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Section 1

Overview on the Model System

1.1 General Remarks

The COSMO-Model is a nonhydrostatic limited-area atmospheric prediction model. It has
been designed for both operational numerical weather prediction (NWP) and various scien-
tific applications on the meso-β and meso-γ scale. The COSMO-Model is based on the prim-
itive thermo-hydrodynamical equations describing compressible flow in a moist atmosphere.
The model equations are formulated in rotated geographical coordinates and a generalized
terrain following height coordinate. A variety of physical processes are taken into account by
parameterization schemes.

Besides the forecast model itself, a number of additional components such as data assimi-
lation, interpolation of boundary conditions from a driving host model, and postprocessing
utilities are required to run the model in NWP-mode, climate mode or for case studies. The
purpose of the Description of the Nonhydrostatic Regional COSMO-Model is to provide a
comprehensive documentation of all components of the system and to inform the user about
code access and how to install, compile, configure and run the model.

The basic version of the COSMO-Model (formerly known as Lokal Modell (LM)) has been
developed at the Deutscher Wetterdienst (DWD). The COSMO-Model and the triangular
mesh global gridpoint model ICON form – together with the corresponding data assimi-
lation schemes – the NWP-system at DWD. The subsequent developments related to the
COSMO-Model have been organized within COSMO, the Consortium for Small-Scale Mod-
eling. COSMO aims at the improvement, maintenance and operational application of a non-
hydrostatic limited-area modeling system, which is now consequently called the COSMO-
Model. The meteorological services participating to COSMO at present are listed in Table
1.1.

For more information about COSMO, we refer to the web-site at www.cosmo-model.org .

The COSMO-Model is available free of charge for scientific and educational purposes, es-
pecially for cooperational projects with COSMO members. However, all users are required
to sign an agreement with a COSMO national meteorological service and to respect cer-
tain conditions and restrictions on code usage. For questions concerning the request and the
agreement, please contact the chairman of the COSMO Steering Committee. In the case of
a planned operational or commercial use of the COSMO-Model package, special regulations

Part I – Dynamics and Numerics 5.05 Section 1: Overview on the Model System

http://www.cosmo-model.org


2 1.1 General Remarks

Table 1.1: COSMO: Participating Meteorological Services

DWD Deutscher Wetterdienst,
Offenbach, Germany

MeteoSwiss Meteo-Schweiz,
Zürich, Switzerland

ITAF-ReMet Ufficio Generale Spazio Aero e Meteorologia,
Roma, Italy

HNMS Hellenic National Meteorological Service,
Athens, Greece

IMGW Institute of Meteorology and Water Management,
Warsaw, Poland

ARPA-SIMC Agenzia Regionale per la Protezione Ambientale del-
lÂť Emilia-Romagna Servizio Idro Meteo Clima
Bologna, Italy

ARPA-Piemonte Agenzia Regionale per la Protezione Ambientale,
Piemonte, Italy

CIRA Centro Italiano Ricerche Aerospaziali,
Italy

ZGeoBW Zentrum für Geoinformationswesen der Bundeswehr,
Euskirchen, Germany

NMA National Meteorological Administration,
Bukarest, Romania

RosHydroMet Hydrometeorological Centre of Russia,
Moscow, Russia

IMS Israel Meteorological Service,
Bet-Dagan, Israel

will apply.

The further development of the modeling system within COSMO is organized in Working
Groups which cover the main research and development activities: data assimilation, nu-
merical aspects, upper air physical aspects, soil and surface physics aspects, interpretation
and applications, verification and case studies, reference version and implementation and
predictability and ensemble methods. In 2005, the COSMO Steering Committee decided to
define Priority Projects with the goal to focus the scientific activities of the COSMO com-
munity on some few key issues and support the permanent improvement of the model. For
contacting the Working Group Coordinators or members of the Working Groups or Priority
Projects, please refer to the COSMO web-site.

The COSMO meteorological services are not equipped to provide extensive support to ex-
ternal users of the model. If technical problems occur with the installation of the model
system or with basic questions how to run the model, questions could be directed via email
to cosmo-support@cosmo-model.org. If further problems occur, please contact the members
of an appropriate Working Group. We try to assist you as well as possible.

The authors of this document recognize that typographical and other errors as well as dis-
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1.2 Basic Model Design and Features 3

crepancies in the code and deficiencies regarding the completeness may be present, and your
assistance in correcting them is appreciated. All comments and suggestions for improvement
or corrections of the documentation and the model code are welcome and may be directed
to the authors.

1.2 Basic Model Design and Features

The nonhydrostatic fully compressible COSMO-Model has been developed to meet high-
resolution regional forecast requirements of weather services and to provide a flexible tool
for various scientific applications on a broad range of spatial scales. When starting with
the development of the COSMO-Model, many NWP-models operated on hydrostatic scales
of motion with grid spacings down to about 10 km and thus lacked the spatial resolution
required to explicitly capture small-scale severe weather events. The COSMO-Model has
been designed for meso-β and meso-γ scales where nonhydrostatic effects begin to play an
essential role in the evolution of atmospheric flows.

By employing 1 to 3 km grid spacing for operational forecasts over a large domain, it is
expected that deep moist convection and the associated feedback mechanisms to the larger
scales of motion can be explicitly resolved. Meso-γ scale NWP-models thus have the princi-
ple potential to overcome the shortcomings resulting from the application of parameterized
convection in current coarse-grid hydrostatic models. In addition, the impact of topography
on the organization of penetrative convection by, e.g. channeling effects, is represented much
more realistically in high resolution nonhydrostatic forecast models.

In the beginning, the operational application of the model within COSMO were mainly on
the meso-β scale using a grid spacing of 7 km. The key issue was an accurate numerical
prediction of near-surface weather conditions, focusing on clouds, fog, frontal precipitation,
and orographically and thermally forced local wind systems. Since April 2007, a meso-γ scale
version is running operationally at DWD by employing a grid spacing of 2.8 km. Applications
with similar resolutions are now run by most COSMO partners. We expect that this will
allow for a direct simulation of severe weather events triggered by deep moist convection,
such as supercell thunderstorms, intense mesoscale convective complexes, prefrontal squall-
line storms and heavy snowfall from wintertime mesocyclones.

The requirements for the data assimilation system for the operational COSMO-Model are
mainly determined by the very high resolution of the model and by the task to employ it
also for nowcasting purposes in the future. Hence, detailed high-resolution analyses have to
be able to be produced frequently and quickly, and this requires a thorough use of asynoptic
and high-frequency observations such as aircraft data and remote sensing data. Since both
3-dimensional and 4-dimensional variational methods tend to be less appropriate for this
purpose, a scheme based on the observation nudging technique has been chosen for data
assimilation from the beginning of the development. But in March 2017 the nudging scheme
has been replaced by a new, more modern, ensemble-based method, called KENDA: Km-
scale ENsemble Data Assimilation. Note, that KENDA, unlike the nudging scheme, is not
available within the source code of the COSMO-Model.

Besides the operational application, the COSMO-Model provides a nonhydrostatic model-
ing framework for various scientific and technical purposes. Examples are applications of
the model to large-eddy simulations, cloud resolving simulations, studies on orographic flow
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4 1.2 Basic Model Design and Features

systems and storm dynamics, development and validation of large-scale parameterization
schemes by fine-scale modeling, and tests of computational strategies and numerical tech-
niques. For these types of studies, the model should be applicable to both real data cases
and artificial cases using idealized test data. Moreover, the model has been adapted by other
communities for applications in climate mode (CCLM) and / or running an online coupled
module for aerosols and reactive trace gases (ART).

Such a wide range of applications imposes a number of requirements for the physical, nu-
merical and technical design of the model. The main design requirements are:

(i) use of nonhydrostatic, compressible dynamical equations to avoid restrictions on the
spatial scales and the domain size, and application of an efficient numerical method of
solution;

(ii) provision of a comprehensive physics package to cover adequately the spatial scales
of application, and provision of high-resolution data sets for all external parameters
required by the parameterization schemes;

(iii) flexible choice of initial and boundary conditions to accommodate both real data cases
and idealized initial states, and use of a mesh-refinement technique to focus on regions
of interest and to handle multi-scale phenomena;

(iv) use of a high-resolution analysis method capable of assimilating high-frequency asyn-
optic data and remote sensing data;

(v) use of pure Fortran constructs to render the code portable among a variety of com-
puter systems, and application of the standard MPI-software for message passing on
distributed memory machines to accommodate broad classes of parallel computers.

The development of the COSMO-Model was organized along these basic guidelines. How-
ever, not all of the requirements are fully implemented, and development work and further
improvement is an ongoing task. The main features and characteristics of the present release
are summarized below.

COSMO-ICON Physics

In the last months, several physical packages have been unified with their counterpart in
ICON, to reduce the maintenance work for having two different versions of one parameteri-
zation. We refer to this developments as the COSMO-ICON Physics.

A major technical change to implement this unification was, to use the ICON data structure
for the variables in the physics. This structure does not reflect a horizontal field with two
dimensions, but collects the grid points in a vector (or a block). This is in contrast to the
COSMO-Model, which uses the (i,j)-structure for horizontal fields.

This blocked data structure is explained in more detail in Appendix A of Part II, the Physical
Parameterizations.

Not all options for the parameterizations have been ported to the blocked data structure.
More details are given below in the Physical Parameterizations.

Section 1: Overview on the Model System Part I – Dynamics and Numerics 5.05



1.2 Basic Model Design and Features 5

Dynamics
- Model Equations – Nonhydrostatic, full compressible hydro-thermodynamical equations in
advection form. Subtraction of a hydrostatic base state at rest.

- Prognostic Variables – Horizontal and vertical Cartesian wind components, pressure per-
turbation, temperature, specific humidity, cloud water content. Optionally: cloud ice content,
turbulent kinetic energy, specific water content of rain, snow and graupel.

- Diagnostic Variables – Total air density, precipitation fluxes of rain and snow.

- Coordinate System – Generalized terrain-following height coordinate with rotated geograph-
ical coordinates and user defined grid stretching in the vertical. Options for (i) base-state
pressure based height coordinate, (ii) Gal-Chen height coordinate and (iii) exponential height
coordinate (SLEVE) according to Schär et al. (2002).

Numerics
- Grid Structure – Arakawa C-grid, Lorenz vertical grid staggering.

- Spatial Discretization – Second-order finite differences. For the two time-level scheme also
1st and 3rd to 6th order horizontal advection (default: 5th order). Option for explicit higher
order vertical advection.

- Time Integration – Two time-level 2nd and 3rd order Runge-Kutta split-explicit scheme after
Wicker and Skamarock (2002) and a TVD-variant (Total Variation Diminishing) of a 3rd order
Runge-Kutta split-explicit scheme. Option for a second-order leapfrog HE-VI (horizontally
explicit, vertically implicit) time-split integration scheme, including extensions proposed by
Skamarock and Klemp (1992). Option for a three time-level 3-d semi-implicit scheme (Thomas
et al. (2000)) based on the leapfrog scheme.

- Numerical Smoothing – 4th-order linear horizontal diffusion with option for a monotonic ver-
sion including an orographic limiter. Rayleigh damping in upper layers. 2-d divergence damping
and off-centering in the vertical in split time steps.

Initial and Boundary Conditions
- Initial Conditions – Interpolated initial data from various coarse-grid driving models (ICON
(and former GME), ECMWF, COSMO-Model) or from the continuous data assimilation stream
(see below). Option for user-specified idealized initial fields.

- Lateral Boundary Conditions – 1-way nesting by Davies-type lateral boundary formula-
tion. Data from several coarse-grid models can be processed (ICON (and former GME), IFS,
COSMO-Model). Option for periodic boundary conditions.

- Top Boundary Conditions – Options for rigid lid condition and Rayleigh damping layer.

- Initialization – Digital-filter initialization of unbalanced initial states (Lynch et al. (1997))
with options for adiabatic and diabatic initialization.

Physical Parameterizations
- Subgrid-Scale Turbulence – Prognostic turbulent kinetic energy closure at level 2.5 in-
cluding effects from subgrid-scale condensation and from thermal circulations. Option for a
diagnostic second order K-closure of hierarchy level 2 for vertical turbulent fluxes (not ported
to the blocked data structure). Option for calculation of horizontal turbulent diffusion in terrain
following coordinates (3D Turbulence; tested in artificial setups).

- Surface Layer Parameterization – A Surface layer scheme (based on turbulent kinetic
energy) including a laminar-turbulent roughness layer. Option for a stability-dependent drag-
law formulation of momentum, heat and moisture fluxes according to similarity theory This
option has not been ported to the blocked data structure. (Louis (1979)).
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6 1.2 Basic Model Design and Features

- Grid-Scale Clouds and Precipitation – Cloud water condensation and evaporation by sat-
uration adjustment. Precipitation formation by a bulk microphysics parameterization including
water vapour, cloud water, cloud ice, rain and snow with 3D transport for the precipitating
phases. Option for a new bulk scheme including graupel. Option for a simpler column equilib-
rium scheme.

- Subgrid-Scale Clouds – Subgrid-scale cloudiness is interpreted by an empirical function
depending on relative humidity and height. A corresponding cloud water content is also inter-
preted. Option for a statistical subgrid-scale cloud diagnostic for turbulence. This option has
not been ported to the blocked data structure.

- Moist Convection – Tiedtke (1989) mass-flux convection scheme with equilibrium closure
based on moisture convergence. Option for the current IFS Tiedtke-Bechtold convection scheme.

- Shallow Convection – Reduced Tiedtke scheme for shallow convection only.

- Radiation – δ two-stream radiation scheme after Ritter and Geleyn (1992) short and longwave
fluxes (employing eight spectral intervals); full cloud-radiation feedback.

- Soil Model – Multi-layer version of the former two-layer soil model after Jacobsen and Heise
(1982) based on the direct numerical solution of the heat conduction equation. Snow and
interception storage are included.

- Fresh-Water Lake Parameterization – Two-layer bulk model after Mironov (2008) to pre-
dict the vertical temperature structure and mixing conditions in fresh-water lakes of various
depths.

- Sea-Ice Scheme – Parameterization of thermodynamic processes (without rheology) after
Mironov and Ritter (2004). The scheme basically computes the energy balance at the iceâĂŹs
surface, using one layer of sea ice.

- Terrain and Surface Data – All external parameters of the model are available at various
resolutions for a pre-defined region covering Europe. For other regions or grid-spacings, the
external parameter file can be generated by a preprocessor program using high-resolution global
data sets.

Data Assimilation
- Former Method – Continuous four-dimensional data assimilation based on observation nudg-
ing (Schraff (1996), Schraff (1997)), with lateral spreading of upper-air observation increments
along horizontal surfaces. Explicit balancing by a hydrostatic temperature correction for sur-
face pressure updates, a geostrophic wind correction, and a hydrostatic upper-air pressure
correction.

- Actual Method – Ensemble data assimilation based on the LETKF (Local Ensemble Trans-
form Kalman Filter) (Schraff et al. (2016))

- Assimilated Atmospheric Observations – Radiosonde (wind, temperature, humidity), air-
craft (wind, temperature), wind profiler (wind), and surface-level data (SYNOP, SHIP, BUOY:
pressure, wind, humidity). Optionally RASS (temperature), radar VAD wind, and ground-based
GPS (integrated water vapour) data. Surface-level temperature is used for the soil moisture
analysis only.

- Radar derived rain rates – Assimilation of near surface rain rates based on latent heat
nudging (Stephan et al. (2008)). It locally adjusts the three-dimensional thermodynamical field
of the model in such a way that the modelled precipitation rates should resemble the observed
ones.

- Surface and Soil Fields – Additional two-dimensional intermittent analysis:
- Soil Moisture Analysis – Daily adjustment of soil moisture by a variational method
(Hess (2001)) in order to improve 2-m temperature forecasts; use of a Kalman-Filter-like
background weighting.

Section 1: Overview on the Model System Part I – Dynamics and Numerics 5.05



1.3 Single Precision Version 7

- Sea Surface Temperature Analysis – Daily Cressman-type correction, and blending
with global analysis. Use of external sea ice cover analysis.

- Snow Depth Analysis – 6-hourly analysis by weighted averaging of snow depth obser-
vations, and use of snowfall data and predicted snow depth.

Code and Parallelization
- Code Structure – Modular code structure using standard Fortran constructs.

- Parallelization – The parallelization is done by horizontal domain decomposition using a
soft-coded gridline halo (2 lines for Leapfrog, 3 for the Runge-Kutta scheme). The Message
Passing Interface software (MPI) is used for message passing on distributed memory machines.

- Compilation of the Code – For all programs a Makefile is provided for the compilation which
is invoked by the Unix make command. Two files are belonging to the Makefile: ObjFiles is a
list of files that have to be compiled and ObjDependencies contains all file dependencies. In
addition it reads the file Fopts, which has to be adapted by the user to specify the compiler,
compiler options and necessary libraries to link.

- Portability – The model can be easily ported to various platforms; current applications are on
conventional scalar machines (UNIX workstations, LINUX and Windows-NT PCs), on vector
computers (NEC SX series) and MPP machines (CRAY, IBM, SGI and others).

- Model Geometry – 3-d, 2-d and 1-d model configurations. Metrical terms can be adjusted
to represent tangential Cartesian geometry with constant or zero Coriolis parameter.

1.3 Single Precision Version

From the beginning of the development, the COSMO-Model had been designed to be able
to run in both precisions: single and double precision. Therefore, the real variables are
all defined using a KIND-parameter, named wp (means: working precision) in the mod-
ule kind_parameters.f90 (earlier, this KIND-parameter was named ireals). Other KIND-
parameters are sp (for single precision) and dp (for double precision). Before compiling the
model, the user has to decide whether wp will be set to sp or to dp. This can be done with
the compiler pragma -DSINGLEPRECISION. If this pragma is set, single precision will be used,
otherwise double precision.

But in the first years of the COSMO-Model, only the double precision version was developed
and tested, nobody ever used or tried a single precision run.

But single precision programs run faster on computers, because of less memory traffic, there-
fore MeteoSwiss tested to run the COSMO-Model also in single precision. Which did not
work in the first instance. Some effort had to be put in adapting the model to work for single
precision.

The main changes are:

• Epsilons, which are used in comparisons or to make divisions safe, are adapted to
work in both precisions. Variables repsilon and rprecision have been introduced in
module data_constants.f90.

• New variables imp_single and imp_double are added to specify an appropriate MPI
data type.

Part I – Dynamics and Numerics 5.05 Section 1: Overview on the Model System
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• To avoid automatic conversions by the compiler, all (!) real constants (as 2.0, 0.5,
etc.) are now written with the kind parameter as suffix: 2.0_wp, 0.5_wp, etc.). Further
developments should follow this rule!

• The pragma SINGLEPRECISION is now used to choose single precision for the COSMO-
Model during compilation. If it is not set, double precision is used.

It turned out, that the radiation cannot be run in single precision (at least the routines
coe_th, inv_th, coe_so, inv_so). Therefore it was decided to run the subroutine fesft
and all routines called below in double precision. The necessary variables are defined with
the KIND-parameter dp.

1.4 Organization of the Documentation

For the documentation of the model we follow closely the European Standards for Writing and
Documenting Exchangeable Fortran 90-Code. These standards provide a framework for the
use of Fortran-90 in European meteorological organizations and weather services and thereby
facilitate the exchange of code between these centres. According to these standards, the
model documentation is split into two categories: external documentation (outside the code)
and internal documentation (inside the code). The model provides extensive documentation
within the codes of the subroutines. This is in form of procedure headers, section comments
and other comments. The external documentation is split into seven parts, which are listed
in Table 1.2.

Table 1.2: COSMO Documentation: A Description of the Nonhydrostatic Regional COSMO-
Model

Part I: Dynamics and Numerics
Part II: Physical Parameterization
Part III: Data Assimilation
Part IV: Special Components and Implementation Details
Part V: Preprocessing: Initial and Boundary Data for the

COSMO-Model
Part VI: Model Output and Data Formats for I/O
Part VII: User’s Guide

Parts I - III form the scientific documentation, which provides information about the theo-
retical and numerical formulation of the model, the parameterization of physical processes
and the four-dimensional data assimilation. The scientific documentation is independent of
(i.e. does not refer to) the code itself. Part IV will describe the particular implementation
of the methods and algorithms as presented in Parts I - III, including information on the
basic code design and on the strategy for parallelization using the MPI library for message
passing on distributed memory machines (not available yet). The generation of initial and
boundary conditions from coarse grid driving models is described in Part V. This part is a
description of the interpolation procedures and algorithms used (not yet complete) as well
as a User’s Guide for the interpolation program INT2LM. In Part VI we give a description
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of the data formats, which can be used in the COSMO-Model, and describe the output
from the model and from data assimilation. Finally, the User’s Guide of the COSMO-Model
provides information on code access and how to install, compile, configure and run the
model. The User’s Guide contains also a detailed description of various control parameters
in the model input file (in NAMELIST format) which allow for a flexible model set-up for
various applications. All parts of the documentation are available at the COSMO web-site
(http://www.cosmo-model.org/content/model/documentation/core/default.htm).

Part I – Dynamics and Numerics 5.05 Section 1: Overview on the Model System
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Section 2

The Governing Equations

Starting from first principles, the governing thermo-hydrodynamical equations of the LM are
derived in Section 3.1. This basic set of equations comprises prognostic Eulerian equations
for momentum, heat, total mass, mass of water substance and the equation of state. The
impact of turbulent motions on the nonresolvable scales is taken into account by Reynolds
averaging (Section 3.2). In Section 3.3 the set of equations is written in spherical coordinates
using some metrical simplifications. A thermodynamic model base state is introduced as
described in Section 3.4. The equations are then transformed to a nonorthogonal coordinate
system using a generalized terrain following height coordinate (Section 3.5). The resulting
set of model equations is finally summarized in Section 3.6.

