven by surface cooling but inhibited by
radiation heating, and by Mironov and Terzhevik (2000) and Mironov et al. (2002) to simulate
spring convection in ice-covered lakes, where convective motions are driven by volumetric
radiation heating of the water at temperature below the temperature of maximum density
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(Mironov et al. 2002 used Cc2 = 1.0). A slightly modified estimate of Cc1 = 0.17 was obtained
by Fedorovich et al. (2003) from large-eddy simulation data. We adopt the estimates of
Cc1 = 0.17 and Cc2 = 1.0 for use in the equation of convective entrainment.

For use in Eq. (38) for the equilibrium mixed-layer depth in stable or neutral stratifi-
cation, we adopt the estimates of Cn = 0.5, Cs = 10 and Ci = 20 obtained by Zilitinkevich
and Mironov (1996). The estimates of Cs and Ci are based on a limited amount of data and
may need to be slightly altered as new (and better) data become available. The estimate of
Cn was corroborated by the results from further studies (Zilitinkevich and Esau 2002, 2003)
and is reliable.

The estimates of the dimensionless constant Crh in the relaxation-type rate equation
for the depth of a stably or neutrally stratified wind-mixed layer, Eqs. (36) and (37), are
not abundant. Kim (1976) and Deardorff (1983) recommended that the value of Crh = 0.28
be used to describe entrainment into a homogeneous fluid. The same value was used by
Zeman (1979), and a slightly lower value of Crh = 0.26, by Zilitinkevich et al. (1979). The
rate equations given by Khakimov (1976) and Zilitinkevich et al. (2002a) use the reciprocal
of the Coriolis parameter as the relaxation time scale. Their rate equations suggest the
values of Crh = 0.45 and Crh = 0.5, respectively. A similar form of the rate equation was
proposed earlier by Deardorff (1971) who used a much lower value of Crh = 0.025. We adopt
an estimate of Crh = 0.01 suggested by the sensitivity experiments with the proposed lake
model, keeping in mind that this tentative value may need to be altered.

The estimates of dimensionless constants in the equations for the mixed-layer depth are
summarised in Table 1.

3.5.3 Thermodynamic Parameters

The model includes a number of thermodynamic parameters. They are summarised in Ta-
ble 2. These thermodynamic parameters can be considered constant except for the snow
density and the snow heat conductivity that are functions of snow thickness and snow age.
We adopt the following simplified empirical approximations (Heise et al. 2003), relating ρs
and κs to the snow thickness:

ρs = min
{
ρmaxs , |1−HSΓρs/ρw|−1 ρmins

}
, (62)

where ρmins = 100 kg·m−3 and ρmaxs = 400 kg·m−3 are minimum and maximum values,
respectively, of the snow density, and Γρs = 200 kg·m−4 is an empirical parameter; and

κs = min
{
κmaxs , κmins +HSΓκsρs/ρw

}
, (63)

where κmins = 0.2 J·m−1·s−1·K−1 and κmaxs = 1.5 J·m−1·s−1·K−1 are minimum and maxi-
mum values, respectively, of the snow heat conductivity, and Γκs = 1.3 J·m−2·s−1·K−1 is an
empirical parameter. The above approximations are currently used in the operational NWP
system of the German Weather Service.

The exponential approximation of the decay law for the flux of short-wave radiation is
commonly used in applications. It reads

I(t, z) = Is(t)
n∑

k=1

ak exp[−γk(z +HS +HI)], (64)

where Is is the surface value of the short-wave radiation heat flux multiplied by 1 − α, α
being the albedo of the water, ice or snow surface with respect to short-wave radiation, n
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is the number of wavelength bands, ak are fractions of the total radiation flux for different
wavelength bands, and γk(z) are attenuation coefficients for different bands. The attenuation
coefficients are piece-wise constant functions of height, i.e. they have different values for water,
ice and snow but remain height-constant within these media. The optical characteristics of
water are lake-specific and should be estimated with caution in every particular case. Rough
estimates of ak and γk for ice and snow are given by Launiainen and Cheng (1998).

4 Conclusions

We have developed a lake model suitable to predict the vertical temperature structure in lakes
of various depths on time scales from a few hours to a year. The model is based on a two-
layer parameterization of the temperature profile, where the structure of the stratified layer
between the upper mixed layer and the basin bottom, the lake thermocline, is described using
the concept of self-similarity of the evolving temperature profile. The same concept is used
to describe the interaction of the water column with bottom sediments and the evolution of
the ice and snow cover. The proposed lake model should be tested against observational data
through single-column numerical experiments. The results will be presented in a companion
paper (Part 2).

