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Recently a revised version of the combined schemes for moist, turbulent atmospheric diffusion TURBDIFF and surface-to-atmosphere transfer TURTRAN have also been implemented into DWD’s new global model ICON and have now been re-implemented into COSMO as a common scheme for both models. TURBDIFF directly addresses the higher complexity of large grid boxes by means of extensions, which contribute to missing physical processes. The extensions arise from an applied scale separation of small scale turbulence from larger but still SGS scale circulations. This procedure results in extended 2nd order moment equations for turbulence, valid only for those small scales being in accordance with the turbulence closure assumptions. In contrast to traditional schemes, the resulting scale separated TKE equation contains new source terms in the form of additional scale-interaction (SI) terms, which mainly describe the extra shear forcing of turbulence by the action of non-turbulent SGS flow patterns. At the current state, the considered interaction terms are related either to SGS surface heterogeneity (e.g. katabatic flows, thermal circulations or wake eddies generated by orography), to larger scale horizontal shear eddies or to convective plumes. The scheme implicitly considers the effect of turbulent variations of cloud water saturation adjustment by virtue of choosing respective conserved scalar variables (moist scheme). It can also be used as a 3D turbulence scheme, since complete 3D shear can be used as mechanical TKE-forcing and turbulent length scale is restricted by the horizontal grid scale respectively. The associated scheme for surface-to-atmosphere transfer is not employing empirical Monin-Obukhov relations explicitly. Rather it is designed as an application of the turbulence model, since transfer resistances are derived by vertical integration of the flux-gradient relation generated from our turbulence closure. These resistances are also used to derive the near surface values for temperature specific humidity and horizontal wind speed by interpolation of vertical variable profiles onto the respective synoptic levels in 2m or 10m height.
1 The scheme for turbulent diffusion (TURBDIFF)
Turbulence is an example for a sub grid scale (SGS) process, that can’t be resolved by the model explicitly. Clearly, the problem with SGS processes is a consequence of the need to solve our model equations numerically, since this procedure requires somehow filtered budget equations in order to approximate spatial gradients by interpolation without significant numerical errors. Although this filter doesn’t appear anywhere in the model explicitly, it’s implicit application produces additional correlation terms in the filtered budget equations due to the non linearity of some source terms and transport terms. However these additional correlation terms should not include contributions from structures that can be resolved by the numerical grid. Therefore we always think about a kind of moving volume average along a shallow control volume defined in our physical coordinate system with horizontal dimensions comparable with those of the numerical grid. 
The crucial point is that we can’t derive equations for these correlation terms from first principles without introducing some additional information in the form of closure assumptions. According to a so far unspecific idea of process separation, all SGS processes usually are divided into several parameterisation schemes, where specific closure assumptions can be used. By defining turbulence to be related to those sub grid scale structures that are in accordance with the classical assumptions of turbulence closure (e.g. special constraints of isotropy) and assuming that these valid scales are separated from other (non-turbulent) SGS scales just by a an upper (location dependent) separation scale, process separation of turbulence can be expressed by associated scale separation.
In our scheme we apply the idea of higher order turbulence closure, which is based on the consideration of budget equations for all the unknown correlation terms (2-nd order statistical moments), which can be derived straight forward from first principles. However these 2-nd order equations contain various additional 2-nd order correlation terms and even 3-rd order ones. The additional second order terms are correlations of the original model variables with 1-st order source terms (source terms of the original model variables). The 3-rd order moments describe sub grid scale transport of 2-nd order moments. We define our turbulence approximations according to the 2-nd order turbulence closure described by Mellor and Yamada (MY 1982), neglecting all transport and local time tendency terms (equilibrium approximation) in all 2-nd order equations, whereas the turbulent stress tensor (correlation of velocity components) is substituted by it’s traceless form. For the remaining correlations with pressure (pressure correlation) and molecular flux terms (dissipation) the well known parameterisations tracing back to Rotta and Kolmogorov are used. 
Correlation terms with thermodynamic source terms (phase transformations) are eliminated by using thermodynamic model variables with negligible source terms (conservative variables) or at least negligible correlations of their source terms with other model variables. In our model we use total cloud water (water vapour and cloud water) 
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 and total cloud water potential temperature 
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 being conservative as long as turbulent interactions of them with cloud ice or precipitation products and turbulent variations of radiative heating can be neglected. Since there is always an approximate saturation equilibrium, these variables can be converted into specific humidity 
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, liquid cloud water content 
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 and ordinary temperature T by a diagnostic relation by a (statistical) saturation adjustment. As such equilibrium doesn’t exist, when cloud ice or precipitation is interacting, we don’t include these phases into the definition of our quasi conservative variables.
The resulting (moist) closed 2-nd order equations form a system of 15 linear equations for the 6 different elements of the stress tensor, the 6 components of the 2 flux density vectors for our quasi conservative scalars, the 2 scalar variances and 1 scalar covariance. This has to be completed by an additional equation for half the stress tensor trace 
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, being turbulent kinetic energy (TKE). The concept of scale separation however leads to modified 2-nd order equations for a pure turbulence regime that are the result of a double filter process. While the pure 2-nd order equations are valid for the whole sub grid scale spectrum (being not in accordance with the turbulence approximations in general), these modified equations are valid only for the turbulent part. However they differ from the first ones by additional scale interaction terms, describing transformation of (co)variance from non turbulent scales to turbulent scales by respective shear. According to our arguments, these interaction terms are most important in the velocity variance equations and they can be neglected in the other ones. Hence such a term is present in particular in the TKE equation and we called it circulation term or scale interaction term. In this respect our scheme is a scale separated turbulence scheme containing some interaction with non-turbulent (but still SGS) circulations (STIC). Mainly because of a missing solution of the resulting diagnostic equation, we solve a prognostic TKE equation. Using the horizontal boundary layer approximation (HBA), all horizontal gradients of filtered properties can be neglected compared to the vertical ones, what finally leads to a scheme very similar to the so called level 2.5 scheme of MY. In this approximation the linear system of equations reduces to only two linear equations for the two stability functions 
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 (for scalars) and 
[image: image7.wmf]M

