Improving the analysis of the COSMO model by the assimilation of 2 metres observations

Marco Galli Massimo Milelli

University of Torino, ARPA Piemonte

Offenbach, 6/3/2012

Improving COSMO model 2m DA

ELE DOG

E + 4 E +

Outline

Introduction

- Motivation
- Status of our previous experiments

2 The FASDAS technique

- Coupling 2m data assimilation and the soil state
- FASDAS performances

3 Conclusions

= 900

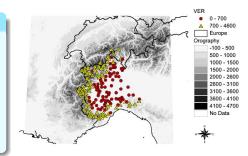
Outline

Introduction

- Motivation
- Status of our previous experiments

- Coupling 2m data assimilation and the soil state
- FASDAS performances

ELE SQC


ヨト イヨト

Motivation

Taking advantage of the many stations in Piemonte

Goal of the work

- Few GTS observations points over Piemonte region
- Much denser station network owned by ARPA
- Take advantage for enhancing COSMO analysis production

イロト 不得下 イヨト イヨト

Current COSMO-I2 configuration

- Very high resolution grid (2.8 km)
- Only temperature assimilation makes simulation differ significantly
- 2m temperature is not used operationally

Motivation

COSMO land-surface and data assimilation

COSMO model implemented features

- Possibility of assimilating 2 metres observations (temperature, humidity,...)
- Assimilation of 2 metres observations affects directly the atmospheric state but not the soil

Soil state analysis

- Germany: variational soil moisture analysis from 2 metres temperature observations once a day
 - Indipendent procedure
 - Not part of official COSMO package
- Italy: no soil moisture analysis

A 回 > A E > A E > E E < のQの</p>

COSMO performance with the standard assimilation of 2m temperature

- Temperature is positively affected
- Relative humidity and wind are neutrally or slightly negatively affected
- Soil-atmosphere turbulent energy fluxes show a neutral or a slighlty negative effect

The most important point

- The benefits of the assimilation of 2m temperature are very short lasting during the model forecast
- Need to introduce some "long memory" element in the DA system: the soil

(日) (周) (日) (日) (日) (日) (000)

Outline

Introduction

- Motivation
- Status of our previous experiments

The FASDAS technique

- Coupling 2m data assimilation and the soil state
- FASDAS performances

3 Conclusions

1 = nar

- (E

Fluxes Adjusting Surface Data Assimilation System (FASDAS) Alapaty et al. (2001, 2008)

Problem statement

Errors in PBL description are reduced if T2m and Q2m assimilation does not have heavy consequences on the equilibrium of the model

$$\frac{\partial \alpha}{\partial t} = \mathcal{M}(\alpha, z, t) + N_{\alpha} \left(\hat{\alpha} - \alpha \right) \equiv \frac{\partial \alpha^{\mathcal{M}}}{\partial t} + \frac{\partial \alpha^{\mathcal{N}}}{\partial t}$$

Recalling that

$$\frac{\partial \alpha}{\partial t} = -\frac{H_1^{\alpha} - H_S^{\alpha}}{\rho C \Delta z}$$

then

$$H^{\alpha,N} = \rho C_{\alpha} \left(\frac{\partial \alpha^{N}}{\partial t} \right) \Delta z$$

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ

Influence on soil of fluxes correction: temperature

$$\Delta T_g^N = \left(\frac{\partial T_g^N}{\partial t}\right) \Delta t = (H_{\theta,S}^N - H_{q,S}^N) \frac{\Delta t}{C_g}$$

A positive (negative) adjustment of H_q causes a reduction (growth) of T_g , because it is a function of the saturation vapour pressure calculated at T_g

Warning

The fluxes are adjusted so that T2m and Q2m converge towards observed values. The fluxes are altered to allow the atmospheric structure in a realistic way, regardless of the reason of errors in simulated T2m and Q2m.

