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Section 1

Overview on the Model System

1.1 General Remarks

The COSMO-Model is a nonhydrostatic limited-area atmospheric prediction model. It has
been designed for both operational numerical weather prediction (NWP) and various scien-
tific applications on the meso-38 and meso-v scale. The COSMO-Model is based on the prim-
itive thermo-hydrodynamical equations describing compressible flow in a moist atmosphere.
The model equations are formulated in rotated geographical coordinates and a generalized
terrain following height coordinate. A variety of physical processes are taken into account by
parameterization schemes.

Besides the forecast model itself, a number of additional components such as data assimi-
lation, interpolation of boundary conditions from a driving host model, and postprocessing
utilities are required to run the model in NWP-mode, climate mode or for case studies. The
purpose of the Description of the Nonhydrostatic Regional COSMO-Model is to provide a
comprehensive documentation of all components of the system and to inform the user about
code access and how to install, compile, configure and run the model.

The basic version of the COSMO-Model (formerly known as Lokal Modell (LM)) has been
developed at the Deutscher Wetterdienst (DWD). The COSMO-Model and the triangular
mesh global gridpoint model ICON form — together with the corresponding data assimi-
lation schemes — the NWP-system at DWD. The subsequent developments related to the
COSMO-Model have been organized within COSMO, the Consortium for Small-Scale Mod-
eling. COSMO aims at the improvement, maintenance and operational application of a non-
hydrostatic limited-area modeling system, which is now consequently called the COSMO-
Model. The meteorological services participating to COSMO at present are listed in Table
1.1.

For more information about COSMO, we refer to the web-site at www.cosmo-model.org.

The COSMO-Model is available free of charge for scientific and educational purposes, es-
pecially for cooperational projects with COSMO members. However, all users are required
to sign an agreement with a COSMO national meteorological service and to respect cer-
tain conditions and restrictions on code usage. For questions concerning the request and the
agreement, please contact the chairman of the COSMO Steering Committee. In the case of
a planned operational or commercial use of the COSMO-Model package, special regulations
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Table 1.1: COSMO: Participating Meteorological Services

DWD Deutscher Wetterdienst,
Offenbach, Germany

MeteoSwiss Meteo-Schweiz,
Zirich, Switzerland

ITAF-ReMet Ufficio Generale Spazio Aero e Meteorologia,
Roma, Italy

HNMS Hellenic National Meteorological Service,
Athens, Greece

IMGW Institute of Meteorology and Water Management,
Warsaw, Poland

ARPA-SIMC Agenzia Regionale per la Protezione Ambientale del-

1At Emilia-Romagna Servizio Idro Meteo Clima
Bologna, Italy

ARPA-Piemonte | Agenzia Regionale per la Protezione Ambientale,
Piemonte, Italy

CIRA Centro Italiano Ricerche Aerospaziali,
Ttaly

ZGeoBW Zentrum fir Geoinformationswesen der Bundeswehr,
Euskirchen, Germany

NMA National Meteorological Administration,

Bukarest, Romania

RosHydroMet Hydrometeorological Centre of Russia,
Moscow, Russia

IMS Israel Meteorological Service,
Bet-Dagan, Israel

will apply.

The further development of the modeling system within COSMO is organized in Working
Groups which cover the main research and development activities: data assimilation, nu-
merical aspects, upper air physical aspects, soil and surface physics aspects, interpretation
and applications, verification and case studies, reference version and implementation and
predictability and ensemble methods. In 2005, the COSMO Steering Committee decided to
define Priority Projects with the goal to focus the scientific activities of the COSMO com-
munity on some few key issues and support the permanent improvement of the model. For
contacting the Working Group Coordinators or members of the Working Groups or Priority
Projects, please refer to the COSMO web-site.

The COSMO meteorological services are not equipped to provide extensive support to ex-
ternal users of the model. If technical problems occur with the installation of the model
system or with basic questions how to run the model, questions could be directed via email
to cosmo-support@cosmo-model.org. If further problems occur, please contact the members
of an appropriate Working Group. We try to assist you as well as possible.

The authors of this document recognize that typographical and other errors as well as dis-

Section 1: Overview on the Model System Part | — Dynamics and Numerics 5.05



1.2 Basic Model Design and Features 3

crepancies in the code and deficiencies regarding the completeness may be present, and your
assistance in correcting them is appreciated. All comments and suggestions for improvement
or corrections of the documentation and the model code are welcome and may be directed
to the authors.

1.2 Basic Model Design and Features

The nonhydrostatic fully compressible COSMO-Model has been developed to meet high-
resolution regional forecast requirements of weather services and to provide a flexible tool
for various scientific applications on a broad range of spatial scales. When starting with
the development of the COSMO-Model, many NWP-models operated on hydrostatic scales
of motion with grid spacings down to about 10 km and thus lacked the spatial resolution
required to explicitly capture small-scale severe weather events. The COSMO-Model has
been designed for meso-5 and meso-vy scales where nonhydrostatic effects begin to play an
essential role in the evolution of atmospheric flows.

By employing 1 to 3 km grid spacing for operational forecasts over a large domain, it is
expected that deep moist convection and the associated feedback mechanisms to the larger
scales of motion can be explicitly resolved. Meso-v scale NWP-models thus have the princi-
ple potential to overcome the shortcomings resulting from the application of parameterized
convection in current coarse-grid hydrostatic models. In addition, the impact of topography
on the organization of penetrative convection by, e.g. channeling effects, is represented much
more realistically in high resolution nonhydrostatic forecast models.