S

 (for momentum), which are contained in the resulting form of the only relevant correlations of vertical wind with a variable 
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 (being either a scalar variable or a horizontal wind component). These are the vertical turbulent flux densities 
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, that can be written in the following flux gradient form 
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Here 
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 marks a filtered variable 
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 are the deviations from the respective filtered value (related to a given control volume). Hence the vertical flux densities are the negative vertical gradient 
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 of the (density weighted) filtered variable times the specific isotropic turbulent diffusion coefficient 
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 being the product of a turbulent length scale 
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 and a turbulent velocity scale 
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 is a velocity component).
In our generalized formulation we finally end up with the following two linear equations: 
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where 
[image: image27.wmf]H

r

 and 
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 are special correction factors for laminar or surface slope effects, which may become different from 1 in the roughness layer. In the current model version however, the roughness layer is formally excluded from the model domain, where the atmospheric budget equations are applied. Since all these effects need to be considered in the surface roughness layer only, which we formally exclude form the atmospheric model domain, both correction factors are equal to 1 for the present. In the above equation 

[image: image29.wmf]1

10

6

16

0

0

c

08

0

c

74

0

92

0

HH

MM

H

M

H

M

.

,

.

,

.

,

.

,

.

,

.

=

a

=

a

=

=

=

a

=

a

 

are the standard parameters of the closure model arising in the mentioned parameterisations of pressure correlation terms and dissipation terms. 
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 is the total dimensionless shear forcing function including (squared) grid scale wind shear 
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 and the additional circulation scale shear forcing 
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is the complement, if full 3D-shear is considered, which are horizontal shear of vertical wind speed, the square of horizontal wind divergence and the horizontal deformation square respectively (her written in simple Cartesian notation only). In operational NWP-runs however, this is completely neglected, and only vertical wind shear remains. 
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 is the forcing function due to buoyancy, which is proportional to squared Brunt-Väisälä frequency 
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. Here 
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 indicates the gradient in real vertical direction, being different form the local vertical direction in case that the coordinate system is tilted along a grid scale topographic slope (what automatically would activate the factors 
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are thermodynamic factors being dependent on the saturation fraction 
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 and the following derived variables: 
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 are the filtered values of ordinary temperature and potential temperature using the Exner factor 
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 are the quasi conservative variables total water content and total water potential temperature and 
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 is the filtered virtual factor being dependent on the filtered values of specific humidity 
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 are evaporation heat, specific heat capacity for dry air, as well as the specific gas constant for dry air and water vapour respectively.
The saturation fraction 
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 is calculated with the help of a statistical condensations scheme (statistical saturation adjustment) according to that of Sommeria and Deardorff (1976) using the assumption of a normal distribution of local oversaturation 
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 within a grid box, which can be described, since the variance of that property 
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can be calculated by the results of the turbulence scheme form the previous time step.
Using the following parameterized prognostic TKE equation
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summarizing advection and horizontal diffusion by 
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In the TKE equation 
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 is an additional parameter for sub grid scale TKE transport and 
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 is pressure transport, which is either neglected or assumed to be a part of the parameterized form of TKE diffusion or represented by a special estimate.
Since this solution has got a singularity for large negative values of 
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 - that is for strong labile thermal stratification (s. MY 1982), we also make use of the TKE equation in the following form: 
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which can be expressed also with help of the Richardson number 
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whereas 
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 is an effective consumptive dimensionless forcing function.