2.1 Basic Dynamic Equations

To arrive at a suitable mathematical description of atmospheric flow, the atmosphere is
considered as a multicomponent continuum which is constituted by dry air, water vapour,
liquid water and water in solid state forming an ideal mixture. The liquid and solid forms
of water may be further subdivided to represent various categories of water substance in the
atmosphere as cloud droplets, raindrops, pristine ice crystals, rimed aggregates of crystals,
graupel, hail, etc.

The system is subject to the external impact due to gravity and Coriolis forces. Internally,
various processes due to heat, mass and momentum transfer as well as phase changes of
water may take place. The basic conservation laws for momentum, mass and heat are then
represented by the following budget equations:

ρ
dv
dt

= −∇p+ ρg− 2Ω× (ρv)−∇ · t (2.1)

dρ

dt
= −ρ∇ · v (2.2)

ρ
dqx

dt
= −∇ · Jx + Ix (2.3)

ρ
de

dt
= −p∇ · v−∇ · (Je + R) + ε. (2.4)
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The index x represents a specific constituent of the mixture. We use

x = d for dry air,
x = v for water vapour,
x = l for liquid water and
x = f for water in the solid (frozen) state, i.e. ice.

Generally, bold symbols are used to represent vectors and bold underlined symbols indicate
dyadic tensors. The scalar and the vector product are indicated by · and ×, respectively.
In Eqs. (2.1) - (2.4) and the subsequent sections, the following symbols and definitions are
used:

t time
p pressure
T temperature
ρx partial density of mixture constituent x
ρ =

∑
x ρ

x total density of the air mixture
qx = ρx/ρ mass fraction (specific content) of constituent x
v = ρ−1 specific volume
e specific internal energy
h = e+ pv specific enthalpy
v barycentric velocity (relative to the rotating earth)
Ix sources/sinks of constituent x
Jx diffusion flux of constituent x
Je diffusion flux of internal energy (heat flux)
R flux density of solar and thermal radiation
t stress tensor due to viscosity
ε = −t · ·∇v kinetic energy dissipation due to viscosity
Ω constant angular velocity of earth rotation
g apparent acceleration of gravity
d/dt = ∂/∂t+ v · ∇ total (Lagrangian) time derivative operator
∂/∂t local (Eulerian) time derivative operator
∇ gradient (Nabla) operator

The set of equations (2.1)-(2.4) has been written in advection form using the Lagrangian
time derivative for a more compact representation of the basic conservation laws. Because
total mass is conserved, the rate of change of any mass specific quantity ψ can be formulated
by

ρ
dψ

dt
= ∂(ρψ)

∂t
+∇ · (ρvψ), (2.5)

using the budget operator ∂(ρ...)/∂t +∇ · (ρv...). With (2.5) the prognostic equations can
easily be transformed to flux (or budget) form, if required.

The source-sink terms Ix of the constituents refer to processes whereby water undergoes
phase changes, and to processes by which water is generated and lost in chemical reactions
with the components of dry air. For mesoscale dynamical applications, chemical changes in
water mass can be neglected. We thus set Id = 0 in the budget equation for dry air. Then,
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12 2.1 Basic Dynamic Equations

from the conservation of total mass and the definition of the mass fraction qx, the following
relations hold: ∑

x

qx = qd + qv + ql + qf = 1∑
x

Jx = Jd + Jv + Jl + Jf = 0 (2.6)∑
x

Ix = Iv + I l + If = 0.

On condition that dry air and water vapour behave like ideal gases and that liquid water
and ice are incompressible substances, the equation of state for a moist atmosphere reads

v ≡ ρ−1 = (Rdqd +Rvq
v)T
p

+ vlq
l + vfq

f , (2.7)

where Rd and Rv are, respectively, the gas constants for dry air and water vapour; vl is the
partial specific volume of water, vf is the partial specific volume of ice. For meteorological
applications, liquid water and ice contribute very little to the total specific volume because
vl and vf as well as ql and qf are much smaller than 1 ( (vlql + vfq

f )/v ≈ 10−6). The
neglection of the term vlq

l + vfq
f in Eq. (2.7) corresponds also to the usual definition of

pressure as the sum of the partial pressures of the gaseous constituents of the mixture. Using
this approximation, the equation of state is given by

p = ρ(Rdqd +Rvq
v)T

= ρRd{1 + (Rv/Rd − 1)qv − ql − qf}T (2.8)
= ρRdTv,

where Tv is the generalized virtual temperature

Tv = {1 + (Rv/Rd − 1)qv − ql − qf}T. (2.9)

In case of ql = 0 and qf = 0, (2.9) becomes identical to the traditional definition of virtual
temperature.

In the basic set of equations, i.e. (2.1)-(2.4) and the equation of state (2.8), the temperature
is a diagnostic variable that has to be determined from the internal energy e or, alternatively,
from the enthalpy h if the budget equation for h

ρ
dh

dt
= dp

dt
−∇ · (Je + R) + ε (2.10)

is used instead of Eq. (2.4). For numerical modelling purposes, however, it is more conve-
nient to apply directly a prognostic equation for temperature which we will refer to as the
heat equation. The heat equation is obtained from (2.10) by an expansion of the enthalpy
h(T, p, qx) =

∑
x hxq

x according to

dh

dt
=
(
∂h

∂T

)
p,qx

dT

dt
+
(
∂h

∂p

)
T,qx

dp

dt
+
∑
x

(
∂h

∂qx

)
T,p

dqx

dt
. (2.11)

The partial specific enthalpies hx are given by

hx = h0
x + cpx(T − T0), (2.12)
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where T0 = 273.15K, h0
x is the specific enthalpy of constituent x at reference temperature

T0 and cpx is the specific heat of constituent x at constant pressure. The small variation of
hl and hf with pressure has been neglected in (2.12). Using (2.12) yields(

∂h

∂T

)
p,qx

= cp =
∑
x

cpxq
x

(
∂h

∂p

)
T,qx

= 0(
∂h

∂qx

)
T,p

= hx = h0
x + cpx(T − T0),

for the partial derivatives in (2.11) and from the budget equation (2.10) the heat equation
results in the form

ρcp
dT

dt
= dp

dt
+ lV I

l + lSI
f −∇ · (Js + R)−

∑
x

cpxJx · ∇T + ε. (2.13)

Js is the reduced (or sensible) heat flux, lV and lS are, respectively, the latent heat of
vapourization and the latent heat of sublimation. The difference of lS and lV is the latent
heat of fusion, lF . These are defined by

Js = Je −
∑
x

hxJx

lV = LV − (cpl − cpv)(T − T0)
lS = LS − (cpf − cpv)(T − T0) (2.14)
lF = LF − (cpf − cpl)(T − T0),

where LV = −(h0
l − h0

v), LS = −(h0
f − h0

v) and LF = LS − LV are, respectively, the values
of lV , lS and lF at the reference temperature T0.

In comparison with the budget equation for enthalpy, the heat equation (2.13) reveals clearly
the impact of phase transitions of water on the temperature. Additionally, the sensible heat
flux Js, i.e. the heat flux reduced by the heat transported by the diffusion fluxes occurs
instead of Je. The term

∑
x cpxJx · ∇T takes the impact of heat advection by the diffusion

fluxes into account.

In order to calculate the temperature from the heat equation (2.13), the total derivative
of pressure has to be determined. In hydrostatic models using pressure or a pressure based
function as vertical coordinate, dp/dt is related to the contravariant vertical velocity and
can be diagnosed from the continuity equation. In case of nonhydrostatic models using a
vertical coordinate based on geometrical height, however, dp/dt has to be calculated from
a separate prognostic equation. This pressure tendency equation is obtained by taking the
material derivative of the equation of state (2.8)

dp

dt
= p

ρ

dρ

dt
+ ρRdT

dα

dt
+ ρRd(1 + α)dT

dt
, (2.15)

where α abbreviates the moisture term

α = (Rv/Rd − 1)qv − ql − qf (2.16)

in the definition of virtual temperature, i.e. Tv = (1 +α)T . Inserting the continuity equation
(2.2), the budget equations (2.3) for the moisture constituents and the heat equation (2.13)
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in Eq. (2.15) yields{
1− (1 + α)Rd

cp

}
dp

dt
= −p∇ · v + (1 + α)Rd

cp
Qh +Qm. (2.17)

Qh represents the diabatic heat production per unit volume of air,

Qh = lV I
l + lSI

f −∇ · (Js + R)−
∑
x

cpxJx · ∇T + ε, (2.18)

and Qm describes the impact of changes in the concentrations of the humidity constituents
on the pressure tendency:

Qm = ρRdT
dα

dt
= −RvT (I l + If )−RvT∇ · Jv −RdT∇ · Jd. (2.19)

To arrive at a more compact form of the pressure tendency equation, we reformulate the
term (1 + α)Rd in (2.17) as

(1 + α)Rd = Rdq
d +Rvq

v = cp − cv, (2.20)

where cv =
∑
x cvxq

x is the specific heat of moist air at constant volume. For the liquid
and solid forms of water there is no difference in the specific heat at constant pressure and
constant volume (due to incompressibility of water and ice), i.e. cvl = cpl and cvf = cpf .
For the specific heat of dry air and vapour at constant volume the relations cvd = cpd − Rd
and cvv = cpv − Rv hold (due to their behaviour as ideal gases). With (2.20) the pressure
tendency equation can be written as

dp

dt
= −(cp/cv)p∇ · v + (cp/cv − 1)Qh + (cp/cv)Qm. (2.21)

Thus, when the heat equation in the form (2.13) is used we have to replace the continuity
equation by (2.21) to calculate the pressure tendency. Thereby, the total density becomes a
diagnostic variable which is obtained from the equation of state. If, on the other hand, we
wish to retain the continuity equation in the basic set of equations, an alternate form of the
heat equation has to be applied. This form can be derived by direct expansion of the budget
equation for internal energy or, equivalently, by inserting (2.21) in (2.13):

ρcv
dT

dt
= −p∇ · v + (lV −RvT )I l + (lS −RvT )If −∇ · (Js + R)

−
∑
x

cpxJx · ∇T −RvT∇ · Jv −RdT∇ · Jd + ε. (2.22)

Using the heat equation in the form (2.22), the continuity equation can be applied to predict
total density. The pressure is then a diagnostic variable to be calculated from the equation of
state. Thus two alternative sets of basic equations can be formulated which are summarized
below.

• Set I

ρ
dv
dt

= −∇p+ ρg− 2Ω× (ρv)−∇ · t

dp

dt
= −(cp/cv)p∇ · v + (cp/cv − 1)Qh + (cp/cv)Qm

ρcp
dT

dt
= dp

dt
+Qh (2.23)

ρ
dqx

dt
= −∇ · Jx + Ix

ρ = p{Rd(1 + α)T}−1.
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• Set II

ρ
dv
dt

= −∇p+ ρg− 2Ω× (ρv)−∇ · t

dρ

dt
= −ρ∇ · v

ρcv
dT

dt
= −p∇ · v +Qh +Qm (2.24)

ρ
dqx

dt
= −∇ · Jx + Ix

p = ρRd(1 + α)T.

Provided that the phase transition rates I l and If , the diffusion fluxes Jv, Jl and Jf , the
sensible heat flux Js, the radiation flux R and the viscoseous momentum stress t are known,
both Set I and Set II form a closed set of equations to predict the variables of state, i.e. v,
T , p, ρ and the mass concentrations qv, ql and qf .

For numerical modelling of nonhydrostatic compressible atmospheric flow the Set II of equa-
tions offers the advantage of a direct use of the continuity equation. Thus, by applying
suitable numerical algorithms, it is easy to achieve exact conservation of total mass. How-
ever, this set has only rarely been used in practice. One - and may be the only - example
is the pioneering work of Müller (1974) who based his two-dimensional model of deep moist
convection on the Set II type of equations.

By the numerical solution of Set I, on the other hand, exact mass conservation is not guaran-
teed but depends largely on the accuracy of the numerical algorithms. Nevertheless, almost
all nonhydrostatic compressible models are based on Set I, which is frequently rewritten
using potential temperature and dimensionless pressure as dependent variables instead of
T and p (e.g. Klemp and Wilhelmson (1978). The reason for this preference are special,
numerical efficient schemes for the treatment of sound waves which propagate at high speed
and require small time steps for stable integration. These schemes can be easily applied in
the Set I type of equations but become untractable with Set II.

Besides the lack of exact mass conservation an additional disadvantage of Set I is the oc-
currence of the diabatic heating rate Qh and the moisture source term Qm in the pressure
tendency equation. These terms are relevant for a correct description of the thermodynam-
ical feedbacks of diabatic heating and the representation of thermal compression waves but
frequently cause numerical problems. Thus, these terms are usually neglected in the pressure
equation. Omitting Qh and Qm, however, is equivalent to introducing artificial source and
sink terms in the continuity equation. The physical error caused by this simplification is
probably small in case of applications to cloud or boundary layer modelling studies with
very short simulation times. But significant problems may arise in case of applications to
short range numerical weather prediction (NWP) with integration times up to 72 hours and
in the associated data assimilation cycle.

The present version of LM is also based on the Set I of equations. In the plannings for future
developments we consider to use Set II alternatively as basic equations for a later version of
the model.
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2.2 Averaging the Basic Equations

The set (2.23) of basic equations is defined in terms of differential operators and is thus, in a
formal mathematical sense, only valid in the limit when the time interval δt and the spatial
increments δx, δy and δz (defining a volume element δV = δxδyδz) approach zero. For a
physically meaningful interpretation, however, the volume elements must not be infinitesimal
points, but have to be large enough to contain a sufficiently large number of molecules to
apply statistical thermodynamics. In other words, the spatial increments must be much larger
than spacing between molecules but much smaller than macroscopic dimensions so that the
differential terms do not vary within δt and δV . In the atmosphere, these criteria limit the
direct application of Eqs.(2.23) to space scales on the order of about 1 cm and to time scales
of about a second.

2.2.1 Dynamic Equations for Turbulent Flow

Mesoscale meteorological circulations have horizontal scales ranging from some 100 m up
to 10 or 100 km and vertical scales up to 10 km. Obviously, the explicit simulation of such
atmospheric flows with a numerical model using grid spacings on the order of 1 cm will never
be possible. Therefore, it is necessary to average the basic equations over specified space and
time scales. In the context of numerical simulations, these scales can be identified with the
grid spacings and the time step of the numerical model. For a specified mesoscale circulation,
the smaller the grid intervals, the better the numerical resolution of the flow.

Formally, averaging has to be done by summing up a large number of realizations of a specific
ensemble of flows. In practice, we assume tacitly that the intervals for averaging are large
enough to allow for scale separation, i.e. it is assumed that the average or mean value of a
variable of the flow varies much more slowly in time and space than do the deviations from
the average. The ensemble average can then be replaced by an integration over a specific
time interval and space domain.

By performing this integration, any variable ψ of the flow can be decomposed according to

ψ = ψ + ψ′, (2.25)

where
ψ = 1

∆V∆t

∫ ∫
ψdtdV (2.26)

represents the average of ψ over the finite time interval ∆t and the volume element ∆V
formed by the grid spacings ∆x, ∆y and ∆z. By Reynolds convention, the average of the
deviations ψ′ is zero:

ψ′ = 0. (2.27)
Apart from the decomposition (2.25) using the Reynolds average (2.26), we also use the
decomposition

ψ = ψ̂ + ψ′′ (2.28)
with

ψ̂ = ρψ/ρ and ψ̂′′ = 0, (2.29)

where ψ̂ is the mass weighted average (Hesselberg average) of ψ and ψ′′ is the deviation of
ψ from its mass weighted mean value. The mass weighted average is used for velocity and
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for mass specific variables of state as enthalpy h, internal energy e and the concentrations
qx (see van Mieghem (1973)) for the choice of a suitable averaging operator in atmospheric
turbulence theory).

The mean values ψ and ψ̂ are also called the grid scale values of ψ which describe the
slowly varying resolvable part of the flow. The deviations ψ′ and ψ′′ from the corresponding
mean value are often called the subgrid scale perturbations which describe the strongly
fluctuating, nonresolvable part of the flow. In the budget equations, the feedback of the
subgrid scale fluctuations on the resolvable flow is expressed by additional terms in the form
of perturbation correlations resulting from averaging the budget equations. These correlation
products represent the mean contribution of transports induced by the nonresolvable motions
and are of crucial importance in numerical modelling. For any practical application, they have
to be parameterized, i.e., they have to be formulated in terms of the grid scale variables.

If the grid spacings defining the domain ∆V for averaging are not too large, i.e. on the
order of some 100 m, the fluctuating part of the flow can be identified with purely turbulent
motions. Turbulent flows typically show stochastic characteristics and statistical theories can
be used to describe them. However, the larger the horizontal grid spacings become, the more
additional processes showing organized structures of increasing complexity are included in
the subgrid scale fluxes. For grid spacings of the order of 10 km, e.g., shallow and deep moist
convection have to be parameterized and for grid intervals typical for global modelling even
mesoscale circulations on scales of about 100 km are not resolved.

Applying the averaging operator (2.26) to the budget equations for momentum (2.1), to-
tal mass (2.2), mass of the water constituents (2.3) and enthalpy (2.10) yields prognostic
equations for the corresponding mean values:

ρ
d̂v̂
dt

= −∇p+ ρg− 2Ω× (ρv̂)−∇ · (t + T) (2.30)

d̂ρ

dt
= −ρ∇ · v̂ (2.31)

ρ
d̂q̂x

dt
= −∇ · (Jx + Fx) + Ix (2.32)

ρ
d̂ĥ

dt
= d̂p

dt
+Bh −∇ · (Je + Fh + R) + ε. (2.33)

The operator d̂/dt assigns the Lagrangian time derivative with respect to the mass weighted
barycentric velocity v̂, i.e., d̂/dt = ∂/∂t + v̂ · ∇, which is related to the budget operator
according to

ρ
d̂ψ̂

dt
= ∂(ρψ̂)

∂t
+∇ · (ρv̂ψ̂). (2.34)

Eq. (2.34) can be used to transform (2.30)-(2.33) from advection to flux form. In addition
to the averages of the molecular fluxes and source terms the following correlation products
describing subgrid scale transport processes occur in the set of equations:

T = ρv′′v′′ turbulent flux of momentum (the Reynolds stress tensor) ;
Fx = ρv′′qx turbulent flux of constituent x (

∑
x Fx = 0) ;

Fh = ρv′′h turbulent flux of enthalpy ;
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Bh = v′′ · ∇p source term of enthalpy due to buoyant heat and
moisture fluxes.

The term Bh = v′′ · ∇p in Eq. (2.33) can be interpreted as the work of the turbulent velocity
fluctuations done against the pressure gradient force. Because the dominating part of ∇p
is its hydrostatic component, this term is closely related to the buoyant heat and moisture
fluxes. An approximate form of the buoyancy term Bh is given below.

In contrast to the budget equations, the averaging operator is not applied to thermodynamic
equations of state. Here we use the diagnostic hypothesis that linear and nonlinear thermo-
dynamic relations between the variables of state hold for their mean values in the same way
as on the molecular scale Herbert (1975). Thus, the equation of state for the turbulent scales
of motion reads

p = ρRd{1 + (Rv/Rd − 1)q̂v − q̂l − q̂f}T̂ (2.35)
= ρRdT̂v.

The heat equation is derived from the prognostic equation (2.33) for mean enthalpy using
the diagnostic relation

ĥ =
∑
x

ĥxq̂x

with ĥx = h0
x + cpx(T̂ − T0)

for the partial specific enthalpies ĥx of the constituents x:

ρĉp
d̂T̂

dt
= d̂p

dt
+Qh. (2.36)

The mean diabatic heating Qh is given by

Qh = l̂V I l + l̂SIf +Bh −∇ · (Js + H + R)
−
∑
x

cpx(Jx + Fx) · ∇T̂ + ε. (2.37)

l̂V and l̂S are, respectively, the latent heat of vapourization and of sublimation as defined
by Eq. (2.14) but for the mean value T̂ of temperature. ĉp =

∑
x cpxq̂

x is the mean value of
specific heat at constant pressure and H assigns the turbulent flux of sensible heat defined
by

H = Fh −
∑
x

ĥxFx. (2.38)

In analogy to the procedure in Section 3.1, the pressure tendency equation is obtained by
taking the material derivative of the equation of state (2.35). By using (2.31), (2.32) and the
heat equation (2.36) we arrive at

d̂p

dt
= −(ĉp/ĉv)p∇ · v̂ + (ĉp/ĉv − 1)Qh + (ĉp/ĉv)Qm, (2.39)
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where ĉv =
∑
x cvxq̂

x is the mean value of the specific heat at constant volume and the
moisture source term Qm is defined by

Qm = −RvT̂ (I l + If )−RvT̂∇ · (Jv + Fv)−RdT̂∇ · (Jd + Fd). (2.40)

The equation of motion (2.30), the budget equations (2.32) for the water constituents, the
heat equation (2.36), the pressure tendency equation (2.40) and the equation of state (2.35)
form a general set to predict the evolution of the mean flow provided that all subgrid scale
processes are parameterized in terms of the grid scale variables v̂, ρ, p,T̂ and qx. Before we
look at practical simplifications of this set, it is useful to reformulate the sensible heat flux
H and the buoyancy term Bh contributing to the mean diabatic heating Qh.

