Contents

efere	nces	7
0.3	STD_OBS — Parameter for the GNSS STD Operator	3
	0.2.1 Geoid netCDF file	2
0.2	Geoid Undulation	2
0.1	GNSS Extensions	1

References

0.1 GNSS Extensions

Modifications to chapter0604.tex

Section 6.4 - Observation Input Files

•••

GPS (GNSS) zenith total delay and water vapour ...

GNSS zenith total delay

File name: 'cdfin_gnss_ztd'.

The GPS data described in the previous section can also be processed by the GNSS STD operator. In contrast to the GPS IWV operator the STD operator is not part of the nudging assimilation system. The output of the STD operator is written to a specific feedobs file fof_gnssgb_* but the model state is not modified.

In order to distinguish between both operators unique input file names are required even if the contents of the files is identical.

New file chapter0605.tex, Subsection 6.5 Geoid Undulation

0.2 Geoid Undulation

COSMO provides the surface height (field HSURF) and the heights of half levels (field HHL) as heights above mean sea level which are equivalent to heights above geoid. The geoid is related to the local gravity field of the Earth and only empirical estimates of the Earth's geoid are available. Consequently, there is no general transformation from the geographical coordinates provided by COSMO and other reference systems, e. g. used to define satellite data. It is necessary to translate the heights above geoid to heights above a reference ellipsoid. Such ellipsoidal coordinates can easily be transformed to global Cartesian coordinates and to any other reference system.

The geoid undulation describes the difference between the height above geoid and the height above ellipsoid. Several empirical data sets are available and are updated in regular intervals, either because of new gravity data or because the Earth's gravity field changed. One of the most recent and best resolved data sets is the eigen-6c3stat geoid which is used in COSMO.

The global eigen-6c3stat geoid with a resolution of 0.1° can be obtained from the web site http://icgem.gfz-potsdam.de/ICGEM/ICGEM.html. The web server provides the 350 MB ASCII file eigen-6c3stat-450553.gdf. The format of the geoid data is described on the web site and in Förste et al. (2013). It is rather time consuming to read such a large ASCII file therefore a netCDF converter was written. The size of the netCDF file is 50 MB and it is possible to read only the geoid subarray required for the given model domain. The contents of the netCDF file is described below.

The geoid file is required only if the GNSS STD operator is running.

0.2.1 Geoid netCDF file

The geoid is provided on a regular latitude/longitude grid. The latitudes and longitudes are stored as 1-dim arrays the geoid is a 2-dim array with the corresponding dimensions:

```
dimensions:
    londim = 3601 ;
    latdim = 1801 ;
variables:
    double geoid(latdim, londim) ;
        geoid:standard_name = "geoid" ;
        geoid:units = " meter" ;
    float lon(londim) ;
        lon:standard_name = "longitude" ;
        lon:units = "degree" ;
    float lat(latdim) ;
        lat:standard_name = "latitude" ;
        lat:units = "degree" ;
```

The geoid file is read by the GNSS STD operator. Path and file name need to be provided in the parameter GeoidFile of the STD_OBS namelist. The netCDF geoid file can be obtained from the DWD.

Modifications to chapter0709.tex

Section 7.9 NUDGING

Name	Type	Definition / Purpose / Comments	Default
		observation type: reports inside the exclusion area are	
		set passive if their type is set to .FALSE.	
lsynop	LOG	observation type SYNOP	.TRUE.
laircf	LOG	observation type AIREP (aircraft)	.TRUE.
lsatob	LOG	observation type SATOB	.FALSE.
ldribu	LOG	observation type DRIBU (drifting buoy)	.TRUE.
ltemp	LOG	observation type TEMP	.TRUE.
lpilot	LOG	observation type PILOT	.TRUE.
lsatem	LOG	observation type SATEM	.FALSE.
lgps	LOG	observation type GPS IWV	.FALSE.
lgnssstd	LOG	observation type GPS STD/ZTD	.FALSE.
lscatt	LOG	observation type SCATT (scatterometer)	.TRUE.

New file chapter0715.tex, Subsection 7.15 - Namelist STD Operator

0.3 STD_OBS — Parameter for the GNSS STD Operator

The namelist group /STD_OBS/ contains parameters required by the GNSS STD operator for assimilating GNSS zenith total delays (ZTDs) and slant total delays (STDs). To run the STD operator the parameter lgnssstd of the NUDGING namelist needs to be .TRUE..

GNSS STD and ZTD observations can be assimilated by the LETKF. Nudging of these observation types is not possible. However, there exists an option to nudge GNSS IWV observations (see Section ?? on page ??).

Name	Type	Definition / Purpose / Comments	Default
NStepVertMod	INT	Number of supporting points used for vertical integration	60
		inside the model, should be \geq the number of vertical grid	
		nodes of the model. The number of supporting points on the	
		signal path is scaled with the elevation.	
NStepVertTop	INT	Number of supporting points used for vertical integration	20
		above the model top. NStepVertTop can usually be smaller	
		than NStepVertMod as the contributions from the upper at-	
		mosphere is small and the information about the refractivity	
		above the model top is limited. Like NStepVertMod this is	
		scaled with the elevation.	
Hmax	REAL	The STD is integrated from the GNSS station up to a maxi-	150000
		mum height Hmax in m. It is assumed that the neutral atmo-	
		sphere reaches up to Hmax: $100000 \le \text{Hmax} \le 200000$ (100)	
		km 200 km)	