Inserting this into the two above linear equations leads to:
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which can be solved by 
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This solution is possible for arbitrary negative values of 
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 and has to be calculated before by using the stability functions from the previous time step. Using the standard values of the turbulence parameters outside the roughness layer (
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The needed turbulent length scale profile is expressed according to Blackadar by 
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including the stability correction of Deardorff. Close to the surface (in the lower boundary layer) it is 
[image: image94.wmf](

)

z

z

k

»

l

, where z is the vertical coordinate with respect to the mean height of topography (detracted from a certain displacement height of the roughness layer) and 
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 is the v. Kaman constant. For increasing distance z the length scale is limited by the asymptotic turbulent length scale 
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 or the Deardorff limit (getting smaller with increasing thermal stability). For non stable thermal stratification (
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Denoting 
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 of the previous time level by 
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is the approximated TKE-tendency by extended vertical diffusion, which is calculated by solving the following segregated implicit equation 
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for the intermediate q-profile 
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 by means of a generalized semi-implicit solver. In this sense, 
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 and 
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 are the additional scale interaction terms (either as a flux convergence or not). While 
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is treated like a transport term, which doesn’t affect 
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 directly. Both of these explicitly parameterized terms, however, are positive definite and thus help to obtain a positive TKE-solution even for stable thermal stratification without mean vertical wind shear, when all other source terms are negative. In order to guarantee a positive definite solution in any case and to somehow represent not yet properly expressed scale interaction terms, some further special restrictions have still been introduced. However, an accordingly modified form of the discretized TKE equation can prevent from non positive solutions automatically, which is implemented as a second option and has the following form:
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This again is a quadratic equation in q, which has a general positive definite solution, since its constant element
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always remains positive. As in this case the additional restriction can be considerably reduced (at least as far as pure numeric is concerned), it is possible to control those measures quite flexibly.