In the beginning, the operational application of the model within COSMO were mainly on
the meso-f scale using a grid spacing of 7 km. The key issue was an accurate numerical
prediction of near-surface weather conditions, focusing on clouds, fog, frontal precipitation,
and orographically and thermally forced local wind systems. Since April 2007, a meso-+y scale
version is running operationally at DWD by employing a grid spacing of 2.8 km. Applications
with similar resolutions are now run by most COSMO partners. We expect that this will
allow for a direct simulation of severe weather events triggered by deep moist convection,
such as supercell thunderstorms, intense mesoscale convective complexes, prefrontal squall-
line storms and heavy snowfall from wintertime mesocyclones.

The requirements for the data assimilation system for the operational COSMO-Model are
mainly determined by the very high resolution of the model and by the task to employ it
also for nowcasting purposes in the future. Hence, detailed high-resolution analyses have to
be able to be produced frequently and quickly, and this requires a thorough use of asynoptic
and high-frequency observations such as aircraft data and remote sensing data. Since both
3-dimensional and 4-dimensional variational methods tend to be less appropriate for this
purpose, a scheme based on the observation nudging technique has been chosen for data
assimilation from the beginning of the development. But in March 2017 the nudging scheme
has been replaced by a new, more modern, ensemble-based method, called KENDA: Km-
scale ENsemble Data Assimilation. Note, that KENDA, unlike the nudging scheme, is not
available within the source code of the COSMO-Model.

Besides the operational application, the COSMO-Model provides a nonhydrostatic model-
ing framework for various scientific and technical purposes. Examples are applications of
the model to large-eddy simulations, cloud resolving simulations, studies on orographic flow
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4 1.2 Basic Model Design and Features

systems and storm dynamics, development and validation of large-scale parameterization
schemes by fine-scale modeling, and tests of computational strategies and numerical tech-
niques. For these types of studies, the model should be applicable to both real data cases
and artificial cases using idealized test data. Moreover, the model has been adapted by other
communities for applications in climate mode (CCLM) and / or running an online coupled
module for aerosols and reactive trace gases (ART).

Such a wide range of applications imposes a number of requirements for the physical, nu-
merical and technical design of the model. The main design requirements are:

(i) use of nonhydrostatic, compressible dynamical equations to avoid restrictions on the
spatial scales and the domain size, and application of an efficient numerical method of
solution;

(ii) provision of a comprehensive physics package to cover adequately the spatial scales
of application, and provision of high-resolution data sets for all external parameters
required by the parameterization schemes;

(iii) flexible choice of initial and boundary conditions to accommodate both real data cases
and idealized initial states, and use of a mesh-refinement technique to focus on regions
of interest and to handle multi-scale phenomena;

(iv) use of a high-resolution analysis method capable of assimilating high-frequency asyn-
optic data and remote sensing data;

v) use of pure Fortran constructs to render the code portable among a variety of com-
f Fort tructs t der th d tabl iety of
puter systems, and application of the standard MPI-software for message passing on
distributed memory machines to accommodate broad classes of parallel computers.

The development of the COSMO-Model was organized along these basic guidelines. How-
ever, not all of the requirements are fully implemented, and development work and further
improvement is an ongoing task. The main features and characteristics of the present release
are summarized below.

COSMO-ICON Physics

In the last months, several physical packages have been unified with their counterpart in
ICON, to reduce the maintenance work for having two different versions of one parameteri-
zation. We refer to this developments as the COSMO-ICON Physics.

A major technical change to implement this unification was, to use the ICON data structure
for the variables in the physics. This structure does not reflect a horizontal field with two
dimensions, but collects the grid points in a vector (or a block). This is in contrast to the
COSMO-Model, which uses the (i, j)-structure for horizontal fields.

This blocked data structure is explained in more detail in Appendix A of Part II, the Physical
Parameterizations.

Not all options for the parameterizations have been ported to the blocked data structure.
More details are given below in the Physical Parameterizations.
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1.2 Basic Model Design and Features 5

Dynamics

Model Equations — Nonhydrostatic, full compressible hydro-thermodynamical equations in
advection form. Subtraction of a hydrostatic base state at rest.

Prognostic Variables — Horizontal and vertical Cartesian wind components, pressure per-
turbation, temperature, specific humidity, cloud water content. Optionally: cloud ice content,
turbulent kinetic energy, specific water content of rain, snow and graupel.

Diagnostic Variables — Total air density, precipitation fluxes of rain and snow.

Coordinate System — Generalized terrain-following height coordinate with rotated geograph-
ical coordinates and user defined grid stretching in the vertical. Options for (i) base-state
pressure based height coordinate, (ii) Gal-Chen height coordinate and (iii) exponential height
coordinate (SLEVE) according to Schir et al. (2002).

Numerics

Grid Structure — Arakawa C-grid, Lorenz vertical grid staggering.

Spatial Discretization — Second-order finite differences. For the two time-level scheme also
1st and 3rd to 6th order horizontal advection (default: 5th order). Option for explicit higher
order vertical advection.

Time Integration — Two time-level 2nd and 3rd order Runge-Kutta split-explicit scheme after
Wicker and Skamarock (2002) and a TVD-variant (Total Variation Diminishing) of a 3rd order
Runge-Kutta split-explicit scheme. Option for a second-order leapfrog HE-VI (horizontally
explicit, vertically implicit) time-split integration scheme, including extensions proposed by
Skamarock and Klemp (1992). Option for a three time-level 3-d semi-implicit scheme (Thomas
et al. (2000)) based on the leapfrog scheme.

Numerical Smoothing — 4th-order linear horizontal diffusion with option for a monotonic ver-
sion including an orographic limiter. Rayleigh damping in upper layers. 2-d divergence damping
and off-centering in the vertical in split time steps.

Initial and Boundary Conditions

Initial Conditions — Interpolated initial data from various coarse-grid driving models (ICON
(and former GME), ECMWEF, COSMO-Model) or from the continuous data assimilation stream
(see below). Option for user-specified idealized initial fields.