3

Name	Type	Definition / Purpose / Comments	Default
HScaleP	BEAT	Scale hight in m of a hypothetical pressure profile. This pro-	6500
inscarei		file is used to scale the density of supporting points with	0000
		hight Smaller numbers lead to more points in the lower	
		atmosphere HScaleP is used for the signal path inside the	
		model	
HScaleP2	REAT	Like HScaleP but used for the region above the model top	25000
indearer z		HScaleP2 should be much larger than HScaleP in order	20000
		to obtain a homogeneous distribution of supporting points	
		along the whole signal path from the receiver up to Hmax	
		Both HScaleP and HScaleP2 need to be adjusted to the	
		specific model configuration. If HScaleP is too small as com-	
		pared to the vertical extension of the model most supporting	
		points are located in the lower grid levels and the upper lev-	
		els are not regarded appropriately. If HScaleP is too large	
		the distribution is almost equidistant and some of the lower	
		levels might not be regarded.	
UseRavtracer	REAL	Maximum elevation in degrees for using the raytracer. The	50°
J		ravtracer is called only if the elevation of the STD is below	
		this angle. For larger elevations it is assumed that the signal	
		path between the satellite and the receiver is a straight line.	
		UseRaytracer = 90° : The raytracer is called for all ZTDs	
		and STDs.	
		UseRaytracer = 0° : The raytracer is never called and a	
		straight line is assumed for all elevations.	
k ₁	REAL	Refractivity coefficient k_1 [K hPa ⁻¹] used in the Smith &	77.60
		Weintraub formula or the Thayer formular, default accord-	
		ing to Bevis et al. (1994).	
k_2	REAL	Refractivity coefficient k_2 [K hPa ⁻¹], default according to	70.40
		Bevis et al. (1994).	
k_3	REAL	Refractivity coefficient k_3 [K ² hPa ⁻¹], default according to	$3.739 \cdot 10^{5}$
		Bevis et al. (1994).	
ZTDerror	REAL	Assumed ZTD observation error in m. For STDs ZTDerror	0.012 m
		is mapped to the given elevation using the Global Map-	
		ping Function (GME). The corresponding observation error	
		is written to the feedback files.	
GeoidFile	CHAR	Path and file name of the geoid file.	, ,
		The geoid file provides the geoid undulation required to	
		transform heights above geoid into heights above ellipsoid	
		and vice versa. So far only the eigen-6c3stat gooid is sup-	
		ported.	
		The STD operator in COSMO does not work without a valid	
		geoid and COSMO will be terminated if the STD operator	
H C	DEAT	is started without a GeoldFile.	<u>^</u>
Hrei	REAL	Reference neight in m above the GNSS station used by the	0 m
		LEIKF. In the reedback files the parameters pievel, diat,	
		alon give the position on the signal path where the height	
		above the station is fire. For fire $= 0$ the station position	
MaySTDobe	тмт	Maximum number of STDs to read/process	100000
MayZTDobe		Maximum number of ZTDs to read/process The momory	50000
TUTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	1 111	required to read and process the CNSS observations group	
		with the number of observations and may exceed the avail-	
		able memory As the number of future observations is un-	
		predictable an upper limit is set in order to guarantee stable	
		operation.	

4

Name	Type	Definition / Purpose / Comments	Default
verbose	REAL	Verbosity level of program messages. At higher verbosity	0
		levels the output of all lower levels will also be provided.	
		This parameter is used by the STD operator only.	
		verbose = 0 (default)	
		Output limited to some status messages.	
		verbose = 1	
		Messages necessary to follow the program flow.	
		verbose = 2	
		More messages and output of some important variables.	
		verbose = 3	
		Debug mode, huge amount of output.	
HORIFile	CHAR	Path and file name of the GNSS station list.	, ,
		The GNSS station list is required to process STD observa-	
		tions which are provided in a preliminary data format. As	
		STD and ZTD data are processed in the same way the GNSS	
		station list needs to be available even if only ZTDs are used.	
		This parameter will become obsolete as soon as STD BUFR	
		data are available.	

 $\mathbf{5}$

Modifications to chapter08.tex

Section 8.3 NetCDF Feedobs File

•••

8.3.1 Operator Specific Feedobs Files

In addition to the above mentioned standard feedobs file several operator specific feedobs files may exist. Observation operators which are not part of the nudging assimilation system, e.g. the radar operator or the STD operator, use their own feedobs files. These files can be used for verification purposes or by the LETKF.

The file name used by the STD operator is defined in a similar way as the standard feedobs file name but with an additional substring gnssgb for GNSS ground based observations:

'fof_gnssgb_' // yyyymmddhhttss // '.nc'

Modifications to .../trunk/Literature/lit.bib Additional References

² new references:

⁽Bevis, Businger, Chiswell, Herring, Anthes, Rocken, and Ware 1994) (Förste, Bruinsma, Marty, Flechtner, Abrikosov, Dahle, Lemoine, Neumayer, Biancale, Barthelmes, and König 2013)

References

- Bevis, M., S. Businger, S. Chiswell, T. A. Herring, R. A. Anthes, C. Rocken, and R. H. Ware, 1994. GPS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water. J. Appl. Meteor. 33(3), 379–386.
- Förste, C., S. Bruinsma, J.-C. Marty, F. Flechtner, O. Abrikosov, C. Dahle, J.-M. Lemoine, K. H. Neumayer, R. Biancale, F. Barthelmes, and R. König, 2013. EIGEN-6C3stat - the newest High Resolution Global Combined Gravity Field Model based on the 4th Release of the GOCE Direct Approach. Talk, Potsdam/Toulouse.