For initialization we run a simplified diagnostic TKE equation (comparable to the second form of the above solution) omitting TKE diffusion and scale interaction terms (as well roughness-layer and laminar corrections). Approximating 
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by 
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 then provides the following (crude) solution for the stability function and TKE respectively, which are used for initialization:
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Subsequent iteration with the full scheme provides a solution converging towards an equilibrium state quite fast and thus eliminating the error introduced through the simplified estimate of the initial TKE values. 
Currently we consider optional interaction terms generated by non-turbulent SGS flow patterns described by our orographic drag scheme (SSO scheme) or by our convection scheme. Additionally, we included an extra parameterization for close-to-grid-scale horizontal shear eddies (particularly active within frontal zones and close to the jet-stream). While the drag production of the related of circulation scale sub-grid kinetic energy (CKE) is the scalar product of the vectors of horizontal wind and their SSO-tendencies, the CKE-production by convection is the buoyant heat flux derived from the convection scheme. Each of these production terms are assumed to be in equilibrium with the corresponding loss term for CKE, which is the scale interaction term towards TKE. The same equilibrium is used to derive the scale interaction term by separated horizontal shear eddies. For that purpose, the production term is related to horizontal shear (circulation scale horizontal diffusion coefficient times horizontal deformation square minus CKE times horizontal divergence) and the interaction term is expressed similar to dissipation of TKE, both with an associated length scale of separated horizontal shear eddies 
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 (comparable to the horizontal grid scale 
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) and a corresponding value for CKE, being eliminated by the assumed equilibrium for that purely 2-dimensional circulation scale flow patterns, which (again) has the form of a quadratic equation.
Finally, an interaction term related to surface driven direct thermal circulations (the thermal circulation term), caused by circulation scale heterogeneity within a grid box (essentially of the earth’s surface), is assumed to be approximately balanced by the convergence of a related vertical CKE flux out of the grid scale lower model boundary. This flux 
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is related to the estimated gravitational pressure forces generated by coherent plumes of different temperatures, dependent on an effective SGS horizontal pattern length scale 
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, which we currently scale with the standard deviation of SSO height. 
However, a really consistent combination of turbulence parameterization with the additional parameterizations for non-turbulent SGS patterns in the sense of STIC isn’t finished yet and will be completed stepwise. Along this line, in order to obtain a consistent description of the vertically resolved roughness layer built up by SSO, the external parameter information of the SSO scheme should be used not only for the description of the shallow thermal circulation interaction, but also for the evaluation of the factors 
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 and 
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, or even in the convection parameterization. Further, not all non-turbulent flux densities associated with additionally considered CKE are considered in the 1-st order budgets yet. Finally, the scale interaction terms are not yet acting in the mass-flux parameterization of convection, and a combined effect of turbulent and non-turbulent SGS patterns on statistical saturation adjustment is missing as well.
The calculation of the tendencies for vertical turbulent diffusion
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 in the filtered budget equation of any quasi conservative 1-st order model variable 
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 is treated semi-implicitly by inversion of a related tri-diagonal linear system. The same procedure is also applied to prognostic 2-nd order variables (which is so far only TKE), although they are defined at the boundary levels between atmospheric model layers. In order to make the procedure applicable even in the case of non-gradient representations of vertical flux densities, effective virtual variable profiles are derived, so that their gradient flux profiles are equal to the given flux profiles. This technique is used, e.g., at the calculation of the circulation term
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. It is also employed for vertical diffusion of the non-conserved scalar variables 
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,  because the respective flux densities, which can be written as linear combinations of the gradient fluxes of 
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, have no flux gradient form any longer, as soon as turbulent saturation adjustment is active.
Although the code contains already the infrastructure of an early attempt to treat a vertical resolved roughness layer within some of the lowermost atmospheric layers, this implementation is still deactivated and is going to be substituted by a description based of the factors 
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 and 
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, as already included in the theoretical description above.