By inserting the enthalpy in the definition of Fh and neglecting triple correlation products
in the evaluation, it is easy to show that the sensible heat flux defined by (2.38) can be
expressed as a correlation product of the velocity fluctuations and the temperature:

H = ĉpρv′′T = ĉpρv′′T ′′ (2.41)

(since ρv′′T̂ = 0). The buoyancy term Bh can be written as

Bh = pv′′ · ∇ ln p = Rd(ρv′′Tv) · ∇ ln p

and, by neglecting triple correlations, we finally arrive at the representation (with α from
(2.16) and using (2.20))

Bh = Rd(1 + α̂)(ρv′′T ) · ∇ ln p+RdT̂ (Rv/Rd − 1)(ρv′′qv) · ∇ ln p
−RdT̂ (ρv′′ql − ρv′′qf ) · ∇ ln p,

or
Bh = (ĉp − ĉv)/ĉpH · ∇ ln p (2.42)

+RdT̂{(Rv/Rd − 1)Fv − Fl − Ff} · ∇ ln p.

for Bh in terms of the sensible heat flux H and the turbulent fluxes Fx of the various water
phases.

This set of hydrodynamical equations for turbulent flow including the heat equation (2.36)
with (2.42) for the buoyancy term has not yet been applied in full form for numerical mod-
elling of mesoscale processes. For practical reasons, numerical models make often use of
simplifications to the basic equations. These assumptions are typically justified with the
scales of motion under consideration, as e.g., the hydrostatic approximation for large and
mesoscale flow or the anelastic approximation for deep convection which filters the meteoro-
logically unimportant sound waves. Another type of approximations is related to the fact that
in the atmosphere air forms a very diluted mixture with respect to the water constituents.
This allows to use an approximate form of the heat equation, which is discussed in the next
Section.

2.2.2 Simplified Thermodynamics

Because the LM is designed to cover a broad range of spatial scales for various applica-
tions, we will not make use of any scale related assumption. Thus, the nonhydrostatic form
of the equations allowing for compressibility will be retained. For simplicity, however, an
approximate form of the heat equations is used. In detail, the following simplifications are
presupposed for LM:
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(a) Treatment of molecular fluxes
Mesoscale flow in the atmosphere is always characterized by a more or less turbulent
state. In general, the turbulent fluxes of momentum, heat and moisture are much larger
than the corresponding molecular fluxes. Thus, all molecular fluxes are neglected ex-
cept for the diffusion fluxes of the liquid and solid forms of water. Due to microphysical
growth processes water drops and ice crystals can become large enough to have a signif-
icant fall velocity relative to the air. This gravitational sedimentation flux is part of the
molecular diffusion flux and must be retained to describe the fallout of precipitation.
Thus, in the basic set of equations we set the viscous stress tensor and the molecular
fluxes of sensible heat and of water vapour to zero and replace the fluxes of water and
ice by the sedimentation fluxes:

t = 0, Js = 0, Jv = 0,
Jl ' Pl = ρqlvlT , (2.43)
Jf ' Pf = ρqfvfT .

Pl and Pf are, respectively, the precipitation fluxes of liquid water and ice. They
depend on the mean fall velocities of the corresponding particles, i.e. their terminal
velocities vlT and vfT .

(b) Approximations to the heat equation
In the atmosphere, the water constituents contribute very little to the total mass of any
volume of air. Typical maximum values of qv are a few percent and ql and qf in general
do not attain values larger than 10−3. Thus, for numerical modelling purposes, it is a
more than adequate simplification to approximate the specific heat of moist air by the
specific heat of dry air. In effect, the impact of the diffusion fluxes of the water phases
on changes in temperature can be neglected and the latent heat of vapourization and
of sublimation can be replaced by their constant values at reference temperature T0.
Using these approximations, i.e.,

ĉp =
∑
x

cpxq̂x ' cpd,

l̂V (T̂ ) ' LV , l̂S(T̂ ) ' LS , (2.44)
H ' cpdρv′′T ,∑

x

cpx(Jx + Fx) · ∇T̂ ' 0,

we can treat moist air as though it were dry. The dominating impact of phase changes
of water on temperature, however, is taken into account with sufficient accuracy.

(c) Approximations to the pressure tendency equation
Because the pressure tendency equation (2.39) replaces the continuity equation, any
approximation to the heat equation has to be adapted carefully to guarantee an as
close as possible conservation of total mass. An adequate approximation of the pressure
tendency equation is

d̂p

dt
= −(cpd/cvd)p∇ · v̂ + (cpd/cvd − 1)Qh, (2.45)

where the impact on pressure due to changes in the concentrations of the water con-
stituents resulting from diffusion fluxes and phase transitions has been neglected. The
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approximation (2.45) induces a small artificial source/sink term in the continuity equa-
tion. However, it is supposed that this inconsistency has no significant impact for
mesoscale numerical modelling.

(d) Treatment of buoyant heat and moisture fluxes
The buoyancy term (2.42) in the heat equation may be approximated by

Bh = Rd/cpdH · ∇ ln p+RdT̂{(Rv/Rd − 1)Fv − Fl − Ff} · ∇ ln p. (2.46)

Using the definition of potential temperature and of the scaled pressure variable π (the
Exner function),

θ = T/π, π = (p/p00)Rd/cpd , (2.47)
where p00 is a constant reference pressure (usually set to 1000 hPa), the turbulent flux
of sensible heat can alternatively be written in the more familiar form

H = cpdρv′′T ' cpdπρv′′θ. (2.48)

Here, the temperature fluctuations have been approximated by T ′′ ' πθ′′ as for the
turbulent scales of motion fractional fluctuations in pressure are generally much smaller
than fractional fluctuations in temperature.
However, in the present version of LM temperature changes due to buoyant heat and
moisture fluxes will be neglected completely, together with the mean dissipation rate
due to viscouseous stresses:

Bh = 0, ε = 0. (2.49)
This approximation can be justified by recalling that the forcing function ∇ ln p varies
only very slowly with height. For any nonneutral stratification with H 6= 0, the tem-
perature changes caused by the vertical divergence of H will thus be much larger than
those caused by the buoyancy term. The buoyancy term occurs also in the budget
equation for turbulent kinetic energy (which we will not consider in this Section, see
Part II of the documentation for details), but with opposite sign. If in a later version
of LM this equation is added to the set of model equations for a prognostic treatment
of turbulence, the buoyancy term should be retained in the heat equation to allow for
energy conservation.

By introducing the approximations (2.43), (2.44), (2.45) and (2.49) in the general hydro-
thermodynamic equations derived above, we finally end up with the following set of equations
describing the evolution of nonhydrostatic compressible mean flow. Here and in the following
sections, the bar and hat symbols indicating mean values will be omitted for convenience.

ρ
dv
dt

= −∇p+ ρg− 2Ω× (ρv)−∇ · (T) (2.50)

dp

dt
= −(cpd/cvd)p∇ · v + (cpd/cvd − 1)Qh (2.51)

ρcpd
dT

dt
= dp

dt
+Qh (2.52)

ρ
dqv

dt
= −∇ · Fv − (I l + If ) (2.53)

ρ
dql,f

dt
= −∇ · (Pl,f + Fl,f ) + I l,f (2.54)

ρ = p{Rd(1 + (Rv/Rd − 1)qv − ql − qf )T}−1. (2.55)
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Qh represents the rate of diabatic heating/cooling and is given by

Qh = LV I
l + LSI

f −∇ · (H + R). (2.56)

LM uses Eqs. (2.50) - (2.55) as basic model equations. They form a complete set to predict the
grid scale variables of state, i.e., v, T , p, ρ, qv, ql and qf , provided that all terms describing
the impact of subgrid scale processes are known. These are the Reynolds stress tensor T, the
turbulent flux of sensible heat H, the turbulent fluxes of water vapour Fv, of liquid water Fl

and of ice Ff , the precipitation fluxes of water Pl and of ice Pf , the rates of phase changes
I l and If of water and ice, respectively, and the flux R of solar and thermal electromagnetic
radiation. The calculation of these terms as functions of the grid scale variables, by so-called
parameterization schemes, is described in Part II of the LM documentation.

The budget equations (2.54) for the liquid and solid forms of water may be further subdivided
to represent nonprecipitating categories of water, as, e.g., cloud water and cloud ice with
negligible sedimentation fluxes, and precipitating categories of water, as, e.g., rain, snow
and graupel with large sedimentation fluxes and negligible turbulent fluxes. The concrete
form of the corresponding budget equations can become quite complex and depends on the
type of parameterization scheme which is chosen to represent the hydrological cycle in the
atmosphere. For the next sections, we therefore use Eq. (2.54) as an abbreviation representing
various types of parameterizations. See Part II for details on the parameterization of cloud
microphysical processes.

2.3 Rotated Spherical Coordinates

The equations of fluid motion derived in the previous section are formulated with respect
to the rotating earth and are thus valid for any coordinate system rotating with the earth.
Obviously, the spherical coordinate system is the most natural and convenient way to take
the spherical shape of the earth into account. With respect to practical applications on a large
domain, however, spherical coordinates cause numerical problems due to the convergence of
the meridians and the resulting pole singularities.

2.3.1 Definition

For limited area modelling different types of map projections, as the Polar Stereographic,
the Lambert or the Mercator projection are frequently used. The use of rotated spherical
coordinates has also become common practice. In the latter system, the pole is tilted and
can be positioned such that the equator runs through the centre of the model domain. Thus,
problems resulting from the convergence of the meridians can be minimized for any limited
area model domain on the globe. Especially, for a very small domain with negligible impact of
the curvature of the earth’s surface, the equations become identical to those for a tangential
Cartesian coordinate system.

LM uses a rotated spherical coordinate system. In order to obtain the appropriate equations
of motion, we have to make two coordinate transformations. The first one transforms from
a Cartesian system (X,Y, Z) with the origin located at the earth’s centre and the Z-axis
oriented along the axis of the earth’s rotation, i.e. pointing toward the geographical North
Pole, to a new Cartesian system (X̃, Ỹ , Z̃). The origin of this new system is also located

Section 2: The Governing Equations Part I – Dynamics and Numerics 5.05



2.3 Rotated Spherical Coordinates 23

Figure 2.1: Rotated longitude and latitude (full lines, at a contour interval of 20◦) for a spherical
coordinate system with the North pole shifted to the point PN with geographical coordinates λNg =
40◦W and ϕNg = 30◦N . Broken lines indicate longitude and latitude of the geographical system
(at a contour interval of 20◦). The rotated 0◦/180◦ meridians are conform with the 140◦W/40◦E
geographical meridians. The equator of the rotated grid runs along the southern edge of South America
and enters the northern hemisphere in the Pacific. All subdomains centred along the rotated equator
will have a minimum of curvature effects from the convergence of meridians.

at the earth’s centre, but the Z̃-axis is tilted against the Z-axis. By defining the Z̃-axis to
point from the centre to a point PN = (λNg , ϕNg ) in which λNg is geographical longitude and
ϕNg is geographical latitude of the point, the transformation is uniquely specified. PN defines
the north pole of the rotated coordinate system. In the second step we transform from the
(X̃, Ỹ , Z̃)-system to orthogonal spherical coordinates (λ, ϕ, r) in which λ is longitude, ϕ is
latitude and r is the distance from the earth’s centre. Both λ and ϕ are defined with respect
to the rotated Z̃-axis. It is convenient to define the rotated meridian which runs through
both the geographical and the rotated North Pole as the 0◦ meridian. An example is shown
in Figure 2.1.

Because the first transformation involves only a simple rotation of a Cartesian system, the
metrics of the rotated (λ, ϕ, r)-coordinate system is completely determined by the second
transformation. Both steps can be done with standard mathematical transformation tech-

Part I – Dynamics and Numerics 5.05 Section 2: The Governing Equations



24 2.3 Rotated Spherical Coordinates

niques. The resulting equations are formally identical to those obtained for the nonrotated
spherical coordinate system but the geographical longitude λg and geographical latitude ϕg
are replaced by λ and ϕ, respectively. Details on the transformation can be found in standard
textbooks on dynamic meteorology, e.g. Dutton (1976).

Most meteorological models do not apply the full form of the transformed equations of motion
but make use of some metrical simplifications, which we will also apply for LM. First, all
impacts resulting from the nonspherical shape of the earth’s surface are neglected and the
apparent gravity acceleration is assumed to be constant and perpendicular to surfaces of
constant radius, i.e.

g ∼= −g(r/r), (2.57)

where g is the constant mean value of absolute gravity acceleration. Second, as the vertical
extent of the model is confined to the troposphere and lower stratosphere, the height of any
point above the surface will be much smaller than the radius of the earth, and we have to a
close approximation

r = a+ z ∼= a. (2.58)

a is the mean radius of the earth’s surface and z is the geometrical height above mean sea
level. Thus, wherever the distance r occurs as a factor in the transformed equations it can be
approximated by a. By replacing the differential variation of r by the differential variation in
z, ∂r = ∂z, the equations can then be written in terms of z as independent vertical coordinate
instead of r. The approximation (2.58) supposes that all spherical surfaces of constant vertical
coordinate z have the same curvature. This has two important consequences: (a) a number
of metrical accelerations appearing in the equations of motion have to be neglected, and (b)
the Coriolis acceleration has to be modified for consistency reasons (the Coriolis effect due
to as well as on vertical motion must be neglected), taking a much simpler form.

By applying the metrical simplification, the orthogonal base vectors qi and the Jacobian of
the transformation,

√
Gs, of the modified (λ, ϕ, z) coordinate system are given by

q1 = a cosϕeλ
q2 = aeϕ (2.59)
q3 = ez = r/r√
Gs = a2 cosϕ.

eλ, eϕ and ez are the normalized unit vectors in the corresponding directions λ, ϕ and
z, respectively.

√
Gs is related to the metric tensor Gs of the spherical coordinate system

according to
√
Gs =

√
det(Gs)

where the elements gsij of Gs are given by the scalar product of the base vectors qi, i.e.
gsij = qi · qj . Thus, Gs is to be interpreted as a 3 × 3 matrix, with an obvious role in the
measurement of distances, and not as a physical tensor. Because the qi form an orthogonal
vector base, all off-diagonal terms of the metric tensor Gs are zero, the diagonal elements are

gs11 = a2cos2ϕ, gs22 = a2, gs33 = 1. (2.60)

LM uses the representation of vectors and spatial differential operators with respect to the
normalized base. The gsii are used to reformulate the equations resulting from the direct
transformation correspondingly. Thus, any vector A with components Ai in the qi-base is
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rewritten with physical components Ãi using the normalized set of base vectors:

A =
∑
n

Anqn = Ãλeλ + Ãϕeϕ + Ãzez,

with Ãλ =
√
gs11A

1, Ãϕ =
√
gs22A

2, Ãz =
√
gs33A

3. (2.61)

The physical components of the velocity vector v in the rotated spherical coordinate system
are assigned in an obvious manner with u for the zonal wind velocity, v for the meridional
wind velocity and w for the vertical velocity:

u ≡ ṽλ = a cosϕλ̇, v ≡ ṽϕ = aϕ̇, w ≡ ṽz = ż = ṙ. (2.62)

2.3.2 The Transformed Dynamic Equations

Using general transformation relations and applying the metrical simplification for the spher-
ical coordinate system, the Nabla operator is formulated by

∇ = eλ
a cosϕ

∂

∂λ
+ eϕ

a

∂

∂ϕ
+ ez

∂

∂z
(2.63)

and the divergence of a vector A using its physical components Ãi is calculated from

∇ ·A = 1
a cosϕ

(
∂Ãλ

∂λ
+ ∂

∂ϕ
(Ãϕ cosϕ)

)
+ ∂Ãz

∂z
. (2.64)

The basic prognostic set (2.50) - (2.54) of hydrodynamic equations then takes the following
form in the (λ, ϕ, z)-system:

∂u

∂t
+ v · ∇u− uv

a
tanϕ− fv = − 1

ρa cosϕ
∂p

∂λ
+Mu

∂v

∂t
+ v · ∇v + u2

a
tanϕ+ fu = − 1

ρa

∂p

∂ϕ
+Mv

∂w

∂t
+ v · ∇w = −1

ρ

∂p

∂z
− g +Mw

∂p

∂t
+ v · ∇p = −(cpd/cvd)pD + (cpd/cvd − 1)ρcpdQT

∂T

∂t
+ v · ∇T = 1

ρcpd

(
∂p

∂t
+ v · ∇p

)
+QT (2.65)

∂qv

∂t
+ v · ∇qv = −(Sl + Sf ) +Mqv

∂ql,f

∂t
+ v · ∇ql,f − 1

ρ

∂Pl,f
∂z

= Sl,f +Mql,f

ρ = p{Rd(1 + (Rv/Rd − 1)qv − ql − qf )T}−1.

The advection operator is defined by

v · ∇ = 1
a cosϕ

(
u
∂

∂λ
+ v cosϕ ∂

∂ϕ

)
+ w

∂

∂z
, (2.66)
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and D denotes the three-dimensional wind divergence to be calculated from

D ≡ ∇ · v = 1
a cosϕ

(
∂u

∂λ
+ ∂

∂ϕ
(v cosϕ)

)
+ ∂w

∂z
. (2.67)

The Coriolis parameter f = 2Ω sinϕg depends on the rotated (λ, ϕ)-coordinates and on the
geographical latitude ϕNg of the rotated pole.

f = 2Ω
(
cosϕNg cosϕ cosλ+ sinϕ sinϕNg

)
. (2.68)

Since the set (2.65) is written in advection form, the following symbols have been introduced
for convenience: The M -terms denote the source terms due to turbulent mixing,

Mu ≡ −
1
ρ

(∇ ·T) · eλ, Mv ≡ −
1
ρ

(∇ ·T) · eϕ, Mw ≡ −
1
ρ

(∇ ·T) · ez,

Mqx ≡ −
1
ρ
∇ · Fx, MT ≡ −

1
ρcpd
∇ ·H, (2.69)

Sl and Sf represent the cloud microphysical sources and sinks per unit mass of moist air,

Sl,f ≡ 1
ρ
I l,f , (2.70)

and Pl and Pf denote the absolute values of the gravitational diffusion fluxes of water and
ice, the precipitation fluxes,

Pl,f = −Pl,fez = −ρql,f |vl,fT |ez. (2.71)

QT is the diabatic heating term in the prognostic equation for temperature,

QT ≡
1
ρcpd

Qh = LV
cpd

Sl + LS
cpd

Sf +MT +Qr, (2.72)

where Qr denotes the temperature change due to convergence/divergence of the flux of solar
and thermal electromagnetic radiation:

Qr ≡ −
1
ρcpd
∇ ·R. (2.73)

The formulation and calculation of the mixing terms M , the terms Sl,f and Pl,f from the
hydrological cycle and the radiative heating rate Qr will be discussed separately in Part II
of the documentation.

2.3.3 Special Transformation Relations

For some pre- and postprocessing purposes it might be necessary to transform the rotated
horizontal coordinates (λ, ϕ) to the geographical longitude/latitude (λg, ϕg) and vice versa.
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Figure 2.2: Geographical longitude (blue) and latitude (red) for a rotated grid with pole coordinates
ϕNg = 32.5◦ and λNg = −170.0◦. The equator of the rotated grid is indicated by the dashed line. The
rotated 0◦ meridian is conform with the 10◦E geographical meridian.

The corresponding transformation relations are

ϕ = arcsin
{

sinϕg sinϕNg + cosϕg cosϕNg cos(λg − λNg )
}

λ = arctan
{

cosϕg sin(λg − λNg )
cosϕg sinϕNg cos(λg − λNg )− sinϕg cosϕNg

}
and (2.74)
ϕg = arcsin

{
sinϕ sinϕNg + cosϕ cosλ cosϕNg

}
λg = arctan

{
cosϕ sinλ

sinϕNg cosϕ cosλ− sinϕ cosϕNg

}
+ λNg

Figure 2.2 illustrates the position of the geographical longitude and latitude for a rotated grid
running from −20◦ to +20◦ in λ-direction (counting positive ’east’ to the 0◦ rotated meridian)
and from −23◦ to 9◦ in ϕ-direction (counting positive ’north’ to the rotated equator). The
geographical coordinates of the rotated North Pole are specified as ϕNg = 32.5◦ (counting
positive ’north’ to the equator) and λNg = −170.0◦ (counting positive east to the Greenwich
meridian). The inverse trigonometric functions used in the transformation relations (2.74)
are not unique for all combinations of angles. In order to get a unique forward and backward
transformation, we require that the geographical coordinates of the rotated pole are specified
in the interval −180◦ ≤ λNg ≤ 180◦ and 0◦ ≤ ϕNg ≤ 90◦.

The transformation of physical vector components and unit base vectors from the geograph-
ical to the rotated coordinate system is done with a matrix P which can be derived from the
corresponding Jacobian matrix by normalization with the elements of the metric tensor. P
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Figure 2.3: Transformation of the unit base vectors by a local rotation of angle δ around point P. To
construct the base vectors of the geographical system, we use (2.77) to get egλ = cosδeλ + sinδeϕ and
egϕ = −sinδeλ + cosδeϕ. Corresponding physical vector components transform accordingly. A similar
illustration can be sketched for the reverse transformation.

is an orthonormal matrix with elements Pij given by

P =

 cos δ − sin δ 0
sin δ cos δ 0

0 0 1

 , (2.75)

where δ is the local angle formed by the geographical and the rotated meridians at a point.
By defining δ to count positive for an anti-clockwise local rotation of the (λ, ϕ)-system to
the (λg, ϕg) system, we have

δ = arctan
{

cosϕNg sinλ
cosϕ sinϕNg − cosϕNg sinϕ cosλ

}
,

= arctan
{

cosϕNg sin(λNg − λg)
cosϕg sinϕNg − sinϕg cosϕNg cos(λNg − λg)

}
. (2.76)

The transformation is performed by applying the relations

ei =
∑
n

Pinegn , Ãi =
∑
n

PinÃ
g
n ,

egi =
∑
n

Pnien , Ãig =
∑
n

PniÃn . (2.77)

to the unit vectors ei and to the physical components Ãi of a vector A. Here, the index
g denotes base vectors and vector components in the nonrotated geographical coordinate
system, and i = 1 corresponds to the λ-direction, i = 2 to the ϕ-direction and i = 3 to the
z-direction. Eqs. (2.77) represent a simple local rotation by the angle δ on the “horizontal“
z-surfaces while the vertical components are not affected. This is illustrated in Figure (2.3).