Lateral Boundary Conditions — 1-way nesting by Davies-type lateral boundary formula-
tion. Data from several coarse-grid models can be processed (ICON (and former GME), IFS,
COSMO-Model). Option for periodic boundary conditions.

Top Boundary Conditions — Options for rigid lid condition and Rayleigh damping layer.

Initialization — Digital-filter initialization of unbalanced initial states (Lynch et al. (1997))
with options for adiabatic and diabatic initialization.

Physical Parameterizations

Subgrid-Scale Turbulence — Prognostic turbulent kinetic energy closure at level 2.5 in-
cluding effects from subgrid-scale condensation and from thermal circulations. Option for a
diagnostic second order K-closure of hierarchy level 2 for vertical turbulent fluxes (not ported
to the blocked data structure). Option for calculation of horizontal turbulent diffusion in terrain
following coordinates (3D Turbulence; tested in artificial setups).

Surface Layer Parameterization — A Surface layer scheme (based on turbulent kinetic
energy) including a laminar-turbulent roughness layer. Option for a stability-dependent drag-
law formulation of momentum, heat and moisture fluxes according to similarity theory This
option has not been ported to the blocked data structure. (Louis (1979)).
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Data

Grid-Scale Clouds and Precipitation — Cloud water condensation and evaporation by sat-
uration adjustment. Precipitation formation by a bulk microphysics parameterization including
water vapour, cloud water, cloud ice, rain and snow with 3D transport for the precipitating
phases. Option for a new bulk scheme including graupel. Option for a simpler column equilib-
rium scheme.

Subgrid-Scale Clouds — Subgrid-scale cloudiness is interpreted by an empirical function
depending on relative humidity and height. A corresponding cloud water content is also inter-
preted. Option for a statistical subgrid-scale cloud diagnostic for turbulence. This option has
not been ported to the blocked data structure.

Moist Convection — Tiedtke (1989) mass-flux convection scheme with equilibrium closure
based on moisture convergence. Option for the current IFS Tiedtke-Bechtold convection scheme.

Shallow Convection — Reduced Tiedtke scheme for shallow convection only.

Radiation — § two-stream radiation scheme after Ritter and Geleyn (1992) short and longwave
fluxes (employing eight spectral intervals); full cloud-radiation feedback.

Soil Model — Multi-layer version of the former two-layer soil model after Jacobsen and Heise
(1982) based on the direct numerical solution of the heat conduction equation. Snow and
interception storage are included.

Fresh-Water Lake Parameterization — Two-layer bulk model after Mironov (2008) to pre-
dict the vertical temperature structure and mixing conditions in fresh-water lakes of various
depths.

Sea-Ice Scheme — Parameterization of thermodynamic processes (without rheology) after
Mironov and Ritter (2004). The scheme basically computes the energy balance at the iceAAZs
surface, using one layer of sea ice.

Terrain and Surface Data — All external parameters of the model are available at various
resolutions for a pre-defined region covering Europe. For other regions or grid-spacings, the
external parameter file can be generated by a preprocessor program using high-resolution global
data sets.

Assimilation

Former Method — Continuous four-dimensional data assimilation based on observation nudg-
ing (Schraff (1996), Schraff (1997)), with lateral spreading of upper-air observation increments
along horizontal surfaces. Explicit balancing by a hydrostatic temperature correction for sur-
face pressure updates, a geostrophic wind correction, and a hydrostatic upper-air pressure
correction.

Actual Method — Ensemble data assimilation based on the LETKF (Local Ensemble Trans-
form Kalman Filter) (Schraff et al. (2016))

Assimilated Atmospheric Observations — Radiosonde (wind, temperature, humidity), air-
craft (wind, temperature), wind profiler (wind), and surface-level data (SYNOP, SHIP, BUOY:
pressure, wind, humidity). Optionally RASS (temperature), radar VAD wind, and ground-based
GPS (integrated water vapour) data. Surface-level temperature is used for the soil moisture
analysis only.

Radar derived rain rates — Assimilation of near surface rain rates based on latent heat
nudging (Stephan et al. (2008)). It locally adjusts the three-dimensional thermodynamical field
of the model in such a way that the modelled precipitation rates should resemble the observed
ones.

Surface and Soil Fields — Additional two-dimensional intermittent analysis:
- Soil Moisture Analysis — Daily adjustment of soil moisture by a variational method
(Hess (2001)) in order to improve 2-m temperature forecasts; use of a Kalman-Filter-like
background weighting.

Section 1: Overview on the Model System Part | — Dynamics and Numerics 5.05



1.3 Single Precision Version 7

- Sea Surface Temperature Analysis — Daily Cressman-type correction, and blending
with global analysis. Use of external sea ice cover analysis.

- Snow Depth Analysis — 6-hourly analysis by weighted averaging of snow depth obser-
vations, and use of snowfall data and predicted snow depth.

Code and Parallelization
- Code Structure — Modular code structure using standard Fortran constructs.

- Parallelization — The parallelization is done by horizontal domain decomposition using a
soft-coded gridline halo (2 lines for Leapfrog, 3 for the Runge-Kutta scheme). The Message
Passing Interface software (MPI) is used for message passing on distributed memory machines.

- Compilation of the Code — For all programs a Makefile is provided for the compilation which
is invoked by the Unix make command. Two files are belonging to the Makefile: ObjFiles is a
list of files that have to be compiled and ObjDependencies contains all file dependencies. In
addition it reads the file Fopts, which has to be adapted by the user to specify the compiler,
compiler options and necessary libraries to link.