2 The scheme for surface-to-atmosphere transfer (TURBTRAN)
A problem related to turbulence is to determine flux densities of governing prognostic equations at the lower model boundary. Here we could in principle use the molecular diffusion coefficients, if the vertical gradients at the rigid surface were known. Since vertical profiles show an increasing curvature when approaching the rigid surface, this gradient values can’t be estimated by pure linear interpolation between the rigid surface and the lowest atmospheric model layer. Thus we have to combine some more information.
As done in all the other known schemes, we apply for that purpose a constant flux approximation (CFA) to the air between the rigid surface and the lowest full model level. However, this is only valid as long as vertical flux divergences can be neglected. Unfortunately this isn’t valid at all within the roughness layer being influenced by sub gird scale topographic structures of the rigid surface. In our approach we face this problem by formally transforming the real rigid surface into an equivalent topographic surface (ET) and by defining a sequence of non intersecting surfaces, which all cover the ET without featuring tangential components of the local flux densities (iso-surface) to be the surfaces that belong a given distance from the surface. With this preparation, it is possible to express the roughness layer interaction for conservative scalar properties by means of effective vertical flux densities 
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. Besides the inclusion of molecular contributions, the effective vertical flux densities differ from the real turbulent vertical flux densities only in the occurrence of a dimensionless property 
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 can be interpreted to be the magnitude of the respective iso-surface area divided by its horizontal projection and thus can be called surface area index (SAI). This value is maximal just at the ET and approaches 1 above the roughness layer in the case of a non sloped grid scale topography (what is always assumed at the present). 
Hence we can use a CFA with respect to these effective flux densities. However this is not possible for momentum, since the pressure gradient source term induces additional form drag terms within the roughness layer. Therefore CFA can be applied for momentum only down to a certain level, where the top of the roughness layer is located. For the turbulent length scale at this level we write 
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 the general roughness length of the surface. The zero-level of our accordingly defined vertical coordinate z is then in any vertical distance 
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 from the surface, which we call the displacement height of the surface. Defining 
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 to be an effective value of the SAI for the whole roughness layer according to 
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Integrating the flux gradient representation of the constant effective flux density between two levels 
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 and 
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 yields a resistance law for the fluxes:
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In this representation, the transport resistance 
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is the vertical integral of the reciprocal effective diffusion coefficient (including the molecular diffusion coefficient 
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 and the SAI factor) along the vertical distance between two iso-surfaces, with mean vertical distances 
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. Hence it remains only the problem of determining a vertical profile function of the turbulent velocity scale 
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. We solve this problem iteratively by applying our turbulence scheme also at the top of the roughness layer (where 
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). The needed vertical gradients can then be expressed using the resistance values from the previous time step. As a default, we apply a linear interpolation of the effective transport velocity scale 
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 between that level and the lowest model half level, where we already have got values from our turbulence model. Within the roughness layer, we assume a constant effective 
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 as long as molecular transport is small compared to the pure turbulent one. In order to avoid an explicit description of 
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what we call the laminar resistance for scalars. 
Let 
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 is the vertical distance of an atmospheric model level form the roughness layer top (being the zero level of the atmospheric model), then 
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 is the corresponding turbulent length scale (neglecting the corrections of Blackadar or Deardorff such close to the surface) and the resistance of the whole transfer layer from the surface until this level 
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can be divided into 3 contributions, one for the pure laminar layer, one for the non viscous roughness layer and one for the free atmospheric layer (Prandtl layer). Thus 
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 is the dimensionless laminar resistance for scalars and we postulate that this can be treated like a constant. Due to 
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 remains positive definite as well. Since we describe this additional roughness layer resistance 
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 explicitly, we do not specify a specific roughness length for scalars 
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. Rather we’ve given a flow dependent representation of it, which depends on the effective surface area index 
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 (plant-cover fraction times leave area index, LAI) and a constant background value 
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For momentum however, we need only to consider the free atmospheric part, yielding 
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For neutral stratified flows along a smooth and plane wall without a roughness layer, it holds approximately 
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yielding 
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 and allow at least a larger value for a sea surface, which may to some extent drift with the wind above and thus cause a deeper laminar layer due to reduced wind shear.
Substituting the suggested linear interpolation of 
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 (belonging to the lowest model half level) with values 
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 is an associated stability parameter of the transfer layer.
At least for non-stable stratification, where 
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, is in good accordance with experimental results (the classical Deyer-Businger profile-function) as well as with vertical profiles that can be derived from the MY turbulence scheme in the case of TKE-equilibrium. For stable stratification however, the vertical 
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-profile is rather a hyperbolic function, resulting in the following resistance formula for stable stratification:
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 is the inverse stability parameter, 
which again can’t get negative for the valid regime for this formula (stable stratification, meaning 
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 is the complete transfer resistance from the surface towards that level. For convenience we also calculate the dimensionless transfer coefficient 
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As long as we don’t use a vertically resolved roughness layer for sub grid scale land use structures yet, we have to allow arbitrary large values for 
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 and the model budget equations must not contain roughness layer interaction terms (except for those from SSO). Therefore we apply our budget equations only to the atmosphere above the land use roughness layer. As we think of this roughness layer as a real constant flux layer without a storage capacity for any budget variable, we can shift this layer downward so that the atmosphere above the level h=0 is valid for the model equations and contains all the air mass in a given column. Hence the land use roughness layer degenerates to a pure transport resistance no longer belonging to the model air we apply the budget equations to.
While roughness length for a land point is an external parameter, that for a sea surface is a function of surface wind shear according to the following relation:
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Here 
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 is gravity of the earth and 
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 is the Charnock parameter, which we optionally allow to vary with near surface wind speed. Our formula further differs from the well-known Charnock formula due to the use 
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, derived from total wind energy, instead of the mean horizontal wind speed. This allows for the generation of sea surface roughness also in the case of vanishing mean wind, provided there is some TKE present. Further we restrict 
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 by a minimum value, so that 
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 is always well defined. 
This described scheme does not make use of prescribed values of a specific roughness length for scalars, because this parameter is implicitly expressed by the additional resistance 
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 through the roughness layer (including the laminar sub layer), which is only present for scalars. Further it does not require any empirical stability functions, since these are expressed implicitly by the turbulence scheme applied to the level 
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. Through the explicit application of the turbulence scheme at levels 
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 and 
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, the generalisations related to scale interaction enter also the surface scheme having an considerable impact in particular for very stable situations.