The lake model described above contains a number of dimensionless constants and em-
pirical parameters. Most of them have been estimated with a fair degree of confidence. The
exceptions are the constants Crh and Crc in the relaxation-type equations for the depth of
a wind-mixed layer and for the shape factor with respect to the temperature profile in the
thermocline, respectively. Only tentative estimates of these constants have been given that
may need to be altered. It must be emphasised that the empirical constants and parameters
of the lake model are not application-specific. That is, once they have been estimated, using
independent empirical and numerical data, they should not be re-evaluated when the model is
applied to a particular lake. In this way we avoid “tuning”, a procedure that may improve an
agreement with a limited amount of data and is sometimes justified. This procedure should,
however, be considered as a bad practice and must be avoided whenever possible as it greatly
reduces the predictive capacity of a physical model (Randall and Wielicki 1997).

Apart from the optical characteristics of lake water, the only lake-specific parameters
are the lake depth D, the depth L of the thermally active layer of bottom sediments and the
temperature θL at this depth. These parameters should be estimated only once for each lake,
using observational data or empirical recipes (e.g. Fang and Stefan 1998). In a similar way,
the temperature at the bottom of the thermally active soil layer and the depth of this layer
are estimated once and then used in an NWP system as two-dimensional external parameter
arrays.

The proposed lake model is intended for use, first of all, in NWP and climate modelling
systems as a module to predict the water surface temperature. Apart from NWP and climate
modelling, practical applications, where simple bulk models are favoured over more accurate
but more sophisticated models (e.g. second-order turbulence closures), include modelling
aquatic ecosystems. For ecological modelling, a sophisticated physical module is most often
not required because of insufficient knowledge of chemistry and biology.
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Appendix A. Temperature Profile in the Lake Thermocline –

A Self-Similar Travelling Wave-Type Solution

In section 2.3, we have discussed a travelling wave-type self-similar solution to the heat
transfer equation obtained by Zilitinkevich et al. (1988). These authors analysed the heat
transfer equation in the form

∂θ/∂t = −∂Q/∂z, (A.1)

where Q is the vertical turbulent temperature flux, subject to the boundary conditions

θ = θs at z = h, θ = θb at z = h+ ∆h. (A.2)

They assumed that the temperatures at the upper and lower boundaries of the thermocline are
constant, θs = const and θb = const, the mixed layer deepens at a constant rate, dh/dt ≡ ḣ =
const > 0, whereas the thickness of the thermocline does not change with time, d∆h/dt = 0.
Then, the heat transfer equation (A.1) takes the form

ḣdθ/dζ = dQ/dζ, (A.3)

where ζ = (z−h)/∆h is the dimensionless depth. In order to close the problem, Zilitinkevich
et al. (1988) used the down-gradient formulation for the temperature flux, Q = −KH∂θ/∂z,
and the expression KH = l2N for the effective temperature conductivity in the thermocline,
where l is the eddy length scale. Taking l = const, they invoked an additional condition
∂θ/∂z = 0 at z = h+ ∆h to determine l. The solution to the problem reads

Φθ = 1− (1− ζ)3, l = 3−3/4(β∆θ)−1/4∆h3/4ḣ1/2. (A.4)

The temperature profile shape function Φθ is given by the third-order polynomial in ζ. This
polynomial was developed earlier by Arsenyev and Felzenbaum (1977) from simple geomet-
rical arguments and by Mälkki and Tamsalu (1985) on the basis of data from measurements
in the Baltic Sea.

The Zilitinkevich et al. (1988) solution (A.4) is conditioned by the assumption d∆h/dt =
0. This situation is illustrated in Fig. 7(a). It is characteristic of the ocean or sea, where the
mixed layer grows into a neutrally stratified deep quiescent layer, whereas the thickness of the
thermocline remains approximately unchanged. In lakes, the thermocline is usually pressed
against the basin bottom so that an increase of the mixed-layer thickness is accompanied by a
decrease of the thickness of the thermocline, dh/dt = −d∆h/dt. This situation is illustrated
in Fig. 7(b). With dh/dt = −d∆h/dt = const > 0, the heat transfer equation (A.1) takes
the form

ḣ(1− ζ)dθ/dζ = dQ/dζ. (A.5)

It is easy to verify that Eq. (A.5) subject to the same boundary conditions and closure
relations as used by Zilitinkevich et al. (1988) possesses a solution in the form