Putting together soil moisture correction and 2m DA

State of art (including COSMO soil moisture operational analysis)

- Many data assimilation tecniques attribute the main source of T2m errors in wrong estimates of soil moisture
- Sometimes errors in T2m values are due to indipendent model errors and not to the data assimilation scheme; in this case, the correction of soil moisture would be an additional source of problems

Preliminary definitions

- q_a : mixing ratio of surface layer (a measure of humidity)
- Δq_a : time change in mixing ratio in surface layer due to mixing
- $\psi_{a} \equiv \Delta q_{a}/q_{a}$: normalization
- $E = E_{\rm sfc} + E_{\rm can} + \sum_{\rm layers} E_{\rm trasp}$: evapotranspiration

Adjusting the water balance components

Evaluation of the correction of the water balance components

$$E_{\xi}^{N} = \left(\frac{E_{\xi}}{E}\right)\psi_{a}\left(\frac{H_{q}^{N}}{\rho_{w}L}\right)$$

 $\xi =$ surface, vegetation, soil layers

Then sum the terms obtained from this step to the appropriate water balance equations (soil layers, vegetation,...)

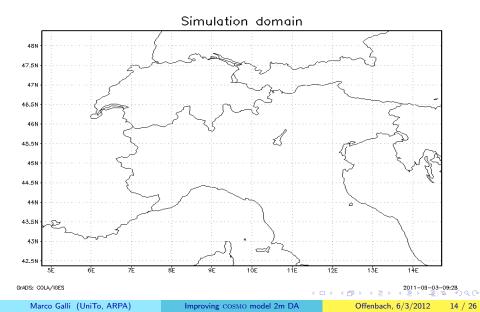
FASDAS in COSMO

Direct assimilation

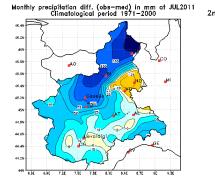
- Quality control and weight the 2m data (not reported for brevity)
- Assimilation of T2m and Q2m (observation nudging of the atmospheric fields)
- Estimation of turbulent fluxes adjustment

Indirect assimilation

- Calculation of weighting factor for latent heat flux (ψ_a)
- Weight evapotranspiration terms
- Partition the weighted adjustment of evaporation
- Sum the water balance corrections in the appropriate equations
- Add the fluxes adjustment to the predicted ones


Experiment framework

- Operational COSMO-I2 configuration
 - Exception: multilayer soil scheme
- Analysis mode: no forecast, only assimilation cycle
- Continuous assimilation cycle
- Performed at 00 UTC and 12 UTC, for the previous 12 hours
- Comparison of no assimilation runs (NAS), official assimilation (ASS), and FASDAS (FAS)
- ARPA weather station half used for assimilation, half for verification
- Land surface energy balance: compared against UTOPIA model which is already operational in ARPA Piemonte


3 × 4 3 × 3 1 × 0 0 0

13 / 26

The domain of the simulations

Weather conditions for July 2011

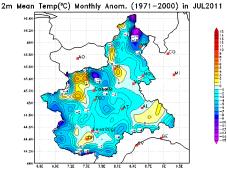
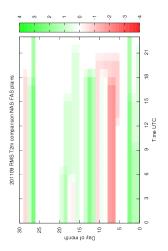
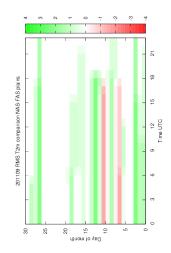



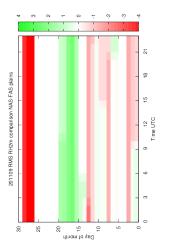
Image: Image:


ELE NOR

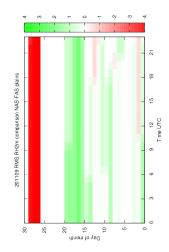
2 metres temperature description performance, July

Official assimilation

FASDAS


Marco Galli (UniTo, ARPA)

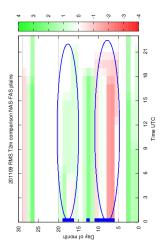
16 / 26


ъ

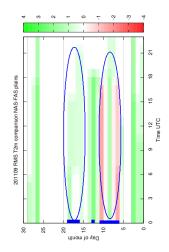
2 metres relative humidity description performance, July