Like the turbulence scheme, also this transfer scheme is still under development. In particular some corrections (e.g. better parameter values) have to be introduced. Further we aim to derive the resistance integrals without using the upper node 
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 of the turbulent velocity scale and a different (explicit) representation of laminar transport. Both of these mayor model changes are already in preparation.

That resistance formulation is also used to estimate the near surface values at the 2m-level (for temperature and humidity) and at the 10m level (for horizontal wind speed). For that purpose we calculate the vertical profile function in 
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 and the value at the lowest model main level at 
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 and interpolate the prognostic quasi equilibrium variables (these profile functions are valid for) onto that level 
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 corresponding with the desired distances 
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 from the surface. For that purpose, however, an adapted (rather small) roughness length 
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 is used, which is the assumed value of a typical lawn at weather station. In order to get 2m-values for temperature and specific humidity, the respective values for the conserved variables (total water potential temperature and total water) are transformed by means of the statistical saturation adjustment. This procedure also provides a 2m-value of the saturation fraction (of fog), which, however, is not yet used.
As an option also an alternative diagnostic of near surface values is implemented, applying the regular roughness value for the whole grid box surface. As the near surface levels may be within the respective roughness layer, an interpolation formula is also given for the roughness layer part.
3 Code Organization

The code of the current schemes is contained in the modules ‘turb_diffusion’, ‘turb_transfer’, ‘turb_utilities’ and ‘turb_data’ and all atmospheric variable arrays are have only one index for horizontal position (block-data structure). 
The main subroutine calling the turbulent diffusion is ‘turbdiff’, running at least the turbulence model updating the turbulent diffusion coefficients. Further, if either vertical diffusion is selected to be performed with the contained common blocked code, or if at diffusion corrections due to non-gradient parts of the turbulent fluxes need to be calculated, tendencies for prognostic variables are updated by a part due to vertical diffusion. 
Semi-implicit vertical diffusion can be called for all 1-st order prognostic variables including an arbitrary set of passive tracers. The lower boundary condition can either determined by concentration values or surface fluxes, where the latter can either be provided in a pre-calculated array or will be expressed by the explicit flux-gradient representation automatically.
In case that the effect of TKE-dissipation or the effect of varying mixing ratios on heat capacity are chosen to be included into the temperature equation, an respective tendency increment is added as well.
The main subroutine calling surface-to-atmosphere transfer is ‘turbtran’ providing transfer coefficients and estimates of near surface variables.
All utility subroutines related to the turbulence model (called be ‘turbdiff’ as well as by ‘turbtran’), as well as the routines related to semi-implicit vertical diffusion are contained in module ‘turb_utilities’.

All settings of primary physical parameter or special control parameters are contained in module ‘turb_data’, where some derived parameters are determined in a preparation subroutine still contained in module ‘turb_utilities’. Some of the values of parameters contained in ‘turb_data’ can also be chosen via NAMELIST settings. In this case the values written in ‘turb_data’ are the default_settings.
The meaning of the parameters is already describe in the declaration part of the code and repeated here for those being (or going to be) part of current NAMELIST ‘phyctl’ or ‘tuning’ in COSMO model:
tkhmin: 

minimal diffusion coefficients for scalar (heat) transport

tkmmin: 

minimal diffusion coefficients for momentum transport

tkhmin_strat and tkmmin_strat  are enhanced values for the stratosphere

tndsmot:

vertical smoothing factor for diffusion tendencies

frcsmot:

vertical smoothing factor for TKE forcing (in ICON only in the tropics)

tkesmot:

time smoothing factor for TKE and diffusion coefficients

stbsmot:

time smoothing factor for stability function

frcsecu:

security factor for TKE-forcing       (<=1)

tkesecu:

security factor in  TKE equation      (out of [0; 1])

stbsecu:

security factor in stability function (out of [0; 1])

it_end:

number of initialization iterations (>=0)

rlam_heat: 
scaling factor of the laminar boundary layer for momentum

rlam_heat:
scaling factor of the laminar boundary layer for heat

rat_lam:

ratio of laminar scaling factors for vapour and heat

rat_can:

ratio of canopy height over z0m

rat_sea:

ratio of laminar scaling factors for heat over sea and land

c_lnd:

surface area density of the roughness elements over land

c_sea:

surface area density of the waves over sea

c_soil:

surface area density of the (evaporative) soil surface

tur_len:

asymptotic maximal turbulent distance [m]

pat_len:

effective length scale of subscale surface patterns over land [m]
(should be dependent on location)