Φθ = 1− (1− ζ)5, l = 180−1/4(β∆θ)−1/4∆h3/4ḣ1/2. (A.6)

Equations (A.4) and (A.6) reveal a number of differences between the lake thermocline
that is pressed against the bottom and the ocean thermocline that is underlain by a deep neu-
trally stratified quiescent layer. The eddy length scale l characteristic of the lake thermocline
is (20/3)1/4 times smaller than l characteristic of the ocean thermocline. The temperature
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profile in the lake thermocline is characterised by a sharper temperature gradient near the
thermocline top. The dimensionless temperature gradients at the top of the thermocline,
−(∆θ/∆h)−1(∂θ/∂z)|z=h ≡ Φ′θ(0), ∆θ = θs − θb being the temperature difference across the
thermocline, are Φ′θ(0) = 5 for the lake and Φ′θ(0) = 3 for the ocean. The temperature profile
shape factor is Cθ = 5/6 for the lake and Cθ = 3/4 for the ocean.

As Eq. (A.3) suggests, the self-similar oceanic thermocline is characterised by the shape
function Φθ ≡ (θs − θ)/(θs − θb) with respect to the temperature that coincides with the
shape function ΦQ ≡ (Qh −Q)/(Qh −Qb) with respect to the temperature (heat) flux. For
the lake thermocline, the relation between Φθ and ΦQ is more sophisticated. Equation (A.5)
yields

ΦQ(ζ) = C−1
θ

[
(1− ζ)Φθ(ζ) +

∫ ζ

0
Φθ(ζ

′)dζ ′
]
. (A.7)

The above relation suggests that the dimensionless shape-function parameters CQ, Cθθ and
Cθ defined by Eqs. (30), (31) and (24), respectively, are related through CQ = 2Cθθ/Cθ.

Appendix B. A Summary of Model Parameters

Table 1: Empirical Constants and Parameters

Constant/ Recommended Value/ Comments
Parameter Computed from

Cc1 0.17
Cc2 1.0
Cn 0.5
Cs 10
Ci 20
Crh 0.03
Crc 0.003
Cθ Eq. (56)
Cminθ 0.5
Cmaxθ 0.8
Cθθ Eq. (57)
CQ 2Cθθ/Cθ
CB1 2/3
CB2 3/5
CI 1/2 Optionally Eq. (61)
CS 1/2
Φ′θ(0) Eqs. (55) and (56)
Φ′B1(0) 2
Φ′I(0) 1 Optionally Eq. (60)
Φ′I(1) 1 Optionally Eq. (60)
Φ′S(0) 1
Φ∗I 2
Hmax
I 3 m
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Table 2: Thermodynamic Parameters

Notation Parameter Dimensions Estimate/
Computed from

g Acceleration due to gravity m·s−2 9.81
θr Temperature of maximum density of fresh water K 277.13
θf Fresh water freezing point K 273.15
aT Coefficient in the fresh-water equation of state K−2 1.6509 · 10−5

ρw Density of fresh water kg·m−3 Eq. (20)
ρr Maximum density of fresh water kg·m−3 1.0 · 103