In practice, the zonal and the meridional components of the wind velocity, u and v, are most
frequently transformed from or to the corresponding components ug and vg in geographical
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coordinates. From (2.77) and (2.75), these transformations are performed by

u = ug cos δ − vg sin δ
v = ug sin δ + vg cos δ

and (2.78)
ug = u cos δ + v sin δ
vg = −u sin δ + v cos δ.

To calculate the components sin δ and cos δ of the matrix P, it is not necessary to deter-
mine the angle of rotation by using the arctan-function in (2.76). A unique transformation
is achieved by applying standard trigonometrical relations: denoting the nominator and de-
nominator in (2.76) by

a = cosϕNg sin(λg − λNg ) , b = cosϕg sinϕNg − sinϕg cosϕNg cos(λg − λNg ) ,

we simply have

sin δ = a√
a2 + b2

, cos δ = b√
a2 + b2

. (2.79)

2.4 The Model Base State

In LM, the thermodynamic variables are defined as the sums of base-state variables and
deviations from the base state. The base or reference state is prescribed to be horizontally
homogeneous, i.e. depending only on the height above the surface, time invariant and hy-
drostatically balanced.

The separation of the state variables in a base-state value and a deviation has a long tradition
in nonhydrostatic models which are based on the anelastic approximation Dutton and Fichtl
(1969). In obtaining the anelastic set of dynamic equations, linearization approximations
with respect to the reference state are made: State variables that appear in factors of certain
terms are replaced by their base-state values on the assumption that the fractional deviations
are very small (on the order of one percent). Thus, models based on the anelastic system
will only give reasonable results for cases in which the deviations are small initially and,
moreover, remain small over the period of a simulation. Consequently, the base state has
to be chosen very carefully in order to approximate the initial state of the atmosphere as
closely as possible.

Some nonhydrostatic models based on the full compressible set of equations make also use
of linearization approximations with respect to the base state, e.g., the MC2 model Tan-
guay et al. (1990) and the ARPS model Xue et al. (1995). Such linearizations simplify the
equations considerably for the practical numerical integration, but confine the validity of the
simulations to ranges which are consistent with the anelastic approximation.

Since LM is designed for operational NWP on a large domain covering an area of about 2000
km × 2000 km, fractional deviations from a horizontally homogeneous base state will be
on the order of 10 percent. Deviations of this order of magnitude are too large for a useful
application of linearization assumptions related to the anelastic approximation. For the basic
dynamics of LM we thus follow the concept of the MM5 model Dudhia (1993) and do not a
priori make use of any linearization approximations. In principle, this allows for an arbitrary
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specification of the reference state which, in consequence, can be chosen less carefully and in
a more general way than in anelastic type of models.

The main effect of introducing a reference state is the removal of horizontal base-state pres-
sure gradient terms in the equation of motion. For not too large deviations of pressure from
reference pressure, the removal of these terms reduces the computational error in the cal-
culation of the pressure gradient force in case of sloping coordinate surfaces. Such sloping
surfaces result from the use of a terrain-following vertical coordinate, as described in the
next section.

By introducing the base state, any grid-scale thermodynamic variable ψ can be formally
written as

ψ(λ, ϕ, z, t) = ψ0(z) + ψ′(λ, ϕ, z, t). (2.80)

The suffix zero indicates the base state value and the prime denotes the grid-scale deviation.
As the turbulent fluxes have already been indicated by separate symbols, there is no danger
of confusing ψ′ with the turbulent fluctuations in Section 3.2. LM assumes the reference state
to be dry and at rest. Thus we have:

u0(z) = 0 , v0(z) = 0 , w0(z) = 0 , qv0(z) = 0 , ql0(z) = 0 , qf0 (z) = 0 . (2.81)

The model variables can then be written as:

u(λ, ϕ, z, t) = u′(λ, ϕ, z, t)
v(λ, ϕ, z, t) = v′(λ, ϕ, z, t)
w(λ, ϕ, z, t) = w′(λ, ϕ, z, t)
T (λ, ϕ, z, t) = T0(z) + T ′(λ, ϕ, z, t) (2.82)
p(λ, ϕ, z, t) = p0(z) + p′(λ, ϕ, z, t)
ρ(λ, ϕ, z, t) = ρ0(z) + ρ′(λ, ϕ, z, t)
qx(λ, ϕ, z, t) = qx′(λ, ϕ, z, t), x = v, l, f.

T0, p0 and ρ0 are related by the equation of state and the base state atmosphere is prescribed
to be hydrostatically balanced:

p0 = ρ0RdT0
∂p0
∂z

= −gρ0 = − gp0
RdT0

. (2.83)

The vertical profiles of reference temperature and pressure are obtained from an integration of
(2.83) by assuming, as proposed by Dudhia (1993), a constant rate of increase in temperature
with the logarithm of pressure:

∂T0
∂ ln p0

= β. (2.84)

Performing the integration with the boundary values pSL = p0(z = 0) and TSL = T0(z = 0)
for reference pressure and temperature at mean sea level z = 0, respectively, yields:

p0(z) =


pSL exp

{
−TSL

β

(
1−

√
1− 2βgz

RdT
2
SL

)}
if β 6= 0

pSL exp
(
− gz
RdTSL

)
if β = 0
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(2.85)

T0(z) = TSL

√
1− 2βgz

RdT
2
SL

.

The case β = 0 corresponds to an isothermal atmosphere. For β > 0 the reference atmosphere
has a finite height zmax given by zmax = RdT

2
SL/(2βg). The top of the model domain has

then to be positioned below this maximum value in order to avoid unrealistical low reference
temperatures in the vicinity of the upper boundary. For the parameters pSL, TSL and β
defining the base state, LM uses the default values

pSL = 1000hPa, TSL = 288.15K, β = 42K,

which result in reasonable vertical profiles of temperature, pressure and density throughout
the troposphere. For the default parameters given above, the finite height of the reference
atmosphere is at zmax ' 29 km. Figure (2.4) compares the default LM base state profiles
of temperature and pressure against those for the US standard atmosphere. The differences
are quite small, except for temperatures above the tropopause. In a later version of LM we
intend to add other options besides the logarithmical profile (2.84) allowing for polytropic,
isentropic and more generally defined reference atmospheres.

Figure 2.4: Profiles of reference temperature (left) and reference pressure (right) obtained by (2.85)
for the LM default parameters of pSL, TSL and β (solid lines). The dashed lines indicate the profiles
obtained from the US standard atmosphere.

LM uses the pressure perturbation as dependent model variable whereas the full form of the
heat equation is retained. Because of the horizontal homogeneity of base-state pressure, the
horizontal components of the pressure gradient force become

∂p

∂λ
= ∂p′

∂λ
,

∂p

∂ϕ
= ∂p′

∂ϕ
, (2.86)
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and the advection of pressure reads

v · ∇p = v · ∇p′ − gρ0w. (2.87)

The vertical acceleration due to the pressure gradient and gravity is rewritten as

−1
ρ

∂p

∂z
− g = −1

ρ

∂p′

∂z
− gρ

′

ρ
,

and the buoyancy term gρ′/ρ is expanded in the following form (using α from Eq. (2.16)):

g
ρ′

ρ
= g

ρ

(
p

RdTv
− p0
RdT0

)
= gρ0

(1 + α)ρ

(
T0p

Tp0
− 1− α

)
= gρ0

(1 + α)ρ

(
T0p
′

Tp0
− T ′

T
− α

)
Here, the term (1 + α) in the denominator represents a small correction of density due to
the concentrations of the water constituents, which may readily be replaced by 1 because α
is on the order of one percent. Thus,

−1
ρ

∂p

∂z
− g = −1

ρ

∂p′

∂z
+B,

where (2.88)

B = g
ρ0
ρ

{
T ′

T
− T0p

′

Tp0
+
(
Rv
Rd
− 1

)
qv − ql − qf

}
denotes the buoyant vertical acceleration. B from (2.88) resembles the buoyancy term re-
sulting from the anelastic scale analysis. It is, however, not identical to the anelastic form
because no scale approximations for the fractional temperature and pressure perturbations
have been made.

The last two terms on the right hand side in the B-definition represent the effect of water
loading. For liquid and solid hydrometeors suspended in the air or falling at terminal velocity,
the gravity acceleration acting on the particles is balanced by aerodynamical forces of friction.
Due to the conservation of barycentric momentum, these frictional forces in turn affect the
moist air surrounding the particles by an acceleration which is equal in magnitude but
opposite in sign. Clearly, as the equation of motion is formulated with respect to barycentric
velocity, the effect of water loading is only implicitly taken into account. By the expansion
(2.88) of the pressure gradient and gravity acceleration with respect to the dry base state,
however, the physical mechanism of water loading, i.e. the generation of a downward vertical
acceleration due to the weight of liquid and solid forms of water, is revealed explicitly.

Using Eqs. (2.86), (2.87) and (2.88) the set (2.65) of basic equations is now rewritten with
p′ as dependent variable:

∂u

∂t
+ v · ∇u− uv

a
tanϕ− fv = − 1

ρa cosϕ
∂p′

∂λ
+Mu

∂v

∂t
+ v · ∇v + u2

a
tanϕ+ fu = − 1

ρa

∂p′

∂ϕ
+Mv
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∂w

∂t
+ v · ∇w = −1

ρ

∂p′

∂z
+B +Mw (2.89)

∂p′

∂t
+ v · ∇p′ − gρ0w = −(cpd/cvd)pD + (cpd/cvd − 1)ρcpdQT

∂T

∂t
+ v · ∇T = 1

ρcpd

(
∂p′

∂t
+ v · ∇p′ − gρ0w

)
+QT

The set (2.89) is completed by the budget equations for the water constituents and the
equation of state from (2.65), which are not affected by the introduction of the base state.
Total pressure is calculated as the sum of base-state pressure and the predicted pressure
perturbation, p = p0 +p′, and the temperature perturbation occurring in the buoyancy term
B is obtained from the reference value and the predicted total temperature, T ′ = T − T0.
Total density then results as a diagnostic variable from the equation of state.

In the next section, this set of equations is transformed to a nonorthogonal curvilinear
coordinate system with a terrain following vertical coordinate ζ. The base-state variables T0,
p0 and ρ0 are independent of the horizontal coordinates λ and ϕ in the original z-system, but
become functions of all three independent variables (λ, ϕ, ζ) in the ζ-system. Therefore, the
base-state arrays in the model are three-dimensional. The reference state varies along the
ζ-coordinate surfaces when these are not flat. This is usually true when terrain is included.

2.5 Terrain-following Coordinates

The set (2.89) of equations in the previous chapter is written in the curvilinear but orthog-
onal spherical coordinate system with geometrical height z above mean sea level as vertical
coordinate. When surface terrain is included, the numerical solution of these equations be-
comes quite complex because of a costly formulation of the lower boundary conditions. A
convenient method to overcome this problem is the transformation to a terrain-following co-
ordinate system, where the lowest surface of constant vertical coordinate becomes conformal
to the orography. Examples of such coordinates are the well known pressure-based Sigma
coordinate for large-scale hydrostatic modelling and the Gal-Chen coordinate Gal-Chen and
Sommerville (1975) for small-scale nonhydrostatic modelling.

2.5.1 Basic Geometry and Definitions

The LM model equations will be formulated in a generalized terrain-following coordinate
system, where any monotonic function of geometrical height can be used as vertical coordi-
nate. This generalized vertical coordinate is denoted by ζ. Since ζ is prescribed to be time
independent, the resulting ζ-coordinate system represents a nondeformable system, where
surfaces of constant ζ are fixed in physical space (in contrast to various pressure-based ver-
tical coordinates used in hydrostatic models).

To set up the transformation relations more conveniently, we denote the coordinates of the
original z-system by qi,

q1 = λ

q2 = ϕ (2.90)
q3 = z,
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and the coordinates of the new ζ-system with ai. On the condition that a scalar function
a3 = ζ(λ, ϕ, z) exists, which is always monotonic in the variable z, the relations between the
old coordinates qi and the new coordinates ai of the ζ-system are uniquely defined with the
equations

a1 = λ = q1

a2 = ϕ = q2 (2.91)
a3 = ζ(λ, ϕ, z).

For the reverse transformation, q3 in (2.90) is a unique function in the variable ζ, q3 =
z(λ, ϕ, ζ). The ζ-system defined by (2.91) is a special case of a fully three-dimensional curvi-
linear coordinate system, since the coordinate surfaces of constant λ and ϕ remain the same.
However, terrain following coordinate surfaces, which become conformal to the orography
at the ground, are accommodated by suitable vertical transformations. Figure 2.5 illustrates
the geometry of the z-system and the ζ-system.

ζ

λ λ

z(λ,ζ  )

z(λ,ζ  ) = h(λ)

z(λ,ζ  )
1

2

3

z

ζ(λ,z )

ζ(λ,z )

ζ(λ,z )
2

3

1

ζ 3

Figure 2.5: Left: geometric height z(λ, ζ) for various fixed values of the terrain following coordinate
ζ. For a specific value of ζ (here ζ3), the corresponding height z(λ, ζ) may be conformal with the
height h(λ) of the terrain. Right: coordinate values ζ(λ, z) for various fixed values of the geometrical
height z. A fixed value of ζ (here ζ3) represents the terrain height.

Because the ζ-system is curvilinear and nonorthogonal, we have to distinguish between co-
variant and contravariant base vectors and vector components. We will adopt the conven-
tion that subscripts indicate covariant quantities whereas superscripts indicate contravariant
quantities. Covariant base vectors are tangent to the lines of constant curvilinear coordi-
nates, contravariant base vectors are normal to the surfaces of constant coordinates. For the
original (λ, ϕ, z)-system the two sets of base vectors are:

q1 = a cosϕeλ ,
q2 = aeϕ ,
q3 = ez ,

q1 = (a cosϕ)−1eλ ,
q2 = (a)−1eϕ , (2.92)
q3 = ez .

Since the z-system is orthogonal, the covariant and contravariant base vectors have the same
direction and there is no difference when normalized, i.e. unit vectors are used.

This is not true for the ζ-system, and any vector A may be represented in terms of either
set of base vectors, using covariant or contravariant vector components. The covariant and
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contravariant base vectors of the ζ-system are denoted by ai and ai, respectively. For these
base vectors the relation ai · aj = δji , where δ

j
i is the Kronecker delta, holds by definition.

Denoting the contravariant and the covariant components of the vector A in the original
orthogonal z-system by Ai and Ai, respectively, and those in the new nonorthogonal ζ-
system by Âi and Âi, A may be represented by

A =
∑
n

Anqn =
∑
n

Anqn

=
∑
n

Ânan =
∑
n

Ânan. (2.93)

The mapping of the base vectors and the corresponding components of any vector is accom-
plished by the Jacobian matrix J ζ of the transformation with elements Jζij given by

Jζij ≡
∂aj

∂qi
(2.94)

and the inverse Jacobian matrix J z = (J ζ)−1 with elements Jzij given by

Jzij ≡
∂qj

∂ai
. (2.95)

Base vectors and vector components transform contragredient to each other. For the set of
covariant base vectors the transformation is given by

ai =
∑
n

Jzin qn ; qi =
∑
n

Jζin an

Âi =
∑
n

JζniA
n ; Ai =

∑
n

Jzni Â
n (2.96)

and for the contravariant base the following relations hold:

ai =
∑
n

Jζni q
n ; qi =

∑
n

Jzni an

Âi =
∑
n

JzinAn ; Ai =
∑
n

Jζin Ân. (2.97)

For the transformation defined by (2.91) the Jacobian matrix and its inverse read

J ζ =

 1 0 (∂ζ/∂λ)z
0 1 (∂ζ/∂ϕ)z
0 0 ∂ζ/∂z

 (2.98)

J z =

 1 0 (∂z/∂λ)ζ
0 1 (∂z/∂ϕ)ζ
0 0 ∂z/∂ζ

 . (2.99)

All computations will be done in the ζ-system, where the model variables are functions of
the independent variables, the new coordinates (λ, ϕ, ζ). Consequently, it is convenient to
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formulate the elements of the Jacobian matrix J ζ in terms of the elements of the inverse ma-
trix J z, which can be easily calculated in the ζ-system. Applying the orthogonality relation∑
n J

z
inJ

ζ
nj = δji yields (

∂ζ

∂λ

)
z

= −
(
∂z

∂ζ

)−1(∂z
∂λ

)
ζ(

∂ζ

∂ϕ

)
z

= −
(
∂z

∂ζ

)−1( ∂z
∂ϕ

)
ζ

(2.100)

∂ζ

∂z
=

(
∂z

∂ζ

)−1
.

One can easily show that the inverse of the Jacobian matrix of the transformation from the
z-system to the terrain-following coordinate system, J z, is related to the covariant metric
tensor GT according to

√
GT ≡

√
det (GT ) =

√
Gs
√
G (2.101)

where
√
G ≡ | det (J z) | =

∣∣∣∣ ∂z∂ζ
∣∣∣∣ .

The elements gTij of the matrix GT are given by the scalar products of the corresponding
covariant base vectors in the ζ-system, i.e. gTij = ai · aj .

√
GT denotes the total Jacobian

of the ζ-system, which may be calculated as the product of the Jacobian of the spherical
z-system,

√
Gs from (2.59), and the Jacobian

√
G of the transformation from the z- to the ζ-

system. The latter is defined as the absolute value of the determinant of the inverse Jacobian
matrix J z. This determinant is positive for a right-handed transformation, where ζ increases
monotonically with z. For a left-handed transformation, ζ will decrease for increasing z and
det(J z) becomes negative.

Most hydrostatic NWP-models use pressure-based vertical coordinates and thus left-handed
coordinate systems. For this traditional reason, LM is also formulated in a left-handed
terrain-following system, where ζ increases from the top of the model domain to the bottom
and the ζ-surface corresponding to the lower boundary will become conformal to the terrain.
Thus, by definition, ∂z/∂ζ is always negative and

√
G = | det (J z) | = − ∂z

∂ζ
> 0 . (2.102)

Denoting the nonunity and nonzero elements of the inverse Jacobian matrix by

Jλ ≡ Jz13 =
(
∂z

∂λ

)
ζ
,

Jϕ ≡ Jz23 =
(
∂z

∂ϕ

)
ζ

, (2.103)

Jζ ≡ Jz33 = ∂z

∂ζ
= −
√
G,

the matrices (2.98) and (2.99) can be rewritten as

J ζ =

 1 0 Jλ/
√
G

0 1 Jϕ/
√
G

0 0 −1/
√
G

 (2.104)
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J z =

 1 0 Jλ
0 1 Jϕ
0 0 −

√
G

 . (2.105)

The geometry of the ζ-system is uniquely determined by the two sets of new base vectors. The
covariant base vectors with respect to the original z-system result from (2.96) and (2.105).
They are

a1 = q1 + Jλq3 = a cosϕ {eλ + (Jλ/a cosϕ)ez} = a cosϕã1 ,

a2 = q2 + Jϕq3 = a {eϕ + (Jϕ/a)ez} = aã2 , (2.106)
a3 = −

√
Gq3 = −

√
Gez =

√
Gã3 .

Here, the ãi denote normalized base vectors of the ζ-system, where the roots of the metric
coefficients gsii of the original z-system have been used for normalization. ã3 = −ez is the
unit vector in ζ-direction. However, ã1 and ã2 are not normalized to unity, i.e. they are not
unit base vectors. The contravariant set of base vectors results from (2.97) and (2.104):

a1 = q1 = (1/a cosϕ)eλ
a2 = q2 = (1/a)eϕ (2.107)
a3 = (Jλq1 + Jϕq2 − q3)/

√
G

= (Jλeλ + Jϕ cosϕeϕ − a cosϕez)/(a cosϕ
√
G)

As clearly revealed by these sets of base vectors, the ζ-system is not an orthogonal system
when the terrain is not flat (Jλ 6= 0, Jϕ 6= 0). For the formulation of the model we will use
the covariant set of normalized base vectors ãi (see Figure 2.6).

ζ = const

λ

eλ

e

a
~

aλ
~

z

(Jλ / a cos ϕ ) ez

z

z

Figure 2.6: Unit vectors eλ and ez at a point on a surface of constant ζ (open circle) in a (λ, z)-plane
(in red). The corresponding normalized base vectors ãλ and ãz of the ζ-system are indicated in blue.
The dotted vector is the second vector component of ãλ = eλ + (Jλ/a cosϕ)ez.

2.5.2 Transformation Relations

This subsection provides some useful relations to transform the set of basic equations from
the z- to the ζ-system.
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In LM, all vector variables and spatial differential operators are formulated with respect to
the set of normalized covariant base vectors, i.e. ã1, ã2, ã3. This allows to use the physical
vector components of the original z-system instead of the contravariant components as de-
pendent model variables, while doing all computations in the nonorthogonal terrain-following
coordinate system. The only exception is the contravariant vertical velocity in the ζ-system,
ζ̇, which becomes a diagnostic model variable.

(a) Vector Components
Any vector A with contravariant components Ai and physical components Ãi in the
original z-system may be written in the ζ-system as

A = Â1a1 + Â2a2 + Â3a3.

Using (2.96) and (2.105), the contravariant vector components Âi are given by

Â1 = A1

Â2 = A2 (2.108)
Â3 = (JλA1 + JϕA

2 −A3)/
√
G.