- Portability — The model can be easily ported to various platforms; current applications are on
conventional scalar machines (UNIX workstations, LINUX and Windows-NT PCs), on vector
computers (NEC SX series) and MPP machines (CRAY, IBM, SGI and others).

- Model Geometry — 3-d, 2-d and 1-d model configurations. Metrical terms can be adjusted
to represent tangential Cartesian geometry with constant or zero Coriolis parameter.

1.3 Single Precision Version

From the beginning of the development, the COSMO-Model had been designed to be able
to run in both precisions: single and double precision. Therefore, the real variables are
all defined using a KIND-parameter, named wp (means: working precision) in the mod-
ule kind_parameters.f90 (earlier, this KIND-parameter was named ireals). Other KIND-
parameters are sp (for single precision) and dp (for double precision). Before compiling the
model, the user has to decide whether wp will be set to sp or to dp. This can be done with
the compiler pragma -DSINGLEPRECISION. If this pragma is set, single precision will be used,
otherwise double precision.

But in the first years of the COSMO-Model, only the double precision version was developed
and tested, nobody ever used or tried a single precision run.

But single precision programs run faster on computers, because of less memory traffic, there-
fore MeteoSwiss tested to run the COSMO-Model also in single precision. Which did not
work in the first instance. Some effort had to be put in adapting the model to work for single
precision.

The main changes are:
e Epsilons, which are used in comparisons or to make divisions safe, are adapted to

work in both precisions. Variables repsilon and rprecision have been introduced in
module data_constants.f90.

e New variables imp_single and imp_double are added to specify an appropriate MPI
data type.
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8 1.4 Organization of the Documentation

e To avoid automatic conversions by the compiler, all (!) real constants (as 2.0, 0.5,
etc.) are now written with the kind parameter as suffix: 2.0_wp, 0.5_wp, etc.). Further
developments should follow this rule!

e The pragma SINGLEPRECISION is now used to choose single precision for the COSMO-
Model during compilation. If it is not set, double precision is used.

It turned out, that the radiation cannot be run in single precision (at least the routines
coe_th, inv_th, coe_so, inv_so). Therefore it was decided to run the subroutine fesft
and all routines called below in double precision. The necessary variables are defined with
the KIND-parameter dp.

1.4 Organization of the Documentation

For the documentation of the model we follow closely the Furopean Standards for Writing and
Documenting Fxchangeable Fortran 90-Code. These standards provide a framework for the
use of Fortran-90 in European meteorological organizations and weather services and thereby
facilitate the exchange of code between these centres. According to these standards, the
model documentation is split into two categories: external documentation (outside the code)
and internal documentation (inside the code). The model provides extensive documentation
within the codes of the subroutines. This is in form of procedure headers, section comments
and other comments. The external documentation is split into seven parts, which are listed
in Table 1.2.

Table 1.2: COSMO Documentation: A Description of the Nonhydrostatic Regional COSMO-
Model

Part I Dynamics and Numerics

Part I1: Physical Parameterization

Part III: | Data Assimilation

Part IV: | Special Components and Implementation Details

Part V: Preprocessing: Initial and Boundary Data for the
COSMO-Model

Part VI: | Model Output and Data Formats for I/0O
Part VII: | User’s Guide

Parts I - III form the scientific documentation, which provides information about the theo-
retical and numerical formulation of the model, the parameterization of physical processes
and the four-dimensional data assimilation. The scientific documentation is independent of
(i.e. does not refer to) the code itself. Part IV will describe the particular implementation
of the methods and algorithms as presented in Parts I - III, including information on the
basic code design and on the strategy for parallelization using the MPI library for message
passing on distributed memory machines (not available yet). The generation of initial and
boundary conditions from coarse grid driving models is described in Part V. This part is a
description of the interpolation procedures and algorithms used (not yet complete) as well
as a User’s Guide for the interpolation program INT2LM. In Part VI we give a description
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1.4 Organization of the Documentation 9

of the data formats, which can be used in the COSMO-Model, and describe the output
from the model and from data assimilation. Finally, the User’s Guide of the COSMO-Model
provides information on code access and how to install, compile, configure and run the
model. The User’s Guide contains also a detailed description of various control parameters
in the model input file (in NAMELIST format) which allow for a flexible model set-up for
various applications. All parts of the documentation are available at the COSMO web-site
(http://www.cosmo-model.org/content/model/documentation/core/default.htm).
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Section 2

The Governing Equations

Starting from first principles, the governing thermo-hydrodynamical equations of the LM are
derived in Section 3.1. This basic set of equations comprises prognostic Fulerian equations
for momentum, heat, total mass, mass of water substance and the equation of state. The
impact of turbulent motions on the nonresolvable scales is taken into account by Reynolds
averaging (Section 3.2). In Section 3.3 the set of equations is written in spherical coordinates
using some metrical simplifications. A thermodynamic model base state is introduced as
described in Section 3.4. The equations are then transformed to a nonorthogonal coordinate
system using a generalized terrain following height coordinate (Section 3.5). The resulting
set of model equations is finally summarized in Section 3.6.

2.1 Basic Dynamic Equations

To arrive at a suitable mathematical description of atmospheric flow, the atmosphere is
considered as a multicomponent continuum which is constituted by dry air, water vapour,
liquid water and water in solid state forming an ideal mixture. The liquid and solid forms
of water may be further subdivided to represent various categories of water substance in the
atmosphere as cloud droplets, raindrops, pristine ice crystals, rimed aggregates of crystals,
graupel, hail, etc.