Official assimilation

FASDAS

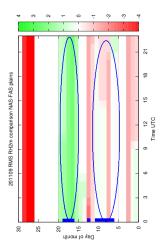

Marco Galli (UniTo, ARPA)

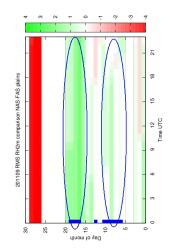
17 / 26


-

2 metres temperature description performance, July

Official assimilation

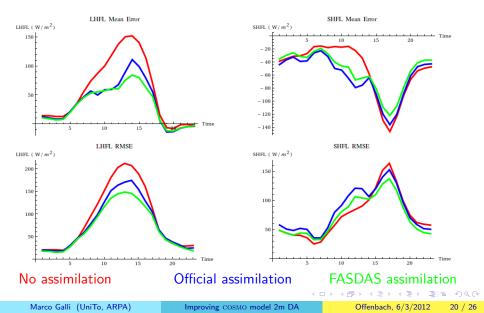

FASDAS


ъ

2 metres relative humidity description performance, July

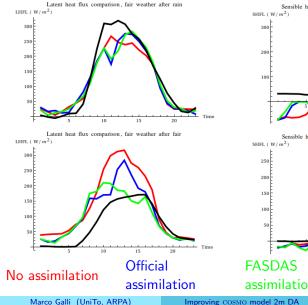
Official assimilation

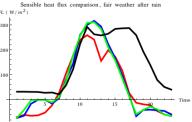
FASDAS

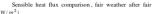


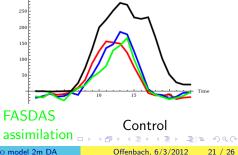
Marco Galli (UniTo, ARPA)

-


The FASDAS technique FASDAS performances


Land surface energy balance description




The FASDAS technique FASDAS performances

Land surface energy balance description

Observations

- FASDAS performs generally better than the official nudging scheme in wet conditions
- Serious problems in dry conditions (not shown for brevity)
- Other good results during a foehn episode (not shown for brevity)

3 × 4 3 × 3 1 × 0 0 0

Further developments

Calibration of FASDAS

• Proper tuning of the parameters that take part in the scheme

- Thickness of soil layer which is temperature corrected
- Artificially adjusting soil moisture more for the top soil layers than the deeper ones

Further tests

• Exceptional rain of the beginning of november: flood over Cinque Terre, Genova and exceptional rain in Piemonte

Completing the soil moisture analysis

• Use radar and rain gauges data to correct errors in soil moisture due to bad precipitation representation

Marco Galli (UniTo, ARPA)

Outline

Introduction

- Motivation
- Status of our previous experiments

The FASDAS technique

- Coupling 2m data assimilation and the soil state
- FASDAS performances

3 Conclusions

EL OQO

▲ 臣 ▶ | ▲ 臣 ▶ |

- Deficiencies in the assimilation by nudging to the surface observations
- Development of FASDAS
- Tests on the official operational model
- Good results running COSMO and FASDAS in wet days

EL OQO

Thanks to: Paolo Bertolotto, Riccardo Bonanno, Nicola Loglisci and Elena Oberto for their help and suggestions.

Any questions, comments, suggestions,...?

Marco Galli (UniTo, ARPA)

Improving COSMO model 2m DA

Offenbach, 6/3/2012 26 / 26

ELE SOC

- Kiran Alapaty, Dev Niyogi, Fei Chen, Patrick Pyle Anantharman Chandrasekar and Nelson Seaman, Development of the Flux-Adjusing Surface Data Assimilation System for Mesoscale Models, Journal of Applied Meteorology and Climatology, 2008
- Kiran Alapaty, Nelson L. Seaman, Devdutta S. Niyogi, Adel F. Hanna, Assimilating Surface Data to Improve the Accuracy of Atmospheric Boundary Layer Simulations, Journal of Applied Meteorology and Climatology, 2001