Referring A to the normalized base vectors ãi yields

A = Ă1ã1 + Ă2ã2 + Ă3ã3, (2.109)

where the normalized vector components Ăi can be calculated in terms of the physical
vector components Ãi of the z-system:

Ă1 = Ã1 (= A1a cosϕ)
Ă2 = Ã2 (= A1a) (2.110)
Ă3 = (Jλ/a cosϕ)Ã1 + (Jϕ/a)A2 −A3.

Thus, by the representation (2.109) of A, the horizontal vector components Ă1 and Ă2

become identical to the physical vector components in the original z-system.

(b) Wind Velocity
By applying (2.109) to the three-dimensional wind vector with the physical components
u, v and w in the z-system,

v = λ̇q1 + ϕ̇q2 + żq3 = ueλ + veϕ + wez,

v may be written in the ζ-system as

v = uã1 + vã2 + ζ̇
√
Gã3. (2.111)

ζ̇ denotes the (nonnormalized) contravariant vertical velocity,

ζ̇ = 1√
G

(
Jλ

a cosϕu+ Jϕ
a
v − w

)
, (2.112)

which can be diagnosed from u, v and w. Figure 2.7 illustrates the representation of
a wind vector v using orthogonal unit vectors of the z-system and normalized base
vectors of the ζ-system.
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(c) Lagrangian Time Derivative
The total time derivative of a scalar field function ψ is invariant and the general
formulation for any set of coordinates ai reads

dψ

dt
= ∂ψ

∂t
+ v · ∇ψ = ∂ψ

∂t
+
∑
n

ȧn
∂ψ

∂an
.

For the ζ-system the Lagrangian time derivative becomes

dψ

dt
= ∂ψ

∂t
+ λ̇

∂ψ

∂λ
+ ϕ̇

∂ψ

∂ϕ
+ ζ̇

∂ψ

∂ζ

and may be formulated using the physical wind components u and v:

dψ

dt
= ∂ψ

∂t
+ 1
a cosϕ

(
u
∂ψ

∂λ
+ v cosϕ∂ψ

∂ϕ

)
+ ζ̇

∂ψ

∂ζ
. (2.113)

(d) Gradient Operator
The Nabla operator applied to a scalar field function ψ forms an invariant vector which
is represented by

∇ψ =
∑
n

qn ∂ψ
∂qn

=
∑
n

an ∂ψ
∂an

. (2.114)

This general formulation uses contravariant base vectors, and the partial derivatives in
(2.114) represent covariant vector components. Thus, partial derivatives with respect
to the space coordinates will transform according to the rule (2.97) for covariant vector
components. Using (2.105) for the inverse of the Jacobian matrix yields(

∂ψ

∂λ

)
z

=
(
∂ψ

∂λ

)
ζ

+ Jλ√
G

∂ψ

∂ζ(
∂ψ

∂ϕ

)
z

=
(
∂ψ

∂ϕ

)
ζ

+ Jϕ√
G

∂ψ

∂ζ
(2.115)

∂ψ

∂z
= − 1√

G

∂ψ

∂ζ
.

ζ = const ζ = const

z z

λ λ

v v

u e λ

w ez
u a λ

~

ζ G
. 1/2

az
~

Figure 2.7: Wind vector v at a point (open circle) on a surface of constant ζ in a
(λ, z)-plane. Left: vector decomposition along unit vectors eλ and ez of the orthogonal
z-system. Right: vector decomposition along normalized base vectors ãλ and ãz of the
ζ-system. In case of v being tangent to the ζ-surface, ζ̇ = 0 and v = uãλ; this is identical
to v = ueλ + wez, since in this case w = uJλ/a cosϕ.
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Especially, Eqs. (2.115) allow to formulate the vector∇ψ with respect to the orthogonal
basis qi, but to calculate the spatial derivatives within the terrain-following ζ-system.
As will be described in Section 3.6, the equation of motion used in LM is formulated
with respect to the orthogonal unit vectors eλ, eϕ and ez of the spherical z-system.
Thus, the transformation relations (2.115) can be used directly to transform the pres-
sure gradient force according to the following representation of ∇ψ:

∇ψ = 1
a cosϕ

{(
∂ψ

∂λ

)
ζ

+ Jλ√
G

∂ψ

∂ζ

}
eλ (2.116)

+1
a

{(
∂ψ

∂ϕ

)
ζ

+ Jϕ√
G

∂ψ

∂ζ

}
eϕ −

1√
G

∂ψ

∂ζ
ez.

The transformation relations (2.115) may also be written in an alternative form using
the following expressions for the horizontal variation of the Jacobian

√
G:

√
G

∂λ
= −∂Jλ

∂ζ
,

√
G

∂ϕ
= −∂Jϕ

∂ζ
. (2.117)

By applying (2.117) and the chain rule, (2.115) may be expanded to yield the strong
conservation form

√
G

(
∂ψ

∂λ

)
z

= ∂

∂λ

(√
Gψ

)
ζ

+ ∂

∂ζ
(Jλψ)

√
G

(
∂ψ

∂ϕ

)
z

= ∂

∂ϕ

(√
Gψ

)
ζ

+ ∂

∂ζ
(Jϕψ) . (2.118)

(e) Divergence of a Vector Field
The divergence of any vector field A forms an invariant scalar. It is calculated in the
ζ-system according to the general rule

∇ ·A = 1√
GT

∑
n

∂

∂an

(√
GT Ân

)
(2.119)

using the total Jacobian (2.101) of the transformation. The divergence of A may also
be formulated with the contravariant vector components Ai of the orthogonal z-system
instead of the contravariant components Âi of the ζ-system. From the transformation
relations (2.108) for vector components the following representation of ∇ ·A in strong
conservation form results:

∇ ·A = 1√
GT

{
∂

∂λ

(√
GTA1

)
+ ∂

∂ζ

(
Jλ
√
GsA1

)
(2.120)

+ ∂

∂ϕ

(√
GTA2

)
+ ∂

∂ζ

(
Jϕ
√
GsA2

)
− ∂

∂ζ

(√
GsA3

)}
.

By applying the relations from (2.117) for the Jacobian
√
G, ∇·A may be alternatively

formulated in nonconservative form:

∇ ·A = 1√
Gs

{
∂

∂λ

(√
GsA1

)
+ Jλ√

G

∂

∂ζ

(√
GsA1

)
(2.121)

+ ∂

∂ϕ

(√
GsA2

)
+ Jϕ√

G

∂

∂ζ

(√
GsA2

)
− 1√

G

∂

∂ζ

(√
GsA3

)}
.
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Both formulations (2.120) and (2.121) for∇·A use the contravariant vector components
of the original z-system, but the calculations are done within the ζ-system, i.e. the
horizontal partial derivatives are computed along the sloping ζ-surfaces.

(f) Wind Divergence
We apply (2.120) and (2.121) to calculate the divergence of the three-dimensional wind
field, D = ∇ · v, and use the physical vector components u, v and w with respect to
the unit base vectors of the orthogonal z-system. The conservative form (2.121) yields

D = 1
a cosϕ

√
G

{
∂

∂λ

(√
Gu
)

+ ∂

∂ζ
(Jλu) (2.122)

+ ∂

∂ϕ

(√
Gv cosϕ

)
+ ∂

∂ζ
(Jϕv cosϕ)

}
− 1√

G

∂w

∂ζ
.

and from (2.121) an alternative representation may be expanded:

D = 1
a cosϕ

{
∂u

∂λ
+ Jλ√

G

∂u

∂ζ
(2.123)

+ ∂

∂ϕ
(v cosϕ) + cosϕ Jϕ√

G

∂v

∂ζ

}
− 1√

G

∂w

∂ζ
.

2.5.3 The Vertical Coordinate

For any practical computations in the terrain-following system, the vertical coordinate must
be specified by a unique transformation relation z = f(λ, ϕ, ζ) to calculate the elements Jλ,
Jϕ and

√
G of the Jacobian matrix. In order to keep the numerical formulation of the model

equations independent from a specific choice on ζ, the coordinate transformation will be
defined by a two-step procedure.

The first step involves a terrain-following transformation using a user-specified coordinate
ζ̃. In the second step, ζ̃ is mapped to the computational coordinate ζ using a monotonic
function m in the form ζ̃ = m(ζ). The transformation relation and the Jacobian read

z = f(λ, ϕ, ζ̃)
ζ̃ = m(ζ) (2.124)

√
G = ∂z

∂ζ̃

∂ζ̃

∂ζ
.

Since m can be any monotonic function, we define this function to map (by its inverse)
the coordinate ζ̃ to the index space used for the vertical discretization (see Section 4) with
top-down increasing indices. Thus, this second step of the transformation defines the com-
putational coordinate ζ in a unique way and additionally accommodates any user-specified
grid-stretching in the ζ̃-space. With respect to the discretization, the two-step transforma-
tion can be interpreted as a mapping of the irregular curvilinear grid associated with the
terrain-following coordinate ζ̃ in physical space onto a regular rectangular grid labeled by
integers. These are the discrete values of the computational coordinate ζ with a vertical grid
spacing of one. Figure 2.8 illustrates this two-step transformation.

LM offers three options for the terrain-following coordinate ζ̃. The first one is a reference-
pressure based coordinate denoted by η, the second one is a height based coordinate denoted
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Figure 2.8: Mapping of an irregular curvilinear grid associated with the terrain following coordinate
ζ̃ onto a rectangular equidistant grid ζ labeled by integers.

by µ, and the third one is the height-based SLEVE (Smooth Level VErtical) coordinate
according to Schär et al. (2002). Obviously, as base-state pressure and height are uniquely
related by the hydrostatic equation, η represents also a terrain-following height coordinate,
but the η-formulation might be more familiar to many meteorologist for traditional reasons.

Both vertical coordinates ζ̃ = η and ζ̃ = µ are formulated to define a hybrid coordinate
system with terrain-following coordinate lines between the surface terrain-height denoted by
h(λ, ϕ) and a height z = zF where the coordinate lines change back to flat horizontal lines.
Between zF and the top-height zT of the model domain, all ζ̃ coordinate lines correspond
to lines of constant height in the original z-system. The reference pressures corresponding
to h(λ, ϕ), zF and zT are denoted by ps0(λ, ϕ), pF and pT , respectively. These values can be
calculated from Eq. (2.85).

(a) Pressure-based hybrid coordinate η
The reverse transformation for the pressure-based coordinate η is generally formulated
as

p0(λ, ϕ, η) = A(η) +B(η) ps0(λ, ϕ) . (2.125)

The corresponding z-values result from Eq. (2.85), which finally defines the transfor-
mation function f in (2.124). η is chosen to be a normalized coordinate in p-direction
running from the top of the model domain to the bottom. η = ηT = pT /pSL corre-
sponds to the top, where pSL = 1000 hPa denotes a mean sea level pressure, and η = 1
corresponds to the surface. The mapping functions A(η) and B(η) are defined for a
hybrid system according to

A(η) =
{
pSLη if ηT ≤ η ≤ ηF ,
pF (1− η)/(1− ηF ) if ηF < η ≤ 1 ,

(2.126)

B(η) =
{ 0 if ηT ≤ η ≤ ηF ,

(η − ηF )/(1− ηF ) if ηF < η ≤ 1 .

ηF = pF /pSL refers to the interfacial height zF separating the terrain-following part of
the domain from the part which corresponds to the z-system. By default, pF is set to
220 hPa and the top of the model domain is positioned at pT = 20 hPa, i.e. ηF = 0.220
and ηT = 0.020. Other values or even other functional forms of the mapping functions
A(η) and B(η) may be specified by the user.
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The special case of a purely terrain-following, i.e. nonhybrid coordinate system is also
included by the definition (2.125). Setting ηF = ηT = 0 in (2.126) yields the classical
Sigma-coordinate in the form p0 = σps0 with σ = η. However, for reasons discussed in
Section 3.4, a domain with infinite height is not accommodated by the model. For a
domain with finite top-height at ηT , a nonhybrid terrain-following system is obtained
by setting ηF = ηT in (2.126). This results in the transformation

p0(λ, ϕ, η) = η − ηT
1− ηT

{ ps0(λ, ϕ)− pT }+ pT .

Thus, by an additional transformation from η to a Sigma-coordinate σr according to

σr = η − ηT
1− ηT

,

which maps the η-interval [ ηT , 1 ] onto the σr-interval [ 0, 1 ], the definition of the trans-
formation relation σr ≡ (p0−pT )/(ps0−pT ) for the σr-coordinate as proposed by Dudhia
(1993)) is revealed.

(b) Height-based hybrid coordinate µ
The µ-coordinate is based on the Gal-Chen coordinate but modified to allow for a hy-
brid system with an interfacial height zF . µ is chosen to be a nonnormalized coordinate
in z-direction, i.e. running from the surface terrain height where µ = 0 to the top of the
model domain where µ = µT = zT . The µ-value for the interfacial height is µF = zF .
The reverse transformation for µ is defined analogously to (2.125):

z(λ, ϕ, µ) = a(µ) + b(µ)h(λ, ϕ) . (2.127)

The mapping functions a(µ) and b(µ) are given by

a(µ) = µ ,

(2.128)

b(µ) =
{ 0 if µF ≤ µ ≤ µT ,

(µF − µ)/µF if 0 ≤ µ < µF .

The traditional Gal-Chen coordinate is obtained by setting zF to the height zT of the
model domain, i.e. µF = µT . In contrast to the η-coordinate, the transformation (2.127)
defines a right-handed coordinate system. As the computational coordinate ζ refers to
a left-handed terrain-following system, the corresponding transformation becomes part
of the mapping function µ = m(ζ).

(c) Height-based hybrid SLEVE coordinate
Schär et al. (2002) have recently suggested a new terrain-following coordinate formu-
lation (SLEVE: smooth level vertical) which produces a smooth computational mesh
at mid and upper levels. Unlike traditional formulations, e.g. the well known pressure
based Sigma coordinate η or the height based Gal-Chen coordinate µ, the new SLEVE
coordinate transformation is characterized by a scale dependent, exponential vertical
decay of the terrain structure. This allows for a fast decay of small-scale topography
components, leading to a fast transition from terrain-following to smooth levels. The
hybrid version of the SLEVE coordinate µs has been implemented and tested by Daniel
Leuenberger from MeteoSwiss Leuenberger (2002).
Similar to the definition of the Gal-Chen coordinate, the height-based SLEVE coordi-
nate µs is a non-normalized coordinate taking the values µs = 0 at the terrain surface
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h and µs = µT = zT at the model top. The inverse transformation for the SLEVE
coordinate is given by

z(λ, ϕ, µs) = a(µs) + b1(µs)h1(λ, ϕ) + b2(µs)h2(λ, ϕ) , (2.129)

where h1 and h2 denote the large-scale and the small-scale components of the topog-
raphy h(λ, ϕ). They satisfy the relation

h(λ, ϕ) = h1(λ, ϕ) + h2(λ, ϕ) . (2.130)

The mapping functions a(µs) and bi(µs) of a hybrid version of the SLEVE coordinate
are given by

a(µs) = µs ,

(2.131)

bi(µs) =


0 if µF ≤ µs ≤ µT ,
sinh {(µF − µs)/si}

sinh(µF /si)
if 0 ≤ µs < µF ,

where the subscript i = 1 refers again to the large-scale part and i = 2 to the small-scale
part of the topography. The decay constants si define the vertical decay rate of the
respective topography component, i.e. at a height si the contribution of hi to the level
height has fallen to a factor of 1/e of the value at the surface z = h. µF = zF denotes
the height, where the terrain-following surfaces change to horizontal z-surfaces. The
original SLEVE formulation is obtained by setting zF to the height zT of the model
domain, i.e. µF = µT . It can be noted that the use of the hybrid SLEVE formulation
mitigates the problem of the discontinuity in the determinant of the inverse Jacobian
matrix at µs = µF since | ∂bi∂µs

|µs=µF is smaller compared with the Gal-Chen formulation.
Since any vertical coordinate transformation must be unique, the function (2.129) must
be strictly monotone. A sufficient (but not necessary) condition can be expressed as

∂z

∂µs
≥ γ > 0 , (2.132)

where
γ = 1− h1,max

s1
coth

(
µF
s1

)
− h2,max

s2
coth

(
µF
s1

)
. (2.133)

Here, hi,max denote the maxima of the topography parts in the computational domain.
From this condition it becomes clear that the choice of the decay rates s1 and s2 is not
free but depends on the topography, the decomposition filter and the inter-facial height
µF . In practice it is desirable that the small-scale component decays as fast as possible
because these structures cause the most serious transformation errors. Therefore s2
must be chosen as small as possible. Since the well resolved topography structures are
much less responsible for errors, s1 may be set to a larger value than s2 resulting in
slowly varying levels even in the upper part of the domain.
In the current LM implementation, a digital filter based on a 9-point averaging operator
is used to calculate the large-scale part h1 of the topography. The small-scale part h2
is then defined as the difference to the original topography. For a 7 km grid spacing,
100 filter iterations are used to determine the large-scale part of the topography, s1
and s2 are set to 8000 m and 5000 m, respectively.
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Figure 2.9 compares the position of the η- and µ hybrid coordinate levels over a bell-shaped
mountain in physical space for the case of equidistant level increments in both η and µ. A
base-state pressure of pF = 220hPa is specified to indicate the interfacial height zF separating
the terrain-following part of the domain from the z-system. Using the default parameters
for the reference atmosphere, the value zF ' 11360m results from Eq. (2.85). For the µ-
coordinate, an equidistant level increment results in an equidistant vertical distribution of
levels in physical space over flat terrain. Over topography, the distance between model levels
is compressed below zF . This relative reduction of layer thickness over high topography
results also in case of the pressure-based η-coordinate. In this case, however, layer thickness
increases with height over both mountainous and flat terrain.

Figure 2.10 illustrates the position of the µ- and the µs-coordinates in physical space for a
bell-shaped mountain structure with a superimposed small-scale variation. In this example,
the vertical decay rates have been chosen as s1 = 12000m for the large-scale part and
as s2 = 2000m for the small-scale part of the topography. A rapid decay of the small-
scale variations results in case of the SLEVE-coordinate, and at heights above about 4000m
only the large-scale structure is dominantly reflected in the coordinate lines. The amplitude
of these large-scale structures is also reduced exponentially with height. In contrast, the
amplitude of both the small-scale and the large-scale variations decrease only linearly in case
of the µ-coordinate, resulting in a noticeable distortion of the coordinate lines up to the
interfacial height zF . Further details on the grid structure and the set-up of the vertical grid
are discussed in Section 4.

Figure 2.9: Terrain-following coordinate levels for a bell-shaped mountain with 3000m height. Left:
Geometrical height of 10 η levels starting with ηT = 0.1 at the top (corresponding to a top height
zT ' 16160m) to η = 1.0 at the surface; the surface height is indicated as h(x); the level increment is
constant with ∆η = 0.1, resulting in a non-equidistant vertical distribution of levels in physical space.
Right: Geometrical height of 10 µ-levels starting with µ = 0 at the surface to µT = zT = 15750m at
the top; the level increment is constant with ∆µ = 1750m, resulting in an equidistant distribution of
levels in physical space for flat terrain. The same interfacial height zF is used for both coordinates.
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Figure 2.10: Terrain-following hybrid coordinate levels for a bell-shaped mountain with 2000m height
and a half-width of 15 horizontal grid intervals, superimposed by a small-scale fluctuation with a 3
grid interval wavelength. The interfacial height is set to zF = 11360m. Left: Geometrical height of
16 µ levels with a constant level increment of ∆µ = 1000m from the surface to the top at µT =
zT = 15000m. Right: Geometrical height of 16 µs levels of the SLEVE coordinate with a constant
level increment of ∆µ = 1000m from the surface to the top at µs,T = zT = 15000m. The vertical
decay rates are s1 = 12000m for the large-scale part and s2 = 2000m for the small-scale part of the
topography.

2.6 The Set of Model Equations

2.6.1 Dynamic Equations in Terrain-Following Coordinates

By applying the transformation relations from the previous section, the basic equations
are written in the metrics of the terrain-following ζ-coordinate system. This is most easily
done for the budget equations for mass specific scalars as the concentrations of the water
constituents. Since these equations have been formulated in advection form, the Lagrangian
time derivative (2.113) can directly be used to formulate the advection operator to the ζ-
system.

Some difficulties are encountered when transforming the equation of motion. This equation
has to be written in vector form as the directional dependence on the orientation of the base
vectors has to be taken into account. As clearly pointed out by Sharman et al. (1988), two
different decompositions of the equation of motion are possible:

(a) In the first method the equation of motion is decomposed along the coordinate direc-
tions of the terrain-following ζ-system by a projection onto the covariant base vectors
ai. This yields prognostic equations for the contravariant velocities λ̇, ϕ̇ and ζ̇. However,
the base vectors have also to be differentiated. Thus, the resulting momentum equa-
tions involve the Christoffel symbols from tensor analysis and take a rather complex,
not very familiar form. The procedure is straightforward and this type of decomposition
is described in detail in standard text books (e.g. Pielke (1984)). A major disadvan-
tage of the method is that it is impossible to obtain a fully conservative form for the
budget equation of momentum when using either covariant or contravariant velocity
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components and base vectors.

(b) In the second method, which was independently proposed by Vinokur (1974) and Vi-
viand (1974), the equation of motion is decomposed along the coordinate directions of
the original z-system by a projection onto the orthogonal unit vectors ei. This yields
prognostic equations for the physical velocity components u, v and w of the z-system
which, however, are to be evaluated in the terrain-following ζ-system. Thereby, the
velocity components become decoupled from the spatial variation of the base vectors
ai. The resulting momentum equations take a simple form which looks very familiar
since the physical vertical velocity w is a predicted quantity. Another advantage of this
methodology, i.e. returning to the physical velocities u, v and w of the z-system while
maintaining the metrics of the terrain-following coordinate system, is that it offers the
possibility to derive a conservative form of the equation of motion.