The system is subject to the external impact due to gravity and Coriolis forces. Internally,
various processes due to heat, mass and momentum transfer as well as phase changes of
water may take place. The basic conservation laws for momentum, mass and heat are then
represented by the following budget equations:

d

pdf‘tf = —Vp+pg—20x(pv) -V t (2.1)
dp

@ _ g, 2.2
7 pV - v (2.2)
dq”

Yo .y 2.3
P VeIt 4+ (2.3)
de

pa = —pVV—V(Je+R)+€ (24)
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2.1 Basic Dynamic Equations 11

The index x represents a specific constituent of the mixture. We use

r=d for dry air,

T=v for water vapour,

x=1 for liquid water and

r=f for water in the solid (frozen) state, i.e. ice.

Generally, bold symbols are used to represent vectors and bold underlined symbols indicate
dyadic tensors. The scalar and the vector product are indicated by - and X, respectively.
In Egs. (2.1) - (2.4) and the subsequent sections, the following symbols and definitions are
used:

t time

D pressure

T temperature

o partial density of mixture constituent x
p=,p" total density of the air mixture

qt =p"/p mass fraction (specific content) of constituent x
v=p! specific volume

e specific internal energy

h=e-+pv specific enthalpy

v barycentric velocity (relative to the rotating earth)
I” sources/sinks of constituent x

J® diffusion flux of constituent x

Je diffusion flux of internal energy (heat flux)
R flux density of solar and thermal radiation
t stress tensor due to viscosity

e=—t--Vv kinetic energy dissipation due to viscosity
Q constant angular velocity of earth rotation
g apparent acceleration of gravity

d/dt =0/0t+v -V  total (Lagrangian) time derivative operator
/0t local (Eulerian) time derivative operator
\Y gradient (Nabla) operator

The set of equations (2.1)-(2.4) has been written in advection form using the Lagrangian
time derivative for a more compact representation of the basic conservation laws. Because
total mass is conserved, the rate of change of any mass specific quantity v can be formulated
by

dy _ 9(py)

dt ot
using the budget operator d(p...)/0t + V - (pv...). With (2.5) the prognostic equations can
easily be transformed to flux (or budget) form, if required.

+ V- (pvip), (2.5)

The source-sink terms I* of the constituents refer to processes whereby water undergoes
phase changes, and to processes by which water is generated and lost in chemical reactions
with the components of dry air. For mesoscale dynamical applications, chemical changes in
water mass can be neglected. We thus set I¢ = 0 in the budget equation for dry air. Then,
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12 2.1 Basic Dynamic Equations

from the conservation of total mass and the definition of the mass fraction ¢%, the following
relations hold:

Yo = ¢"+¢"+d+qd =1
Y o= 3+ + 3+ 3 =0 (2.6)

Norro= 1'+I'+ IV =o.
x

On condition that dry air and water vapour behave like ideal gases and that liquid water
and ice are incompressible substances, the equation of state for a moist atmosphere reads

_ T
v=pt=(Rag" + qu”)g + g + v, (2.7)

where Ry and R, are, respectively, the gas constants for dry air and water vapour; v; is the
partial specific volume of water, vy is the partial specific volume of ice. For meteorological
applications, liquid water and ice contribute very little to the total specific volume because
v, and vy as well as ¢/ and ¢/ are much smaller than 1 ( (vi¢' + vsgf)/v ~ 1075). The
neglection of the term v;q' + quf in Eq. (2.7) corresponds also to the usual definition of
pressure as the sum of the partial pressures of the gaseous constituents of the mixture. Using
this approximation, the equation of state is given by

p = p(Raq® + Ruq")T
= pRy{1+ (Ry/Ry—1)¢" — ¢ — ¢/}T (2.8)
= deTm

where T, is the generalized virtual temperature
T, ={l+ (Ry/Rq—1)¢" —q¢' — ¢} T. (2.9)

In case of ¢ = 0 and ¢/ = 0, (2.9) becomes identical to the traditional definition of virtual
temperature.

In the basic set of equations, i.e. (2.1)-(2.4) and the equation of state (2.8), the temperature
is a diagnostic variable that has to be determined from the internal energy e or, alternatively,
from the enthalpy A if the budget equation for h

dh dp

—=—-V-J R 2.10

P = o (Je+R)+e (2.10)

is used instead of Eq. (2.4). For numerical modelling purposes, however, it is more conve-
nient to apply directly a prognostic equation for temperature which we will refer to as the
heat equation. The heat equation is obtained from (2.10) by an expansion of the enthalpy
hT,p,q") =, hzq¢” according to

dh (0N AT [Oh\  dp onN  dg®
_ w5 aa” 2.11
dt (6T>p’qac dt + <8p)T7qI dt + = <3q$ >T,p dt ( )

The partial specific enthalpies h, are given by

hy = hY + cpe (T — Tp), (2.12)
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where Ty = 273.15K, hY is the specific enthalpy of constituent z at reference temperature
Ty and ¢, is the specific heat of constituent x at constant pressure. The small variation of
h; and hy with pressure has been neglected in (2.12). Using (2.12) yields

oh .
(W)p,qx - Cp:zz:cmq

(8h> — 0
8]) T,q*

8h> .

o = hy=h0+ (T - Tp),
<8q:1: Tp P ( O)

for the partial derivatives in (2.11) and from the budget equation (2.10) the heat equation
results in the form

dr  d
pe—r = d—f AT 16T =V (T, 4+ R) = 0 d” - VT + 2. (2.13)

Js is the reduced (or sensible) heat flux, Iy and lg are, respectively, the latent heat of
vapourization and the latent heat of sublimation. The difference of lg and [y is the latent
heat of fusion, (. These are defined by

Jo = Je=) hJ?

lv. = Ly — (cp — cpo)(T —Tp)
(cpf — cpo) (T —Tp) (2.14)
(cps — ) (T — To),

ls = Ls—
lF = LFf

where Ly = —(h) — hY), Lg = —(h(} —hd) and Ly = Lg — Ly are, respectively, the values
of ly, ls and [ at the reference temperature Tj.