Length scale factors for pressure destruction of turbulent:
a_heat:

scalar (heat) transport

a_mom:

momentum transport 

Length scale factors for dissipation of:
d_heat:

scalar (temperature) variance

d_mom:

momentum variance

Length scale factors for turbulent transport (vertical diffusion):
c_diff:

of TKE

Length scale factor for separate horizontal shear production:
a_hshr:

of TKE

Length scale factor for the stability correction:
a_stab:

no stability correction so far

Dimensionless parameters used in the sub grid scale condensation scheme

 (statistical cloud scheme):

clc_diag:
cloud cover at saturation

q_crit:
 
critical value for normalized over-saturation

c_scld:

factor for liquid water flux density in sub grid scale clouds

Switches controlling the turbulence model, turbulent transfer and diffusion:

Ltkesso:

calculation SSO-wake turbulence production for TKE

Ltkesso:

calculation SSO-wake turbulence production for TKE

Ltkecon:

consider convective buoyancy production for TKE

Ltkeshs:

consider separ. horiz. shear production for TKE

Loutshs:

consider separ. horiz. shear production of TKE for output

Lnonloc:

nonlocal calculation of vertical gradients used for turbul. diff.

Lprfcor:

using the profile values of the lowest main level instead of

the mean value of the lowest layer for surface flux calulations

ltmpcor:

consideration of thermal TKE-sources in the enthalpy budget

lcpfluc:

consideration of fluctuations of the heat capacity of air

lexpcor:

explicit corrections of the implicit calculated turbul. diff.

for semi-implicit vertical diffusion: 

lsflcnd:

lower flux condition for vertical diffusion calculation

ldynimp:

dynamical calculation of implicit weights

lprecnd:

preconditioning of tridiagonal matrix

lfreeslip:

free-slip lower boundary condition (use for idealized runs only!)
imode_tran:
 mode of TKE-equation in transfer scheme             (compare 'imode_turb')

imode_turb:
mode of TKE-equation in turbulence scheme

0: diagnostic equation

1: prognostic equation (default)

2: prognostic equation (implicitly positive definit)

icldm_tran:
mode of cloud representation in transfer parametr.  (compare 'icldm_turb')

icldm_turb
mode of cloud representation in turbulence parametr.

-1: ignoring cloud water completely (pure dry scheme)

0: no clouds considered (all cloud water is evaporated)

1: only grid scale condensation possible

2: also sub grid (turbulent) condensation considered

itype_wcld:
type of water cloud diagnosis within the turbulence scheme:

1: employing a scheme based on relative humitidy

2: employing a statistical saturation adjustment

itype_sher:
type of shear production for TKE

0: only vertical shear of horizontal wind

1: previous plus horizontal shear correction

2: previous plus shear from vertical velocity

itype_diag_t2m:
 type of diagnostics of 2m-temperature and -dewpoint

1: Considering a fictive surface roughness of a SYNOP lawn

2: Considering the mean surface roughness of a grid box

    and using an exponential roughness layer profile
Only for COSMO, in order to control how turbulent diffusion is called:
itype_vdif:
type of vertical diffusion calculation

< 0: vertical diffusion calculated by the specific COSMO-routines in 'slow_tendencies'.

  -2: apply former (non-blocked) COSMO-version of Raschendorfer-scheme (only temporary).

                            >=0: vertical diffusion calculated by the common COSMO/ICON-routines contained in

         MODULES 'turb_diffusion' and 'turb_utilities'.

   0: vertical diffusion within the CALL of the turbulence model (in ICON-mode), which is 

                     applied to vertical profiles interpolated on horizontal mass positions

       (only active, if "itype_turb=3").

 > 0: vertical diffusion applied (in COSMO-mode) at the end of physics-section,

 

          considering explicit endencies in the semi-implicit solution and CALLed seperately

          for scalars and for each staggered wind component. 
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