After considering these aspects and related issues, we have chosen to follow the strategy
(b), which is used in many other mesoscale models, to formulate the LM model equation
in the terrain-following ζ-system. In the present version of the model, the advection form
of the equations is preferred for the numerical solution and we thus will not make use of a
conservative form of the equations. The advection form allows for an easy implementation of
a robust and efficient time-splitting algorithm to solve the equations numerically (see Section
5). Clearly, conservation of mass is not guaranteed, but the related errors are believed to
be small – at least for short time range integrations. A numerical scheme which is based on
the flux-form of the equations has recently been developed for the WRF-model Klemp et al.
(2003). The application of flux-form equations in LM will be considered for a future model
version.

The transformation of the momentum equations according to method (b) involves rather
lengthy algebraical and analytical calculations using the transformation relations from the
previous sections as well as some tensor calculus. These are not reproduced here since we
finally end up with the fact that the momentum equation in the ζ-system could have also
been obtained by transforming the prognostic equations for the wind components in the
z-system as if u, v and w were scalars (which they definitely are not).

Thus, the set of basic equations (2.89) is easily transformed to terrain-following coordinates
by applying (2.113) for the total time derivative, (2.115) for the pressure gradient terms and
for vertical derivatives, and (2.123) for the wind divergence D. This yields the following set
of model equations in the (λ, ϕ, ζ)-system:

∂u

∂t
+ v · ∇u− uv

a
tanϕ− fv = − 1

ρa cosϕ

(
∂p′

∂λ
+ Jλ√

G

∂p′

∂ζ

)
+Mu

∂v

∂t
+ v · ∇v + u2

a
tanϕ+ fu = − 1

ρa

(
∂p′

∂ϕ
+ Jϕ√

G

∂p′

∂ζ

)
+Mv

∂w

∂t
+ v · ∇w = 1

ρ
√
G

∂p′

∂ζ
+B +Mw (2.134)

∂p′

∂t
+ v · ∇p′ − gρ0w = −(cpd/cvd)pD + (cpd/cvd − 1)ρcpdQT

∂T

∂t
+ v · ∇T = 1

ρcpd

(
∂p′

∂t
+ v · ∇p′ − gρ0w

)
+QT
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∂qv

∂t
+ v · ∇qv = −(Sl + Sf ) +Mqv

∂ql,f

∂t
+ v · ∇ql,f + 1

ρ
√
G

∂Pl,f
∂ζ

= Sl,f +Mql,f .

The total density ρ is calculated as a diagnostic variable from the equation of state, (2.55).
The advection operator is defined by

v · ∇ = 1
a cosϕ

(
u
∂

∂λ
+ v cosϕ ∂

∂ϕ

)
+ ζ̇

∂

∂ζ
(2.135)

where the contravariant vertical velocity ζ̇ is diagnosed from the predicted physical velocity
components u, v and w according to Eq. (2.112). The divergence of the wind field, D, results
from (2.123) in terms of u, v and w. The formulation of the mixing termsMψ and the diabatic
heating rate as well as their transformation to the ζ-system will be discussed in subsequent
Sections.

The metrics of the terrain-following coordinate system is taken into account by the Jacobian√
G and the elements Jλ and Jϕ of the inverse Jacobian matrix. For the numerical formulation

of the model, these terms will not be evaluated explicitly by analytical differentiation of a
specific analytical form z = f(λ, ϕ, ζ) of the transformation, but are provided as three-
dimensional fields which are calculated numerically. In this way, the model code becomes
independent from a specific choice for the vertical coordinate.

2.6.2 Modifications

In the present version of LM, the set (2.134) of prognostic equations is applied in a slightly
different form. The modifications to obtain the model equations are summarized below.

(1) Formulation of the metric terms
The metric terms of the ζ-system,

√
G, Jλ and Jϕ, are formulated in terms of the

base-state variables p0 and ρ0. Thus, no additional three-dimensional arrays for these
metric terms have to be defined in the model code and some core memory can be saved.
Using the hydrostatic stratification of the base state, the metric terms are expanded
as follows

−
√
G = ∂z

∂ζ
= ∂z

∂p0

∂p0
∂ζ

= − 1
gρ0

∂p0
∂ζ

Jλ = ∂z

∂λ
= ∂z

∂p0

∂p0
∂λ

= − 1
gρ0

∂p0
∂λ

Jϕ = ∂z

∂ϕ
= ∂z

∂p0

∂p0
∂ϕ

= − 1
gρ0

∂p0
∂ϕ

.

We denote the variation of reference pressure with ζ by √γ for abbreviation (and to
indicate that it is closely related to the Jacobian

√
G),

√
γ ≡ ∂p0

∂ζ
(2.136)
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and rewrite the metric terms in the form
√
G = 1

gρ0

√
γ

Jλ√
G

= − 1
√
γ

∂p0
∂λ

(2.137)

Jϕ√
G

= − 1
√
γ

∂p0
∂ϕ

.

(2) Advection of horizontal momentum
The terms of horizontal advection in the equations for u and v are combined with the
metric term involving tanϕ and with the Coriolis term and formulated in terms of
the kinetic energy of horizontal motion, Eh, and the vertical component of absolute
vorticity, Va. Eh and Va are defined as mass specific quantities,

Eh = 1
2
(
u2 + v2

)
(2.138)

Va = 1
a cosϕ

{
∂v

∂λ
− ∂

∂ϕ
(u cosϕ)

}
+ f. (2.139)

With (2.138) and (2.139) the terms on the left hand side of the u- and v-equations
from the set (2.134) may be expanded as

v · ∇u− uv

a
tanϕ− fv = 1

a cosϕ
∂Eh
∂λ
− vVa + ζ̇

∂u

∂ζ
(2.140)

v · ∇v + u2

a
tanϕ+ fu = 1

a

∂Eh
∂ϕ

+ uVa + ζ̇
∂v

∂ζ
(2.141)

These relations correspond to a form of the equations for horizontal momentum that
is often used in hydrostatic models (e.g. the former DWD models EM and DM). They
allow to apply a special finite difference scheme which conserves enstrophy in case of
strictly horizontal motion. By this scheme, the generation of nonlinear instability from
aliasing is suppressed.

(3) Approximations to the pressure equation
In the prognostic equation for the pressure perturbation the source term due to diabatic
heating will be neglected. The divergence term is usually the dominating term for most
meteorological applications on the mesoscale, whereas the diabatic heating term is
usually small. This approximation is used in most nonhydrostatic compressible models
(e.g. Klemp and Wilhelmson (1978), Dudhia (1993)), Xue et al. (1995)). Thus, the
pressure tendency equation from (2.134) takes the more simple form

∂p′

∂t
+ v · ∇p′ − gρ0w = −(cpd/cvd)pD (2.142)

which is also substituted for the pressure tendency term on the right hand side of the
heat equation.
As has been shortly discussed in Section 3.1, this simplification may have a detrimental
impact on the behaviour of compression waves and on mass conservation, but the over-
all physical error is probably small. Dudhia (1993)) has pointed out, that the neglection
of the diabatic heating term in the pressure tendency equation might be even advan-
tageous for models with a rigid upper boundary. With this boundary condition, the
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atmosphere is not free to expand vertically, as would be expected, and heating within
the model domain will cause a larger temperature increase (by the factor cpd/cvd) than
in case of free expansion. Thus, omitting the heating term remedies the overheating
caused by vertical confinement of the model domain.

The general role of the heating term in the pressure equation is to increase the pressure
locally and thereby force expansions which generate gravity and compression waves.
Dropping this term is equivalent to neglect the small part of the velocity field that is
directly forced by pressure changes due to diabatic heating, while allowing the temper-
ature to change as if free expansion at constant pressure were occurring. This is also
consistent with the thermodynamic assumption that the cloud condensation/ evapo-
ration process operates at constant pressure (see Part II of the documentation).

2.6.3 The Final Set of Equations

By applying the formulations (2.137), (2.140) and (2.141) as well as the approximation
(2.142) to the set (2.134) of prognostic equations, we finally arrive at the following form of
the model equations.

• Horizontal wind velocity

∂u

∂t
= −

{ 1
a cosϕ

∂Eh
∂λ
− vVa

}
− ζ̇ ∂u

∂ζ

− 1
ρa cosϕ

(
∂p′

∂λ
− 1
√
γ

∂p0
∂λ

∂p′

∂ζ

)
+Mu (2.143)

∂v

∂t
= −

{1
a

∂Eh
∂ϕ

+ uVa

}
− ζ̇ ∂v

∂ζ

− 1
ρa

(
∂p′

∂ϕ
− 1
√
γ

∂p0
∂ϕ

∂p′

∂ζ

)
+Mv (2.144)

• Vertical wind velocity

∂w

∂t
= −

{ 1
a cosϕ

(
u
∂w

∂λ
+ v cosϕ∂w

∂ϕ

)}
− ζ̇ ∂w

∂ζ

+ g
√
γ

ρ0
ρ

∂p′

∂ζ
+Mw (2.145)

+gρ0
ρ

{(T − T0)
T

− T0p
′

Tp0
+
(
Rv
Rd
− 1

)
qv − ql − qf

}

• Perturbation pressure

∂p′

∂t
= −

{ 1
a cosϕ

(
u
∂p′

∂λ
+ v cosϕ∂p

′

∂ϕ

)}
− ζ̇ ∂p

′

∂ζ

+gρ0w −
cpd
cvd

pD (2.146)
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• Temperature

∂T

∂t
= −

{ 1
a cosϕ

(
u
∂T

∂λ
+ v cosϕ∂T

∂ϕ

)}
− ζ̇ ∂T

∂ζ

− 1
ρcvd

pD +QT (2.147)

• Water vapour

∂qv

∂t
= −

{ 1
a cosϕ

(
u
∂qv

∂λ
+ v cosϕ∂q

v

∂ϕ

)}
− ζ̇ ∂q

v

∂ζ

−(Sl + Sf ) +Mqv (2.148)

• Liquid and solid forms of water

∂ql,f

∂t
= −

{
1

a cosϕ

(
u
∂ql,f

∂λ
+ v cosϕ∂q

l,f

∂ϕ

)}
− ζ̇ ∂q

l,f

∂ζ

− g
√
γ

ρ0
ρ

∂Pl,f
∂ζ

+ Sl,f +Mql,f (2.149)

• Total density of air

ρ = p{Rd(1 + (Rv/Rd − 1)qv − ql − qf )T}−1 (2.150)

The modified Jacobian √γ, the kinetic energy Eh of horizontal motion and the absolute vor-
ticity Va are defined by (2.136), (2.138) and (2.139), respectively. The contravariant vertical
velocity ζ̇ and the divergence of the wind field D are diagnostic variables within this set of
equations. They are calculated from

ζ̇ = − 1
√
γ

(
u

a cosϕ
∂p0
∂λ

+ v

a

∂p0
∂ϕ

+ gρ0w

)
, (2.151)

and

D = 1
a cosϕ

{
∂u

∂λ
− 1
√
γ

∂p0
∂λ

∂u

∂ζ
+ ∂

∂ϕ
(v cosϕ)

− cosϕ
√
γ

∂p0
∂ϕ

∂v

∂ζ

}
− gρ0√

γ

∂w

∂ζ
. (2.152)

The equations (2.143) - (2.150) form a complete set to predict the thermodynamic variables
of state, i.e. the model variables u, v, w, T , p′, ρ, qv, ql and qf , provided that the various
mixing terms Mψ, the cloud microphysical source and sink terms Sl and Sf as well as the
associated precipitation fluxes P l and P f , and the radiative heating term Qr are known. The
latter is part of the total diabatic heating according to (2.72),

QT = LV
cpd

Sl + LS
cpd

Sf +MT +Qr .

The calculation of these terms as functions of the model variables is done by corresponding
parameterization schemes. Part II of the documentation describes the parameterization of
shortwave and longwave electromagnetic radiation as well as the treatment of grid scale
clouds and precipitation.
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The mixing terms Mψ, as defined by (2.69), represent the impact from subgrid scale trans-
port processes. Clearly, the scale of these nonresolvable processes depends on the domain for
averaging, i.e. on the grid spacing that is used to solve the model equations by finite differ-
encing. The larger the grid spacing becomes, the more organized nonturbulent processes are
to be included in theMψ-terms. For applications on the meso-β scale, moist convection is the
dominating subgrid scale transport process that has to be parameterized with an appropriate
independent scheme.

Thus, we split the mixing terms Mψ into two parts: One describes the impact of small scale
turbulent diffusion and the other describes the impact of organized moist convection. The
discretization and calculation of the turbulent mixing terms is discussed in Section 4.3.3 and
the parameterization of moist convection is documented in Part II.

Apart from these physical subgrid scale processes, the model provides some additional
schemes for numerical smoothing and for relaxation and mixing in the lateral and upper
boundary zones. For simplicity, we include these terms formally also in Mψ. Thus, the mix-
ing term Mψ for a prognostic model variable ψ is decomposed as follows:

Mψ = MTD
ψ +MMC

ψ +MLB
ψ +MCM

ψ +MRD
ψ , (2.153)

where the individual terms have the following meaning:

MTD
ψ tendency due to small scale turbulent mixing,

MMC
ψ tendency due to subgrid scale moist convection,

MLB
ψ lateral boundary relaxation term for one-way

nesting of the model,

MCM
ψ source term representing computational mixing,

MRD
ψ tendency of ψ due to a Rayleigh damping scheme

applied within the upper boundary.

The relaxation scheme for one way-nesting and the calculation of the corresponding tendency
MLB
ψ is described in Section 5. Various schemes for numerical smoothing and the Rayleigh

damping scheme are discussed in Section 6, including the numerical treatment of the mixing
terms MCM

ψ and MRD
ψ .

The default set-up for the model physics uses a diagnostic turbulence closure. That is, the
diffusion coefficients Kv

m (for momentum) and Kv
h (for heat and moisture), which couple the

vertical turbulent fluxes with the corresponding vertical gradients via flux-gradient relations,
are determined in terms of wind shear and thermal stability, i.e. in terms of the predicted grid-
scale model variables. Meanwhile, another option for a new LM turbulence parameterization
is available. This scheme is based on the second-order equations and utilizes a prognostic
equation for the mean sub-grid scale turbulent kinetic energy et. The diffusion coefficients are
directly related to the predicted et, modulated by appropriate thermal stability functions.
By applying the new scheme, the set of model equations (2.143) - (2.150) is extended by an
additional prognostic equation for et in the form:
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• Turbulent Kinetic Energy

∂et
∂t

= −
{ 1
a cosϕ

(
u
∂et
∂λ

+ v cosϕ∂et
∂ϕ

)}
− ζ̇ ∂et

∂ζ

+Kv
m

gρ0√
γ

{(
∂u

∂ζ

)2
+
(
∂v

∂ζ

)2}
+ g

ρθv
F θv −

√
2e3/2
t

αM l
+Met (2.154)

Here, l denotes a turbulent length scale, F θv is the buoyant heat flux, αM is a dissipation
constant and Met denotes the mixing of turbulent kinetic energy. The calculation of these
terms, the algorithms to determine the diffusion coefficients Kv

m and Kv
k , and the numerical

techniques to solve the et-equation (2.154) are described in Part II of the LM Documentation.

The numerical technique to solve the model equations (2.143) - (2.150) is by finite differ-
encing. The model grid, the spatial discretization of the equations and the time integration
scheme are discussed in the next section.
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Section 3

Discretized Form of the Model
Equations

The finite difference method is applied to solve the continuous model equations derived in
the previous section. The following sections describe the model grid, the discretization of
the prognostic equations in space and time, and the numerical algorithms to integrate the
resulting finite difference equations.

3.1 Model Grid Structure

3.1.1 Grid Definition and Staggering

The model equations (2.143) - (2.150) have been formulated in a terrain-following coordinate
system using a generalized vertical coordinate ζ. This general form of the transformation is
employed to map the irregular grid associated with the terrain-following system in physical
space onto a rectangular as well as regular computational grid. Thus, constant increments

∆λ : grid-spacing in λ-direction,
∆ϕ : grid-spacing in ϕ-direction,
∆ζ : grid-spacing in ζ-direction,

of the independent variables are used to set up the computational grid. The mapping function
m from Eq. (2.124) for the two-step coordinate transformation is used to map any user-
specified terrain-following coordinate to the computational coordinate ζ. To simplify the
notation, we set the vertical grid-spacing equal to one:

∆ζ = 1 . (3.1)

The computational (λ, ϕ, ζ)-space is then represented by a finite number of grid points
(i, j, k), where i corresponds to the λ-direction, j to the ϕ-direction and k to the ζ-direction.
The position of the grid points in the computational space is defined by
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Figure 3.1: A grid box volume ∆V = ∆x∆λ∆ϕ showing the Arakawa-C/Lorenz staggering of the
dependent model variables.

λi = λ0 + (i− 1) ∆λ , i = 1, · · · , Nλ

ϕj = ϕ0 + (j − 1)∆ϕ, j = 1, · · · , Nϕ (3.2)
ζk = k , k = 1, · · · , Nζ .

Nλ denotes the number of grid points in λ-direction, Nϕ the number of points in the ϕ-
direction and Nζ the number of points in the ζ-direction. λ0 and ϕ0 define the south-western
corner of the model domain with respect to the rotated geographical coordinates (λ, ϕ).
Thus, i = 1 and i = Nλ correspond, respectively, to the western and the eastern boundaries
of the domain. Accordingly, the southern and the northern borderlines are given by j = 1
and j = Nϕ.

Every grid point (i, j, k) represents the centre of an elementary rectangular grid volume
with side lengths ∆λ, ∆ϕ and ∆ζ. The grid-box faces are located halfway between the grid
points in the corresponding directions, i.e. at λi±1/2, ϕj±1/2 and ζk±1/2. The grid-box faces
in vertical direction are usually refereed to as the half levels. These interfacial levels separate
the model layers from each other. The model layers labeled by integers k are also denoted
as main levels.

The top boundary of the model domain is defined to be the half level (ζ = 1/2) above the
uppermost model layer (ζ = 1). At the lower boundary, the ζ-coordinate surface becomes
conformal to the terrain height. The half level (ζ = Nζ + 1/2) below the first model layer
above the ground (ζ = Nζ) defines the lower boundary of the model.

The model variables are staggered on an Arakawa-C/Lorenz grid with scalars defined at the
centre of a grid box and the normal velocity components defined on the corresponding box
faces (see Figure 3.1). This spatial arrangement of the prognostic and diagnostic variables is
indicated by subscripts referring to the position within the grid:
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Figure 3.2: Horizontal model domain forNλ×Nϕ grid points and an offset ofNoff = 2 for the position
of the physical boundaries (dotted). The computational boundaries are shaded; the integration is done
for variables in the interior computational domain (i = 3, · · · , Nλ − 2 and j = 3, · · · , Nϕ − 2).

ψi,j,k = ψ(λi, ϕj , ζk) for ψ = T, p′, ρ, qv, ql, qf ,

ui±1/2,j,k = u(λi ±∆λ/2, ϕj , ζk) , (3.3)
vi,j±1/2,k = v(λi, ϕj ±∆ϕ/2, ζk) ,
wi,j,k±1/2 = w(λi, ϕj , ζk ± 1/2) .

In order to implement boundary conditions and to apply the domain decomposition strategy
for code parallelization in a convenient way, the horizontal extent of the computational
domain is chosen to be smaller than the total domain size. The lateral physical boundaries
are positioned with a spatial offset from the outer boundaries to the interior. This offset is

Noff∆λ−∆λ/4 in λ-direction and
Noff∆ϕ−∆ϕ/4 in ϕ-direction,

where Noff denotes the number of grid intervals used to define the position of the physical
boundaries. By default, Noff is set to 2 (larger but not smaller numbers for Noff may be
specified by the user).

All grid points interior to the physical boundary constitute the computational (or model
interior) domain, where the model equations are integrated numerically. These are points with
subscripts (i, j) running from i = Noff + 1, · · · , Nλ−Noff and j = Noff + 1, · · · , Nϕ−Noff .
The extra points outside the interior domain constitute the computational boundaries. At
these points, all model variables are defined and set to specified boundary values, but no

Section 3: Discretized Form of the Model Equations Part I – Dynamics and Numerics 5.05



3.1 Model Grid Structure 57

computations are done. For Noff = 2, we have two extra lines of grid points adjacent to
each physical boundary (see Fig. 3.2). On this grid, fourth order computational mixing for
all prognostic variables can be readily calculated at all points in the interior domain.

3.1.2 Horizontal Numerical Operators

To represent the governing equations in finite difference form we define the following notations
for horizontal averaging and differencing.

ψ
nλ = 1

2 {ψ(λ+ n∆λ/2) + ψ(λ− n∆λ/2)}

ψ
nϕ = 1

2 {ψ(ϕ+ n∆ϕ/2) + ψ(ϕ− n∆ϕ/2)}

(3.4)

δnλ(ψ) = 1
n∆λ {ψ(λ+ n∆λ/2)− ψ(λ− n∆λ/2)}

δnϕ(ψ) = 1
n∆ϕ {ψ(ϕ+ n∆ϕ/2)− ψ(ϕ− n∆ϕ/2)}

n is an integer (usually n = 1) and ψ is a dependent model variable which may be defined at
the centre of a grid box or at the u, v or w location on the grid-box faces. Multiple averages
will be denoted by

ψ
λ,ϕ = (ψ ϕ)

λ
= (ψ λ)

ϕ

.