In comparison with the budget equation for enthalpy, the heat equation (2.13) reveals clearly
the impact of phase transitions of water on the temperature. Additionally, the sensible heat
flux Jg, i.e. the heat flux reduced by the heat transported by the diffusion fluxes occurs
instead of J.. The term ) ¢y, J* - VT takes the impact of heat advection by the diffusion
fluxes into account.

In order to calculate the temperature from the heat equation (2.13), the total derivative
of pressure has to be determined. In hydrostatic models using pressure or a pressure based
function as vertical coordinate, dp/dt is related to the contravariant vertical velocity and
can be diagnosed from the continuity equation. In case of nonhydrostatic models using a
vertical coordinate based on geometrical height, however, dp/dt has to be calculated from
a separate prognostic equation. This pressure tendency equation is obtained by taking the
material derivative of the equation of state (2.8)

dp _pdp o odo

dT
== RyT R,(1 — 2.15
where « abbreviates the moisture term
a=(Ry/Ri—1)¢" —q' — ¢’ (2.16)

in the definition of virtual temperature, i.e. T, = (1+ «)T. Inserting the continuity equation
(2.2), the budget equations (2.3) for the moisture constituents and the heat equation (2.13)
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14 2.1 Basic Dynamic Equations

in Eq. (2.15) yields
Ry | d R
{1—(1+a)d}p:—pv-v+(1+a)th+Qm. (2.17)
cp | dt Cp
@y, represents the diabatic heat production per unit volume of air,

Qn=WI'+1sI' =V - (J,+R) =D ¢, J" VT +e¢, (2.18)

and @Q,, describes the impact of changes in the concentrations of the humidity constituents
on the pressure tendency:

da

m = pR4T
Q pRaT—,

To arrive at a more compact form of the pressure tendency equation, we reformulate the
term (14 a)Ry4 in (2.17) as

(14 a)Rg = Raq® + Ry’ = ¢, — ¢y, (2.20)

= —R,T(I'+ 1) - R, TV -J" — RyTV - J¢. (2.19)

where ¢, = Y, cyzq” is the specific heat of moist air at constant volume. For the liquid
and solid forms of water there is no difference in the specific heat at constant pressure and
constant volume (due to incompressibility of water and ice), i.e. ¢,y = ¢ and cyp = cpy.
For the specific heat of dry air and vapour at constant volume the relations c,q = c,q — Rq
and ¢y, = ¢py — Ry hold (due to their behaviour as ideal gases). With (2.20) the pressure
tendency equation can be written as

% = —(cp/co)PV - v+ (cp/co — 1)Qn + (cp/cv)Q@m- (2.21)

Thus, when the heat equation in the form (2.13) is used we have to replace the continuity
equation by (2.21) to calculate the pressure tendency. Thereby, the total density becomes a
diagnostic variable which is obtained from the equation of state. If, on the other hand, we
wish to retain the continuity equation in the basic set of equations, an alternate form of the
heat equation has to be applied. This form can be derived by direct expansion of the budget
equation for internal energy or, equivalently, by inserting (2.21) in (2.13):

—pV v+ (ly — RD)I' + (Is — R,T)IY =V - (Js + R)

PCy at

—> ped” VT = R/TV - J" = RV - J¢ + ¢, (2.22)

Using the heat equation in the form (2.22), the continuity equation can be applied to predict
total density. The pressure is then a diagnostic variable to be calculated from the equation of
state. Thus two alternative sets of basic equations can be formulated which are summarized
below.

o Set I

dv

Py = TVptpg =20 x(pv) -Vt
dp
o —(ep/co)pV - v+ (¢ep/co = 1)Qn + (cp/cv)@m
dr dp

Popgr = Qn (2.23)

d €T

p% - V.4

p = p{Re(1+ )T} "
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2.1 Basic Dynamic Equations 15

e Set II

P W = Vptog—20x (pv) - V-t

% = —pV-v
pcv% = —pV-v+Qu+Qn (2.24)
p% = V. J"+I°

p = pRs(1+a)T.

Provided that the phase transition rates I' and I/, the diffusion fluxes JV, J* and J/, the
sensible heat flux J,, the radiation flux R and the viscoseous momentum stress t are known,
both Set I and Set II form a closed set of equations to predict the variables of state, i.e. v,
T, p, p and the mass concentrations ¢, ¢' and ¢7.

For numerical modelling of nonhydrostatic compressible atmospheric flow the Set II of equa-
tions offers the advantage of a direct use of the continuity equation. Thus, by applying
suitable numerical algorithms, it is easy to achieve exact conservation of total mass. How-
ever, this set has only rarely been used in practice. One - and may be the only - example
is the pioneering work of Miiller (1974) who based his two-dimensional model of deep moist
convection on the Set II type of equations.

By the numerical solution of Set I, on the other hand, exact mass conservation is not guaran-
teed but depends largely on the accuracy of the numerical algorithms. Nevertheless, almost
all nonhydrostatic compressible models are based on Set I, which is frequently rewritten
using potential temperature and dimensionless pressure as dependent variables instead of
T and p (e.g. Klemp and Wilhelmson (1978). The reason for this preference are special,
numerical efficient schemes for the treatment of sound waves which propagate at high speed
and require small time steps for stable integration. These schemes can be easily applied in
the Set I type of equations but become untractable with Set II.