ρi Density of ice kg·m−3 9.1 · 102

ρs Density of snow kg·m−3 Eq. (62)
ρmins Minimum value of ρs kg·m−3 1.0 · 102

ρmaxs Maximum value of ρs kg·m−3 4.0 · 102

Γρs Empirical parameter, Eq. (62) kg·m−4 2.0 · 102

Lf Latent heat of fusion J·kg−1 3.3 · 105

cw Specific heat of water J·kg−1·K−1 4.2 · 103

ci Specific heat of ice J·kg−1·K−1 2.1 · 103

cs Specific heat of snow J·kg−1·K−1 2.1 · 103

κw Molecular heat conductivity of water J·m−1·s−1·K−1 5.46 · 10−1

κi Molecular heat conductivity of ice J·m−1·s−1·K−1 2.29
κs Molecular heat conductivity of snow J·m−1·s−1·K−1 Eq. (63)
κmins Minimum value of κs J·m−1·s−1·K−1 0.2
κmaxs Maximum value of κs J·m−1·s−1·K−1 1.5
Γκs Empirical parameter, Eq. (63) J·m−2·s−1·K−1 1.3
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Figure 1. Schematic representation of the temperature profile in the upper mixed layer and
in the thermocline. See text for notation.
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Figure 2. Schematic representation of the temperature profile in bottom sediments during
periods of (a) heating and (b) cooling. Dashed curves show the initial temperature
profiles, i.e. the profiles developed towards the end of the previous period of cooling
(heating). See text for details.
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Figure 3. (a) Schematic representation of the temperature profile in the mixed layer, in the
thermocline and in the thermally active layer of bottom sediments. The evolving tem-
perature profile is specified by five time-dependent quantities, namely, the mixed-layer
temperature θs(t) and its depth h(t), the temperature θb(t) at the water-bottom sed-
iment interface, the temperature θH(t) at the bottom of the upper layer of bottom
sediments penetrated by the thermal wave, and the depth H(t) of this layer. The tem-
perature θL at the outer edge z = L of the thermally active layer of the sediments is
constant.
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Figure 3. (continued). (b) In case the lake is covered by ice and snow, four additional quan-
tities are computed, namely, the temperatures θS(t) at the air-snow interfaces, the
temperatures θI(t) at the snow-ice interfaces, the snow depth HS(t) and the ice depth
HI(t).
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Figure 4. The fourth-order polynomial approximation of the shape function Φθ(ζ) with re-
spect to the temperature profile in the thermocline. The curves are computed from
Eq. (55) with seven different values of the shape factor Cθ ranging from Cθ = Cminθ =
0.5, lower solid curve, to Cθ = Cmaxθ = 0.8, upper solid curve.
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Figure 5. The polynomial approximations of the shape functions ΦB1(ζB1), solid curve, and
ΦB2(ζB2), dashed curve, with respect to the temperature profile in bottom sediments.
The curves are computed from Eq. (59).
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Figure 6. The approximation of the temperature profile shape function ΦI(ζI) given by
Eq. (60). The curves are computed with Φ∗I = 2 and (from right to left) HI/H
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Figure 7. Self-similar temperature profile during the mixed-layer deepening. (a) In a neu-
trally stratified deep ocean, the mixed-layer depth increases, dh/dt > 0, whereas the
depth of the thermocline remains constant, d∆h/dt = 0. (b) In lakes, the thermocline
is pressed against the bottom, ∆h = D − h, so that dh/dt = −d∆h/dt.

40



Figure Captions

Figure 1. Schematic representation of the temperature profile in the upper mixed layer and
in the thermocline. See text for notation.

Figure 2. Schematic representation of the temperature profile in bottom sediments during
periods of (a) heating and (b) cooling. Dashed curves show the initial temperature
profiles, i.e. the profiles developed towards the end of the previous period of cooling
(heating). See text for details.

Figure 3. (a) Schematic representation of the temperature profile in the mixed layer, in the
thermocline and in the thermally active layer of bottom sediments. The evolving tem-
perature profile is specified by five time-dependent quantities, namely, the mixed-layer
temperature θs(t) and its depth h(t), the temperature θb(t) at the water-bottom sed-
iment interface, the temperature θH(t) at the bottom of the upper layer of bottom
sediments penetrated by the thermal wave, and the depth H(t) of this layer. The tem-
perature θL at the outer edge z = L of the thermally active layer of the sediments is
constant. (b) In case the lake is covered by ice and snow, four additional quantities are
computed, namely, the temperatures θS(t) at the air-snow interfaces, the temperatures
θI(t) at the snow-ice interfaces, the snow depth HS(t) and the ice depth HI(t).

Figure 4. The fourth-order polynomial approximation of the shape function Φθ(ζ) with re-
spect to the temperature profile in the thermocline. The curves are computed from
Eq. (55) with seven different values of the shape factor Cθ ranging from Cθ = Cminθ =
0.5, lower solid curve, to Cθ = Cmaxθ = 0.8, upper solid curve.

Figure 5. The polynomial approximations of the shape functions ΦB1(ζB1), solid curve, and
ΦB2(ζB2), dashed curve, with respect to the temperature profile in bottom sediments.
The curves are computed from Eq. (59).

Figure 6. The approximation of the temperature profile shape function ΦI(ζI) given by
Eq. (60). The curves are computed with Φ∗I = 2 and (from right to left) HI/H
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Figure 7. Self-similar temperature profile during the mixed-layer deepening. (a) In a neu-
trally stratified deep ocean, the mixed-layer depth increases, dh/dt > 0, whereas the
depth of the thermocline remains constant, d∆h/dt = 0. (b) In lakes, the thermocline
is pressed against the bottom, ∆h = D − h, so that dh/dt = −d∆h/dt.
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