The following rules apply to the horizontal averaging and differencing operators:

δxψ
x = (δxψ)x ,

χδxψ = δx(ψ x
χ)− (ψδxχ)x , (3.5)

δx(χψ) = χxδxψ + ψ
x
δxχ ,

where x denotes λ or ϕ. ψ and χ represent dependent model variables.

3.1.3 Grid Stretching

With respect to vertical differencing and averaging the grid stretching in physical space
has to be taken into account. Grid stretching is defined by the mapping function m in the
transformation relation (2.124) for the computational coordinate ζ.

We define this mapping in a discrete form using a table, which relates the Nζ + 1 values
of the half-level coordinate ζk+1/2 to specific values of the terrain-following η- or of the µ-
or µs-coordinate. This specification is done by the user and a nonequidistant (but of course
monotonic) spacing in η, µ or µs may be chosen. In order to obtain a reasonable division
of the model atmosphere into a given number of layers, Nζ , it is useful to invert the corre-
sponding transformation relations (2.125), (2.127) or (2.129). The half-level values ηk+1/2,
µk+1/2 or (µs)k+1/2 can then easily be specified in terms of base-state pressure or geometrical
height with respect to flat terrain. The procedure to set up the base-state variables on the
computational grid is as follows.
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(a) Pressure-based hybrid coordinate η
In case of the pressure-based coordinate η, first the mapping functions A(η) and B(η)
according to (2.126) are evaluated using the specified half-level values ηk+1/2. Then
the reference pressure at the surface is calculated from the terrain height h(λ, ϕ) using
(2.85).

(ps0)i,j =


pSL exp

{
−(TSL/β)

[
1−

√
1− (2βghi,j)/(RdT 2

SL)
]}

if β 6= 0 ,

pSL exp {−(ghi,j)/(RdTSL)} if β = 0 .
(3.6)

The reference pressure on half levels may then be computed directly from the definition
(2.125) of the transformation:

(p0)i,j,k+1/2 = A(ηk+1/2) +B(ηk+1/2) (ps0)i,j , k = 0, · · · , Nζ , (3.7)

where (p0)1/2 = pT corresponds to the top of the model domain and (p0)Nζ+1/2 = ps0 to
the lower boundary. The position of the half levels in physical space is then obtained
analytically by inverting (2.85).

zi,j,k+1/2 =


Rd ln(pSL/p0 i,j,k+1/2)

{
TSL − β ln(pSL/p0 i,j,k+1/2)/2

}
/g if β 6= 0 ,

RdTSL ln(pSL/p0 i,j,k+1/2)/g if β = 0 .
(3.8)

(b) Height-based hybrid coordinate µ and SLEVE coordinate µs
In case of the modified Gal-Chen coordinate µ, the mapping functions a(µ) and b(µ)
are first calculated from (2.128) using the specified half-level values µk+1/2. The height
of the half-level coordinate surfaces results directly from the definition (2.127) of the
transformation:

zi,j,k+1/2 = a(µk+1/2) + b(µk+1/2)hi,j , k = 0, · · · , Nζ . (3.9)

For the SLEVE coordinate µs, the mapping functions a(µ), b1(µs) and b2(µs) are first
calculated from specified half-level values (µs)k+1/2 using the (2.131). The height of
the half-level coordinates results directly from the transformation (2.129):

zi,j,k+1/2 = a(µsk+1/2) + b1(µsk+1/2)h1i,j + b2(µsk+1/2)h2i,j , k = 0, · · · , Nζ .
(3.10)

The corresponding half-level base-state pressure is then obtained analytically from
(2.85).

p0 i,j,k+1/2 =


pSL exp

{
−TSL

[
1−

√
1− (2βgzi,j,k+1/2)/(RdT 2

SL)
]
/β
}

if β 6= 0 ,

pSL exp
{
−(gzi,j,k+1/2)/(RdTSL)

}
if β = 0 .

(3.11)

Thus, for all three types of vertical coordinates, the reference pressure and the geometrical
height of the model half-levels are obtained analytically from the transformation relation
and from the base-state temperature profile. (p0)k+1/2 and zk+1/2 are the basic quantities to
define the vertical grid structure.
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Table 3.1: Values of the computational coordinate ζ (level index) related to a non-equidistant speci-
fication of the pressure based hybrid coordinate η at half-levels k+ 1/2 for a 35-layer (36 half-levels)
default set-up of LM. Other vertical level distributions can be specified by the user. For any specified
ηk+1/2 distribution, the corresponding values of A and B are calculated by (2.126). Base state pres-
sure p0 and geometrical height z are then evaluated by (3.7) and (3.8). In the Table, p0 and z refer
to flat topography.

ζ η A (hPa) B p0 (hPa) z (m)

1/2 0.0200 20.0000 0.0000 20.0 23588.50
1 + 1/2 0.0400 40.0000 0.0000 40.0 20780.46
2 + 1/2 0.0650 65.0000 0.0000 65.0 18461.85
3 + 1/2 0.0930 93.0000 0.0000 93.0 16565.38
4 + 1/2 0.1230 123.0000 0.0000 123.0 14975.57
5 + 1/2 0.1540 154.0000 0.0000 154.0 13627.79
6 + 1/2 0.1850 185.0000 0.0000 185.0 12482.03
7 + 1/2 0.2160 216.0000 0.0000 216.0 11481.97
8 + 1/2 0.2480 212.1026 0.0359 248.0 10565.29
9 + 1/2 0.2810 202.7949 0.0782 281.0 9716.17
10 + 1/2 0.3150 193.2051 0.1218 315.0 8923.03
11 + 1/2 0.3510 183.0513 0.1679 351.0 8156.79
12 + 1/2 0.3880 172.6154 0.2154 388.0 7434.32
13 + 1/2 0.4250 162.1795 0.2628 425.0 6767.00
14 + 1/2 0.4620 151.7436 0.3103 462.0 6146.45
15 + 1/2 0.4990 141.3077 0.3577 499.0 5566.14
16 + 1/2 0.5360 130.8718 0.4051 536.0 5020.83
17 + 1/2 0.5730 120.4359 0.4526 573.0 4506.26
18 + 1/2 0.6100 110.0000 0.5000 610.0 4018.92
19 + 1/2 0.6470 99.5641 0.5474 647.0 3555.89
20 + 1/2 0.6830 89.4103 0.5936 683.0 3126.36
21 + 1/2 0.7180 79.5385 0.6385 718.0 2726.74
22 + 1/2 0.7520 69.9487 0.6821 752.0 2354.04
23 + 1/2 0.7840 60.9231 0.7231 784.0 2016.09
24 + 1/2 0.8130 52.7436 0.7603 813.0 1719.78
25 + 1/2 0.8390 45.4103 0.7936 839.0 1461.68
26 + 1/2 0.8620 38.9231 0.8231 862.0 1238.96
27 + 1/2 0.8830 33.0000 0.8500 883.0 1039.98
28 + 1/2 0.9030 27.3590 0.8756 903.0 854.19
29 + 1/2 0.9220 22.0000 0.9000 922.0 680.91
30 + 1/2 0.9400 16.9231 0.9231 940.0 519.53
31 + 1/2 0.9560 12.4103 0.9436 956.0 378.28
32 + 1/2 0.9700 8.4615 0.9615 970.0 256.34
33 + 1/2 0.9820 5.0769 0.9769 982.0 153.00
34 + 1/2 0.9920 2.2564 0.9897 992.0 67.71
35 + 1/2 1.0000 0.0000 1.0000 1000.0 0.00

Table 3.1 shows as an example for the set-up of the vertical grid in case of a default specifi-
cation of η values for 36 model half-levels. Some other defaults for higher or coarser vertical
resolution are also available in the model (for both pressure-based η coordinates and height
based µ and µs coordinates), but arbitrary coordinate values for different resolutions and
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grid stretching can be easily specified by the user. Table 3.2 shows the corresponding pressure
and height values at full levels, as well as the depth and the stretching ratio of the layers.

Table 3.2: Values of pressure based hybrid coordinate η at full levels related to the computational
coordinate ζ (full-level index) for the 35-layer (36 half-levels) default set-up of LM as specified in
Table 3.1. The η values, the base-state pressure p0 and the geometrical height z at full-levels are
obtained as arithmetic means of the corresponding half-level values. The pressure thickness ∆p0, the
height thickness ∆z, and the stretching ratio st = ∆zk/∆zk+1 of the layers are also indicated. p0, z,
∆p0, ∆z and st refer to flat topography.

ζ η p0 (hPa) ∆p0 (hPa) z (m) ∆z (m) st

1 0.0300 30.0 20.0 22184.48 2808.03 1.21
2 0.0525 52.5 25.0 19621.16 2318.61 1.22
3 0.0790 79.0 28.0 17513.62 1896.47 1.19
4 0.1080 108.0 30.0 15770.48 1589.81 1.18
5 0.1385 138.5 31.0 14301.68 1347.78 1.18
6 0.1695 169.5 31.0 13054.91 1145.76 1.15
7 0.2005 200.5 31.0 11982.00 1000.05 1.09
8 0.2320 232.0 32.0 11023.63 916.68 1.08
9 0.2645 264.5 33.0 10140.73 849.13 1.07
10 0.2980 298.0 34.0 9319.60 793.14 1.04
11 0.3330 333.0 36.0 8539.91 766.24 1.06
12 0.3695 369.5 37.0 7795.56 722.47 1.08
13 0.4065 406.5 37.0 7100.66 667.33 1.08
14 0.4435 443.5 37.0 6456.73 620.54 1.07
15 0.4805 480.5 37.0 5856.30 580.31 1.06
16 0.5175 517.5 37.0 5293.49 545.31 1.06
17 0.5545 554.5 37.0 4763.54 514.57 1.06
18 0.5915 591.5 37.0 4262.59 487.34 1.05
19 0.6285 628.5 37.0 3787.40 463.03 1.08
20 0.6650 665.0 36.0 3341.13 429.53 1.07
21 0.7005 700.5 35.0 2926.55 399.62 1.07
22 0.7350 735.0 34.0 2540.39 372.71 1.10
23 0.7680 768.0 32.0 2185.06 337.95 1.14
24 0.7985 798.5 29.0 1867.93 296.30 1.15
25 0.8260 826.0 26.0 1590.73 258.11 1.16
26 0.8505 850.5 23.0 1350.32 222.72 1.12
27 0.8725 872.5 21.0 1139.47 198.98 1.07
28 0.8930 893.0 20.0 947.08 185.79 1.07
29 0.9125 912.5 19.0 767.55 173.28 1.07
30 0.9310 931.0 18.0 600.22 161.38 1.14
31 0.9480 948.0 16.0 448.91 141.25 1.16
32 0.9630 963.0 14.0 317.31 121.95 1.18
33 0.9760 976.0 12.0 204.67 103.33 1.21
34 0.9870 987.0 10.0 110.35 85.29 1.26
35 0.9960 996.0 8.0 33.85 67.71 -

In order to meet the condition of a hydrostatically balanced base-state stratification using
finite vertical differences, the reference density ρ0 will be defined on main levels, i.e. at the
centre position (i, j, k) of a grid box. ρ0 is calculated from the following finite difference
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formulation of the hydrostatic equation,

(ρ0)k = 1
g

(p0)k+1/2 − (p0)k−1/2
zk−1/2 − zk+1/2

, (3.12)

where the subscripts (i, j) indicating the position on the horizontal grid have been omitted.
ρ0 is interpreted as a constant mean base-state density within the layer k, resulting in a
piecewise linear decrease of reference pressure with height.

3.1.4 Vertical Numerical Operators

Using the definitions from above, the vertical position of the main levels in physical space
may be defined as the arithmetic mean of both the half-level pressure p0 and the geometrical
height z. Consequently, for vertical averaging and differencing at main levels, the centred
operators

(ψ)k
ζ = 1

2(ψk+1/2 + ψk−1/2)

(3.13)
δζ(ψ)k = ψk+1/2 − ψk−1/2

will be applied. Using (3.13) for the definition of the base-state pressure and the height yields

(p0)k = (p0)k
ζ = 1

2
(

(p0)k+1/2 + (p0)k−1/2
)
,

(3.14)

(z)k = (z)k
ζ = 1

2( zk+1/2 + zk−1/2) .

The hydrostatic equation (3.12) may then be written in the form

δζ(p0)k = −g(ρ0)k δζ(z)k . (3.15)

The base-state temperature is defined at model main levels. T0 is interpreted as a local value
and calculated from the equation of state using the layer average density ρ0 from (3.12) and
the reference pressure p0 from (3.14) at the centre of the layer:

(T0)k = (p0)k
Rd(ρ0)k

. (3.16)

The Jacobian
√
G of the terrain-following coordinate transformation and the related quantity√

γ from (2.141) are evaluated at the centre position (i, j, k) of a grid box. Their discretized
form reads

(
√
G)k = − δζ(z)k = zk−1/2 − zk+1/2 ,

(3.17)
(√γ)k = δζ(p0)k = (p0)k+1/2 − (p0)k−1/2 .
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Figure 3.3: Vertical staggering of variables and metric terms in a grid box column with Nζ layers.
Dashed lines are the model half levels separating the main levels (full lines).

√
G and √γ are related by the equation of state:

(
√
G)k = 1

g(ρ0)k
(√γ)k . (3.18)

Figure 3.3 shows the vertical staggering of model variables as well as base state variables
and metric terms used in the discretization.

The centred operator (3.13) will not be applied to the vertical averaging of main-level vari-
ables onto half levels, since, in case of grid stretching, the half levels are noncentred in
physical space with respect to the adjacent main levels. Instead of an arithmetic mean, we
use the averaging operator

(ψ) ζk+1/2 =
(√γ)k+1ψk + (√γ)kψk+1

(√γ)k+1 + (√γ)k
, (3.19)

which corresponds to a mass-weighted linear vertical interpolation of the main-level values
ψk and ψk+1.

Vertical differencing at half levels uses the centred operator (3.13) with respect to the equidis-
tant computational coordinate ζ,

δζ(ψ)k+1/2 = ψk+1 − ψk , (3.20)
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but the factor √γ occurring in the derivatives with respect to base-state pressure is replaced
by the pressure thickness of the half levels:

(√γ)k+1/2 = 1
2 {(
√
γ)k + (√γ)k+1} = (p0)k+1 − (p0)k . (3.21)

Thus, vertical derivatives with respect to base-state pressure are discretized by(
1
√
γ

∂ψ

∂ζ

)
k

: 1
(√γ)k

δζ(ψ)k =
ψk+1/2 − ψk−1/2

(p0)k+1/2 − (p0)k−1/2
(3.22)

on main levels and by(
1
√
γ

∂ψ

∂ζ

)
k+1/2

: 1
(√γ)k+1/2

δζ(ψ)k+1/2 = ψk+1 − ψk
(p0)k+1 − (p0)k

(3.23)

on half levels of the model grid. An alternative discretization of vertical derivatives on main
levels makes use of a two grid-interval difference operator:(

1
√
γ

∂ψ

∂ζ

)
k

: 1
(√γ)k

ζ
δ2ζ(ψ)k = ψk+1 − ψk−1

(√γ)k+1/2 + (√γ)k−1/2

= ψk+1 − ψk−1
(p0)k+1 − (p0)k−1

. (3.24)

The formulation (3.24) will be applied to the metric terms in the prognostic equations for
horizontal momentum and the diagnostic equation for horizontal divergence.

3.2 Mode Splitting

Because the governing nonhydrostatic equations describe a compressible model atmosphere,
meteorologically unimportant sound waves are also part of the solution. As acoustic waves are
very fast, their presence severely limits the time step of explicit time integration schemes.
In order to improve the numerical efficiency, the mode-splitting time integration method
proposed by Klemp and Wilhelmson (1978) is employed.

This technique is based on a separation of the prognostic equations into terms which are
directly related to acoustic wave modes and into terms which refer to comparatively slowly
varying modes of motion. The time step for stable explicit integration of the slow modes is
then subdivided into a number of small time steps, and the acoustically active terms are
updated every small time step while all other terms related to the slow modes are computed
only once every big time step. Consequently, only the small time step size is limited by the
stability criterion for sound wave propagation. As not the complete but only a reduced set
of equations is evaluated on the small time steps, the mode-splitting technique makes the
explicit time integration more efficient.

To apply the time-splitting method to the model equations (2.143) - (2.150), the reduced set
describing the fast acoustic modes has to be formulated first. Sound wave modes are related
to the pressure gradient force terms in the equation for horizontal and vertical wind velocity
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and to the divergence term in the pressure tendency equation. The buoyancy term due to
pressure perturbations in the w-equation and the vertical advection of base-state pressure
are also included in the small time step updating, as these terms have been found to be
responsible for certain high frequency oscillations. The moisture equations are assumed to
have no high-frequency terms contributing to acoustic waves.

According to a proposal by Skamarock and Klemp (1992), the terms related to vertical
gravity wave propagation will also be included in the reduced set. This involves evaluating
the thermal buoyancy term in the equation for the vertical velocity and an additional stepping
of the heat equation with respect to the divergence term. Usually, the large time interval for
the integration of the slow modes is limited by a stability criterion based on advective and
gravity wave speeds. For applications on the meso-β scale with horizontal grid-spacings of
about 10 km, the gravity wave condition becomes restrictive. Thus, by including the gravity
wave modes in the reduced set, the stability criterion is shifted to the small time step. This
extension of the mode-splitting integration scheme enhances the efficiency in case of model
applications on the meso-β scale significantly.

The reduced set, which becomes subject to a split time integration using small time steps,
is revealed by rewriting the model equations (2.143) - (2.147) for the wind components, the
perturbation pressure and the temperature in the following form.

• Horizontal momentum

∂u

∂t
= − 1

ρa cosϕ

(
∂p′

∂λ
− 1
√
γ

∂p0
∂λ

∂p′

∂ζ

)
+ fu (3.25)

∂v

∂t
= − 1

ρa

(
∂p′

∂ϕ
− 1
√
γ

∂p0
∂ϕ

∂p′

∂ζ

)
+ fv (3.26)

• Vertical momentum, perturbation pressure and temperature

∂w

∂t
= g
√
γ

ρ0
ρ

∂p′

∂ζ
+ g

ρ0
ρ

{(T − T0)
T

− T0p
′

Tp0

}
+ fw (3.27)

∂p′

∂t
= gρ0w −

pcpd
cvd

{
Dh −

gρ0√
γ

∂w

∂ζ

}
+ fp′ (3.28)

∂T

∂t
= − p

ρcvd

{
Dh −

gρ0√
γ

∂w

∂ζ

}
+ fT (3.29)

Here, the threedimensional wind divergence D from (2.152) has been separated into a con-
tribution Dh due to horizontal divergence and a contribution due to the variation of vertical
velocity with height. Dh is given by

Dh = 1
a cosϕ

{
∂u

∂λ
− 1
√
γ

∂p0
∂λ

∂u

∂ζ
+ ∂

∂ϕ
(v cosϕ)− cosϕ

√
γ

∂p0
∂ϕ

∂v

∂ζ

}
. (3.30)

The fψ-terms in (3.25) - (3.29) denote the tendencies due to the slow modes. These are
constituted by the advection and Coriolis terms, the mixing terms, the diabatic heating
term and the contribution of water substance to the buoyancy term. During the sub-step
integration for each big time step the fψ-terms are kept constant. The prognostic equations
for the water constituents are solved completely on the large time step.
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3.3 Discretization and Numerical Integration

3.3.1 The Time Integration Scheme

To illustrate the mode-splitting time integration scheme used in LM, we consider the model
equations in the symbolic form

∂ψ

∂t
= sψ + fψ , (3.31)

where ψ denotes a prognostic model variable, fψ the forcing terms due to the slow modes
and sψ the source terms which are related to the acoustic and gravity wave modes. The
basic time discretization is by large time steps ∆t. A superscript n, the time-step counter
for the numerical integration, will denote the discrete time level t = t0 + n∆t, where t0 is
some initial time for the integration. The numerical time integration uses the well-known
leapfrog method, a three-level time differencing scheme. By this method, the variables are
stepped forward from time level t−∆t to time level t+ ∆t where the right hand side of the
corresponding prognostic equations are usually evaluated at the mid-time level t.

We consider first the case of prognostic equations with no acoustically active terms, i.e. the
equations for the water constituents where sψ = 0. The fψ-term contains contributions from
advection and mixing as well as microphysical source terms. Horizontal advection is treated
explicitly and evaluated at the mid-time level n, whereas diffusion evaluated at time level
n is unstable with respect to explicit leapfrog integration. Thus, the computational mixing
terms are formulated with respect to a simple forward scheme, i.e. they are evaluated at the
time level n− 1. For stability reasons, vertical advection and vertical turbulent diffusion are
treated implicitly by a Crank-Nicolson scheme involving the time levels n−1 and n+1. This
results in a vertically coupled set of equations which is abbreviated by

ψn+1 − ψn−1

2∆t = fnψ = fψ(ψn−1, ψn, ψn+1 ) , (3.32)

and solved by Gaussian elimination. Details are discussed in Section 4.3.3.