Besides the lack of exact mass conservation an additional disadvantage of Set I is the oc-
currence of the diabatic heating rate ()5, and the moisture source term @), in the pressure
tendency equation. These terms are relevant for a correct description of the thermodynam-
ical feedbacks of diabatic heating and the representation of thermal compression waves but
frequently cause numerical problems. Thus, these terms are usually neglected in the pressure
equation. Omitting @, and Q,,, however, is equivalent to introducing artificial source and
sink terms in the continuity equation. The physical error caused by this simplification is
probably small in case of applications to cloud or boundary layer modelling studies with
very short simulation times. But significant problems may arise in case of applications to
short range numerical weather prediction (NWP) with integration times up to 72 hours and
in the associated data assimilation cycle.

The present version of LM is also based on the Set I of equations. In the plannings for future
developments we consider to use Set II alternatively as basic equations for a later version of
the model.
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2.2 Averaging the Basic Equations

The set (2.23) of basic equations is defined in terms of differential operators and is thus, in a
formal mathematical sense, only valid in the limit when the time interval §¢ and the spatial
increments dz, dy and dz (defining a volume element §V = dxdydz) approach zero. For a
physically meaningful interpretation, however, the volume elements must not be infinitesimal
points, but have to be large enough to contain a sufficiently large number of molecules to
apply statistical thermodynamics. In other words, the spatial increments must be much larger
than spacing between molecules but much smaller than macroscopic dimensions so that the
differential terms do not vary within 6t and dV. In the atmosphere, these criteria limit the
direct application of Egs.(2.23) to space scales on the order of about 1 cm and to time scales
of about a second.

2.2.1 Dynamic Equations for Turbulent Flow

Mesoscale meteorological circulations have horizontal scales ranging from some 100 m up
to 10 or 100 km and vertical scales up to 10 km. Obviously, the explicit simulation of such
atmospheric flows with a numerical model using grid spacings on the order of 1 cm will never
be possible. Therefore, it is necessary to average the basic equations over specified space and
time scales. In the context of numerical simulations, these scales can be identified with the
grid spacings and the time step of the numerical model. For a specified mesoscale circulation,
the smaller the grid intervals, the better the numerical resolution of the flow.

Formally, averaging has to be done by summing up a large number of realizations of a specific
ensemble of flows. In practice, we assume tacitly that the intervals for averaging are large
enough to allow for scale separation, i.e. it is assumed that the average or mean value of a
variable of the flow varies much more slowly in time and space than do the deviations from
the average. The ensemble average can then be replaced by an integration over a specific
time interval and space domain.

By performing this integration, any variable 1 of the flow can be decomposed according to
b=F+, (2.25)
where

) = N},At//wdtdv (2.26)

represents the average of ¢ over the finite time interval At and the volume element AV
formed by the grid spacings Az, Ay and Az. By Reynolds convention, the average of the
deviations v is zero:

¥ =0. (2.27)
Apart from the decomposition (2.25) using the Reynolds average (2.26), we also use the
decomposition R
¥=0+ (2.28)
with o .
b=pblp  and  § =0, (2.29)

where T,/ZJ\ is the mass weighted average (Hesselberg average) of ¢ and ¢” is the deviation of
1 from its mass weighted mean value. The mass weighted average is used for velocity and
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2.2 Averaging the Basic Equations 17

for mass specific variables of state as enthalpy h, internal energy e and the concentrations
q* (see van Mieghem (1973)) for the choice of a suitable averaging operator in atmospheric
turbulence theory).

The mean values 1) and zz are also called the grid scale values of ¥ which describe the
slowly varying resolvable part of the flow. The deviations ¢ and 1" from the corresponding
mean value are often called the subgrid scale perturbations which describe the strongly
fluctuating, nonresolvable part of the flow. In the budget equations, the feedback of the
subgrid scale fluctuations on the resolvable flow is expressed by additional terms in the form
of perturbation correlations resulting from averaging the budget equations. These correlation
products represent the mean contribution of transports induced by the nonresolvable motions
and are of crucial importance in numerical modelling. For any practical application, they have
to be parameterized, i.e., they have to be formulated in terms of the grid scale variables.

If the grid spacings defining the domain AV for averaging are not too large, i.e. on the
order of some 100 m, the fluctuating part of the flow can be identified with purely turbulent
motions. Turbulent flows typically show stochastic characteristics and statistical theories can
be used to describe them. However, the larger the horizontal grid spacings become, the more
additional processes showing organized structures of increasing complexity are included in
the subgrid scale fluxes. For grid spacings of the order of 10 km, e.g., shallow and deep moist
convection have to be parameterized and for grid intervals typical for global modelling even
mesoscale circulations on scales of about 100 km are not resolved.

Applying the averaging operator (2.26) to the budget equations for momentum (2.1), to-
tal mass (2.2), mass of the water constituents (2.3) and enthalpy (2.10) yields prognostic
equations for the corresponding mean values:

P = —Vp+pg—22x (pv) - V- (t+T) (2.30)
dp ~
- v, 2.31
i pV -V (2.31)
dF _ _
P = V- AE) 4T (2.32)
dh dp — =
r = £+Bh—v-(Je+Fh+R)+€. (2.33)

The operator c?/ dt assigns the Lagrangian time derivative with respect to the mass weighted
barycentric velocity v, i.e., c/l\/dt = 0/0t + v - V, which is related to the budget operator
according to N R

ﬁ% = a(gzm + V- (pvy). (2.34)
Eq. (2.34) can be used to transform (2.30)-(2.33) from advection to flux form. In addition
to the averages of the molecular fluxes and source terms the following correlation products
describing subgrid scale transport processes occur in the set of equations:

T = pv''v” turbulent flux of momentum (the Reynolds stress tensor) ;
F* = pv'¢* turbulent flux of constituent z (3-, F* =0) ;
Fp=pv'h turbulent flux of enthalpy ;
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18 2.2 Averaging the Basic Equations

B, =v"-Vp source term of enthalpy due to buoyant heat and
moisture fluxes.

The term B, = v” - Vp in Eq. (2.33) can be interpreted as the work of the turbulent velocity
fluctuations done against the pressure gradient force. Because the dominating part of Vp
is its hydrostatic component, this term is closely related to the buoyant heat and moisture
fluxes. An approximate form of the buoyancy term By, is given below.

In contrast to the budget equations, the averaging operator is not applied to thermodynamic
equations of state. Here we use the diagnostic hypothesis that linear and nonlinear thermo-
dynamic relations between the variables of state hold for their mean values in the same way
as on the molecular scale Herbert (1975). Thus, the equation of state for the turbulent scales
of motion reads

3
\

= PRa{1+ (Ry/Rq—1)q" — ¢! — ¢/}T (2.35)
= pRyT,.

The heat equation is derived from the prognostic equation (2.33) for mean enthalpy using
the diagnostic relation

Po- SR
x
with k. = B+ cpu(T — Tp)
for the partial specific enthalpies ﬁ; of the constituents x:

4T dp  —
et = . 2.36
Por gy = a5 T @n (2.36)

The mean diabatic heating @, is given by

On = WI'+IgI7+B,-V T, +H+R)
> ep(JT+F?) - VT +&. (2.37)

l/\; and l; are, respectively, the latent heat of vapourization and of sublimation as defined
by Eq. (2.14) but for the mean value T of temperature. Gy = 3 u Cprq® is the mean value of
specific heat at constant pressure and H assigns the turbulent flux of sensible heat defined
by
H=F, > hF" (2.38)
x

In analogy to the procedure in Section 3.1, the pressure tendency equation is obtained by
taking the material derivative of the equation of state (2.35). By using (2.31), (2.32) and the
heat equation (2.36) we arrive at

dp

= (&)Y -+ (6/6 ~ V@ + (5/5) (2:39)
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where ¢, = >, Cozg® is the mean value of the specific heat at constant volume and the
moisture source term Q,, is defined by
Qm =—R,T(I'+If) — R,TV - (J° + F*) — RGTV - (J4 + F7). (2.40)

The equation of motion (2.30), the budget equations (2.32) for the water constituents, the
heat equation (2.36), the pressure tendency equation (2.40) and the equation of state (2.35)
form a general set to predict the evolution of the mean flow provided that all subgrid scale
processes are parameterized in terms of the grid scale variables v, p, To,f and ¢%. Before we
look at practical simplifications of this set, it is useful to reformulate the sensible heat flux
H and the buoyancy term By, contributing to the mean diabatic heating Qj,.

By inserting the enthalpy in the definition of Fj and neglecting triple correlation products
in the evaluation, it is easy to show that the sensible heat flux defined by (2.38) can be
expressed as a correlation product of the velocity fluctuations and the temperature:

H = ¢,pv'"T = é,pv"T" (2.41)

(since pv/T = 0). The buoyancy term Bj, can be written as

B =pv"-Vinp = Ry(pv'T,) - Vinp

and, by neglecting triple correlations, we finally arrive at the representation (with « from
(2.16) and using (2.20))

By = Ry(1+a&)(pv'T)-VInp+ RyT(Ry/Rq—1)(pv'q") - VInp
—RJT(pv"q' — pv"q]) - VInp,

or
By, = (—¢6)/6H-Vinp (2.42)
+RyT{(Ry/Rq — 1)F* —F' —F/} . VInp.

for By, in terms of the sensible heat flux H and the turbulent fluxes F* of the various water
phases.

This set of hydrodynamical equations for turbulent flow including the heat equation (2.36)
with (2.42) for the buoyancy term has not yet been applied in full form for numerical mod-
elling of mesoscale processes. For practical reasons, numerical models make often use of
simplifications to the basic equations. These assumptions are typically justified with the
scales of motion under consideration, as e.g., the hydrostatic approximation for large and
mesoscale flow or the anelastic approximation for deep convection which filters the meteoro-
logically unimportant sound waves. Another type of approximations is related to the fact that
in the atmosphere air forms a very diluted mixture with respect to the water constituents.
This allows to use an approximate form of the heat equation, which is discussed in the next
Section.

2.2.2 Simplified Thermodynamics

Because the LM is designed to cover a broad range of spatial scales for various applica-
tions, we will not make use of any scale related assumption. Thus, the nonhydrostatic form
of the equations allowing for compressibility will be retained. For simplicity, however, an
approximate form of the heat equations is used. In detail, the following simplifications are
presupposed for LM:
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20 2.2 Averaging the Basic Equations

(a) Treatment of molecular fluzes

Mesoscale flow in the atmosphere is always characterized by a more or less turbulent
state. In general, the turbulent fluxes of momentum, heat and moisture are much larger
than the corresponding molecular fluxes. Thus, all molecular fluxes are neglected ex-
cept for the diffusion fluxes of the liquid and solid forms of water. Due to microphysical
growth processes water drops and ice crystals can become large enough to have a signif-
icant fall velocity relative to the air. This gravitational sedimentation flux is part of the
molecular diffusion flux and must be retained to describe the fallout of precipitation.
Thus, in the basic set of equations we set the viscous stress tensor and the molecular
fluxes of sensible heat and of water vapour to zero and replace the fluxes of water and
ice by the sedimentation fluxes:

t = 0, Js =0, J’ =0,
P! = pg'vh, (2.43)
J ~ plf= quvgﬂ.

=
1

P! and P/ are, respectively, the precipitation fluxes of liquid water and ice. They
depend on the mean fall velocities of the corresponding particles, i.e. their terminal
velocities VZT and v:’;.

(b) Approximations to the heat equation

In the atmosphere, the water constituents contribute very 