In case of prognostic equations with acoustically active terms, i.e. the equations for u, v, w,
p′ and T , the leapfrog interval 2∆t for the integration from time level n − 1 to time level
n+ 1 is subdivided into a number Ns of small time steps with size ∆τ :

2∆t = Ns∆τ . (3.33)

Ns must be chosen such that the small time step size ∆τ satisfies the linear stability condition
for sound wave propagation. The prognostic equation (3.31) is then sub-integrated within
the leapfrog interval 2∆t using a two-level time differencing scheme:

ψν+1 − ψν

∆τ = sνψ + fnψ . (3.34)

The superscript ν indicates the time level for the small time step integration, where ν = 0
corresponds to the initial time level n− 1 and ν + 1 = Ns to the final time level n+ 1. The
slow-mode forcing fnψ is evaluated only once every big time step and kept constant throughout
the small time steps, whereas the fast-mode terms contained in sνψ are calculated every small
step. Figure (3.4) illustrates the basic idea of the Klemp-Wilhelmson time-splitting scheme.
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Figure 3.4: The Klemp-Wilhelmson time-splitting algorithm

For stability reasons, the fnψ -term is computed in a similar way as in (3.32), using an implicit
scheme for vertical advection and vertical diffusion. However, since the final value of the
prognostic variable, ψn+1, is not known before the small time step integration is completed,
the numerical formulation is based on tendency splitting. Thus, fnψ is evaluated from the
separately determined tendency due to slow-mode forcing,

fnψ = ψ̃n+1 − ψn−1

2∆t = fψ(ψn−1, ψn, ψ̃n+1 ) , (3.35)

where the slow-mode tendency is solved for ψ̃n+1. Details on the calculation of the f -terms
will be described in Section 4.3.3.

For the small time step integration there are two options. The first is the traditional fully
explicit forward-backward scheme. By this method, the momentum equations (3.25) - (3.27)
for u, v and w are first integrated one small time step using a forward scheme relative to
the pressure gradient terms. Then the equations (3.28) - (3.29) for pressure perturbation
and temperature are integrated forward on the same step using a backward scheme relative
to the divergence term, i.e. the threedimensional wind divergence is evaluated with the new
updated velocity components.

The other option is a modified Crank-Nicolson scheme which is based on time averaging of
the vertical velocity and the pressure perturbation in the equations for w and p′. The scheme
results in a coupled vertically implicit formulation of the w- and p′-equations. This algorithm
is absolutely stable with respect to vertical propagation of acoustic waves. Thus, the small
time step size becomes independent from the vertical grid spacing allowing for a much larger
size of the small time step when the horizontal to vertical grid spacing ratio is large. This is
usually the case for meso-γ and meso-β NWP-applications, where the horizontal grid spacing
ranges from 1 km to 15 km and the vertical resolution in the atmospheric boundary layer is
on the order of 100 m. For the spatial discretization on the C-grid, the stability condition of
the vertically implicit scheme on ∆τ reads

∆τ ≤ ∆s√
2cs

, (3.36)

where ∆s is the horizontal grid spacing (∆s = a∆λ for ∆ϕ = ∆λ and cosϕ ' 1) and cs is
the sound wave speed. We use a constant temperature Tsw = 303 K to estimate cs from

cs =
√
Rd(cpd/cvd)Tsw . (3.37)

With this estimate, a suitable number Ns of small time steps for the integration within the
leapfrog interval is derived from (3.33) for any specified large time step size ∆t.
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3.3.2 Finite Difference Algorithms Related to Fast Modes

The spatial discretization of the acoustic and gravity wave terms in the reduced set (3.25)
- (3.29) uses second-order accurate differencing. As mentioned in the previous section, the
vertical velocity and the pressure perturbation in the fast-mode forcing functions are subject
to time averaging with respect to the small time step interval ∆τ . Following Ikawa (1988)
and Dudhia (1993), the time averaging operator is defined as

ψ
τ = 1

2 (1 + βsw)ψν+1 + 1
2 (1− βsw)ψν . (3.38)

The parameter βsw determines the time-weighting, where βsw = 0 gives a time-centred
average (as used in the original Klemp-Wilhelmson scheme) and positive values βsw > 0 give
a bias towards the future small time step level ν + 1. Positive biasing can be used for an
efficient damping of vertically propagating acoustic modes.

To simplify the notation, we define

β+ = 1
2(1 + βsw) and β− = 1

2(1− βsw) = 1− β+ , (3.39)

and write the time average of vertical velocity and pressure perturbation in the form

w τ = β+wν+1 + β−wν ,

(3.40)
p′
τ = β+p′

ν+1 + β−p′
ν
.

(a) Finite Difference Equations

The finite difference form of the equations (3.25) - (3.29) related to the fast modes is as
follows. Total density, total pressure and temperature as factors of the pressure gradient,
buoyancy and divergence terms are kept fixed to their leapfrog mid-time level values during
the small time step integration.

• Horizontal momentum

uν+1 − uν

∆τ = − 1
ρn λa cosϕ

δλ p′ν − 1
(√γ) ζ,λ

δλ(p0) δ2ζ(p′ν)λ
+ fnu (3.41)

vν+1 − vν

∆τ = − 1
ρn ϕa

δϕ p′ν − 1
(√γ) ζ,ϕ

δϕ(p0) δ2ζ(p′ν)ϕ
+ fnv (3.42)

• Vertical momentum

wν+1 − wν

∆τ = g
√
γ

ρ0
ζ

ρn ζ

{
β+δζ(p′)ν+1 + β−δζ(p′)ν

}

− g ρ0
ζ

ρn ζ


(
T0β+

Tnp0

)
(p′)ν+1

ζ

+
(
T0β−

Tnp0

)
(p′)ν

ζ


+ g
ρ0

ζ

ρn ζ

{(
T ν − T0
Tn

) ζ}
+ fnw (3.43)
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• Pressure perturbation

p′ν+1 − p′ν

∆τ = gρ0

{
β+
(
w ζ
)ν+1

+ β−
(
w ζ
)ν}

+ gρ0√
γ

(
pncpd
cvd

) {
β+δζ(wν+1) + β−δζ(wν)

}
−
(
pncpd
cvd

)
Dν+1
h + fnp′ (3.44)

• Temperature

T ν+1 − T ν

∆τ = gρ0√
γ

(
pn

ρncvd

) {
β+δζ(wν+1) + β−δζ(wν)

}
−
(

pn

ρncvd

)
Dν+1
h + fnT (3.45)

These finite difference equations are evaluated at the locations of the corresponding variables
on the staggered grid. The horizontal wind divergence Dh is defined at the centre (i, j, k) of
a grid box and is computed using the updated velocity components u and v from time level
ν + 1. The discretization is given by

Dν+1
h = 1

a cosϕ

 δλ (uν+1)− 1
(√γ) ζ,λ

δλ(p0) δ2ζ(uν+1)
λ

+ δϕ (vν+1 cosϕ)− cosϕ
(√γ) ζ,ϕ

δϕ(p0) δ2ζ(vν+1)
ϕ
 . (3.46)

In Eqs. (3.43) -(3.45) time averaging is performed on several terms with β+ and β− as
weighting factors. The vertically explicit option is revealed by setting β+ = 0 (and thus
β− = 1) in the w-equation and β+ = 1 (and thus β− = 0) in the pressure and the heat
equation. In this case, the momentum equations for u, v and w are stepped forward for one
small time step ∆τ from time level ν to time level ν + 1 using the initial pressure values
p′ν to calculate the pressure gradient terms. Then the p′- and the T - equations are stepped
forward using the updated velocities (u, v, w)ν+1 for the computation of the divergence term.

For the vertically implicit scheme with βsw ≥ 0 the small time step size becomes independent
of the vertical resolution of the model, which is important for numerical efficiency. However,
Skamarock and Klemp (1992) have shown that this scheme may be unstable to certain
acoustic modes due to the interaction of the advection (evaluated on the big time step) and
the propagation (evaluated on the small steps) of these waves. The βsw-parameter can be
used to damp the unstable modes. Ikawa (1988) has shown that the fully implicit scheme
with βsw = 1 is neutral to horizontally propagating waves but severely damps the vertical
modes. Durran and Klemp (1983) and Dudhia (1993) found that βsw-values in the range 0.2
- 0.4 are sufficient to effectively control the vertically unstable acoustic modes in practical
applications. The default value used in LM is βsw = 0.4.

Since the mode-splitting scheme is neutral to horizontally propagating sound waves, an ad-
ditional numerical technique to control unstable horizontal wave modes must be introduced.
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Skamarock and Klemp (1992) proposed threedimensional divergence damping to attenu-
ate acoustic modes. Dudhia (1993) found that this method is equivalent to using a time-
extrapolated value for the pressure perturbation in the equations for horizontal momentum.
For simplicity reasons, the latter method is applied in LM. Thus, a small term

(p′D)ν = −αsw∆τ p
ncpd
cvd

{
Dν
h −

gρ0√
γ
δζ (w τ )ν−1

}
, (3.47)

which is directly proportional to the threedimensional wind divergence calculated at the
previous time step, is added onto the pressure perturbation in Eqs. (3.41) and (3.42) for u and
v. The effect of this additional term is to slightly modify the phase between acoustic pressure
and horizontal momentum oscillations, such that the wave is caused to decay. Obviously, the
artificial term (3.47) tends to zero as the sound wave amplitudes become small. The time-
extrapolation factor αsw is set to 0.1 by default.

(b) Method of Solution

For the vertically implicit option, the Eqs. (3.43) and (3.44) for pressure perturbation and
vertical velocity become coupled due to time averaging and have to be solved simultaneously
for w and p′ at the future time step ν+1. The following procedure to solve the coupled set of
equations is applied. First, after regrouping the unknown terms and evaluating the vertical
averaging and differencing operators, the pressure and the w-equations are rewritten as

p′k
ν+1 = p′k

ν + Cpk + β+Cp1k

(
wν+1
k′+1 − w

ν+1
k′

)
+ β+Cp2k

(
wν+1
k′+1 + wν+1

k′

)
, (3.48)

wν+1
k′ = wνk′ + Cwk′ + β+Cw1

k′

(
p′k
ν+1 − p′k−1

ν+1
)

−β+Cw2
k′ (√γ)k−1

(
T0
Tn

p′ν+1

p0

)
k

− β+Cw2
k′ (√γ)k

(
T0
Tn

p′ν+1

p0

)
k−1

, (3.49)

where k′ = k − 1/2 abbreviates the vertical coordinate index of the upper half-level corre-
sponding to the model layer k. Cpk and Cwk′ denote the known terms on the right hand side
of the p′- and the w-equation, respectively:

Cpk = (fnp′)k ∆τ − cpd
cvd

pnk

(
Dν+1
h

)
k

∆τ

+β−Cp1k
(
wνk′+1 − wνk′

)
+ β−Cp2k

(
wνk′+1 + wνk′

)
, (3.50)

Cwk′ = (fnw)k′ ∆τ + β−Cw1
k′
(
p′k
ν − p′k−1

ν)
−β−Cw2

k′ (√γ)k−1

(
T0
Tn

p′ν

p0

)
k

− β−Cw2
k′ (√γ)k

(
T0
Tn

p′ν

p0

)
k−1

+Cw2
k′ (√γ)k−1

(
T ν − T0
Tn

)
k

+ Cw2
k′ (√γ)k

(
T ν − T0
Tn

)
k−1

. (3.51)

The factors Cp1, Cp2, Cw1 and Cw2 result from vertical averaging and differencing of the
terms on the right hand side of the p′- and w-equations. They have the following form:

Cp1k = cpd
cvd

g(ρ0)kpnk
(√γ)k

∆τ ,

Part I – Dynamics and Numerics 5.05 Section 3: Discretized Form of the Model Equations



70 3.3 Discretization and Numerical Integration

Cp2k = g

2(ρ0)k ∆τ ,

(3.52)

Cw1
k′ = 2g∆τ

(√γ)k−1 + (√γ)k

{
(√γ)k−1(ρ0)k + (√γ)k(ρ0)k−1
(√γ)k−1(ρn)k + (√γ)k(ρn)k−1

}
,

Cw2
k′ = 1

2C
w1
k′ .

Inserting p′k
ν+1 from (3.48) into (3.49) eliminates the unknown pressure at the future time

step in the w-equation, leaving wν+1 as the only unknown. After considerable algebra, this
yields a linear tridiagonal equation system for wν+1 which is written in the form

Ak′ wν+1
k′−1 +Bk′ wν+1

k′ + Ck′ wν+1
k′+1 = Dk′ , (3.53)

where the matrix diagonals A, B and C, and the inhomogeneous term D are

Ak′ = − (β+)2Cw1
k′ αTk′

(
Cp1k−1 − C

p2
k−1

)
,

Bk′ = 1 + (β+)2Cw1
k′

{
αBk′

(
Cp1k − C

p2
k

)
+ αTk′

(
Cp1k−1 + Cp2k−1

)}
,

Ck′ = − (β+)2Cw1
k′ αBk′

(
Cp1k + Cp2k

)
, (3.54)

Dk′ = wνk′ + (fnw)k′ ∆τ

+Cw2
k′

{
(√γ)k−1

(
T ν − T0
Tn

)
k

+ (√γ)k
(
T ν − T0
Tn

)
k−1

}
+Cw1

k′

{
αBk′

(
p′k
ν + β+Cpk

)
− αTk′

(
p′k−1

ν + β+Cpk−1

)}
.

The coefficients αB and αT in (3.54) are defined as

αBk′ = 1− 1
2(√γ)k−1

(
T0
Tnp0

)
k

,

(3.55)

αTk′ = 1 + 1
2 (√γ)k

(
T0
Tnp0

)
k−1

.

The matrix equation (3.53) can be solved for wν+1 using a standard tridiagonal solver,
provided that appropriate boundary conditions on the vertical velocity at the upper (k′ =
1/2) and lower (k′ = Nζ + 1/2) boundary of the model domain are specified. The solution
method used in LM is based on usual Gaussian elimination and back-substitution.

The present version of LM supports only non-penetrative top and bottom boundary con-
ditions. Thus the vertical velocity at the top boundary is set to zero, and w at the lower
boundary is calculated from the horizontal velocities u and v at the lowest model layer and
the terrain height, ensuring that the flow at the lower boundary follows the surface terrain.
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Additionally, top and bottom boundary conditions for the perturbation pressure and the
horizontal wind components have to be specified for the evaluation of the metric correc-
tion terms in the equation for horizontal momentum and in the diagnostic equation for the
horizontal divergence. For u and v, free slip conditions are applied while an extrapolated
boundary condition for the perturbation pressure is used. Details on the formulation of the
top and bottom boundary conditions are discussed in Section 5.

After wν+1 has been obtained from the solution of (3.53), it is substituted in (3.48) to yield
the pressure perturbation p′ν+1 at the future time step. Also, the heat equation (3.45) can
then be stepped to obtain T ν+1:

T ν+1
k = T νk + (fnT )k ∆τ − pnk

cvdρ
n
k

(
Dν+1
h

)
k

∆τ

+ Cp1k
cpdρ

n
k

{
β−
(
wνk′+1 − wνk′

)
+ β+

(
wν+1
k′+1 − w

ν+1
k′

)}
. (3.56)

3.3.3 Finite Difference Algorithms Related to Slow Modes

Prior to the small time step integration described above, the forcing terms fψ due to the slow
modes have to be evaluated by finite differencing at the centre time level n of the leapfrog
scheme. These terms are

fnu =
(
∂u

∂t

)
ha

+
(
∂u

∂t

)
va

+Mu

fnv =
(
∂v

∂t

)
ha

+
(
∂v

∂t

)
va

+Mv

fnw =
(
∂w

∂t

)
ha

+
(
∂w

∂t

)
va

+Bq +Mw

fnp′ =
(
∂p′

∂t

)
ha

+
(
∂p′

∂t

)
va

(3.57)

fnT =
(
∂T

∂t

)
ha

+
(
∂T

∂t

)
va

+
(
LV
cpd

Sl + LS
cpd

Sf
)

+Qr +MT

fnq =
(
∂q

∂t

)
ha

+
(
∂q

∂t

)
va

+ (Sq) +Mq .

The terms (∂ψ/∂t)ha and (∂ψ/∂t)va denote the contribution of horizontal and, respectively,
vertical advection to the slow-mode forcing. As described in Section 3.6, the horizontal ad-
vection terms, the metric terms related to the spherical coordinate system and the Coriolis
terms in the prognostic equations for u and v have been reformulated to a combined for-
mulation in terms of kinetic energy Eh and absolute vorticity Va of horizontal motion. The
terms (∂u/∂t)ha and (∂v/∂t)ha in (3.57) represent this combined form. Thus, referring to
the model equations (2.143) - (2.150), the differential formulation of the advection terms is(

∂ψ

∂t

)
ha

= − 1
a cosϕ

(
u
∂ψ

∂λ
+ v cosϕ∂ψ

∂ϕ

)
(3.58)(

∂ψ

∂t

)
va

= − ζ̇ ∂ψ
∂ζ
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for all prognostic model variables, except for the u- and v-tendencies due to horizontal
advection: (

∂u

∂t

)
ha

= − 1
a cosϕ

∂Eh
∂λ

+ vVa

(3.59)(
∂v

∂t

)
ha

= − 1
a

∂Eh
∂ϕ
− uVa .

The kinetic energy Eh and absolute vorticity Va of horizontal motion is defined by Eq.
(2.139).

The contribution Bq of water substance to the buoyancy in the forcing term fw for vertical
velocity is averaged from the model main levels onto the half levels, where w is defined,
by applying the interpolation operator (3.19). This term is calculated explicitly using the
concentration of water constituents from the current time level n:

Bq = g
ρ0

ζ

ρn ζ

{
(Rv/Ra − 1) qv − ql − qf

ζ
}n

. (3.60)

In Eqs. (3.57) the term fq represents the slow-mode forcing for the various water constituents.
The vertical divergence of the precipitation fluxes has not been included, since, in the present
version of the model, the precipitating water phases (rain and snow) are not treated prognos-
tically but are calculated from diagnostic budget equations. Thus, only the nonprecipitating
water constituents (water vapour, cloud water and cloud ice) are subject to explicit time
integration. These are indicated by the subscript q, and Sq denotes the corresponding micro-
physical sources and sinks. The parameterization of the Sq-terms and the numerical scheme
to solve the diagnostic equations for the precipitating water phases will be discussed in Part
II of the LM documentation.

The discretization of the advection terms and the numerical treatment of the other source
terms contributing to the slow-mode forcing is discussed below.

(a) Mass-weighted Velocities

With respect to the numerical formulation of the advection terms it is convenient to define
mass-weighted velocities according to

Uk ≡ (√γ)λk uk ,

Vk ≡ (√γ)ϕk vk , (3.61)

W c
k+1/2 ≡ (√γ) ζk+1/2(ζ̇)k+1/2 ,

where the positions of U , V and W c on the staggered grid are the same as those declared
for u, v and ζ̇. The weighting factor in (3.61) is √γ, i.e. base-state pressure thickness,
which corresponds to the mean reference mass of a model layer. W c denotes the weighted
contravariant vertical velocity ζ̇, which has to be calculated diagnostically from the predicted
physical velocities u, v and w according to (2.151). The discretized form of W c is

W c
k+1/2 = − 1

a cosϕ (√γ) ζ
k+1/2

{(
U
ζ
δλp0

)λ
k+1/2

+
(
V cosϕ ζδϕp0

)ϕ
k+1/2

}
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− g (ρ0) ζk+1/2wk+1/2 . (3.62)

The weighted contravariant vertical velocity is evaluated for the current time level n of the
leapfrog scheme using the corresponding values of u, v and w.

As clearly pointed out by Clark (1977), a proper discretization of the diagnostic equation
for the contravariant vertical velocity is very important in obtaining a correct kinetic energy
budget in an anelastic model. However, we have not yet examined this type of sensitivity
with respect to the compressible model equations of LM.
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(b) Horizontal Advection

Horizontal advection is treated explicitly, i.e. the corresponding tendencies are evaluated by
taking both the advection velocities (u and v) and the transported quantities at the centred
time level n of the leapfrog scheme. The spatial discretization uses second-order accurate
finite differences.

To calculate the tendency terms (3.59) for horizontal momentum, the kinetic energy Eh and
the absolute vorticity Va have to be specified first. Eh is defined at the centre position (i, j, k)
of a grid box and calculated as

Eh = 1
2

{
(u2)λ + 1

cosϕ(v2 cosϕ)ϕ
}
. (3.63)

Va is defined at the corners of an elementary grid area, i.e. at the position (i+1/2, j+1/2, k),
and is discretized by

Va = f + 1
a cosϕ {δλv + δϕ(u cosϕ)} . (3.64)

where the Coriolis parameter f has also been defined at the (i+ 1/2, j + 1/2, k)- position on
the grid. The finite difference form of the horizontal advection terms for u and v reads

(
∂u

∂t

)n
ha

= − 1
a cosϕδλ (Enh ) + (V n cosϕ)λ,ϕ

cosϕ

 V n
a

√
γ
λ,ϕ

ϕ

,

(3.65)(
∂v

∂t

)n
ha

= − 1
a
δϕ (Enh )− (Un)λ,ϕ

 V n
a

√
γ
λ,ϕ

λ

.

For prognostic variables ψ defined at the centre (i, j, k) of a grid box, i.e. ψ = p′, T or q, the
horizontal advection terms are discretized by(

∂ψ

∂t

)n
ha

= − 1
√
γa cosϕ

{
Un(δλψn)λ + V n cosϕ(δϕψn)ϕ

}
. (3.66)

As can be easily shown, this formulation is equivalent to a conservative flux form with respect
to base-state density ρ0 (or base-state pressure thickness √γ) plus a small correction term
related to threedimensional divergence. In an anelastic model, this additional correction
term would be zero. The formulation of the advective tendencies by a pure flux form using
the time dependent density ρ as weighting factor for the velocities would yield a full mass
conserving discretization. However, such a scheme may not be practical because acoustic
density fluctuations would appear in the advection terms requiring a shorter time step to
treat them adequately.

Horizontal advection for the vertical velocity is treated similar to (3.66), but the mass-
weighted horizontal velocities U and V are first interpolated to the half-level position k+1/2
of w using the averaging operator (3.19):(

∂w

∂t

)n
ha

= − 1
√
γ
ζ
a cosϕ

{
Un

ζ(δλwn)
λ

+ V n ζ cosϕ(δϕwn)
ϕ
}
. (3.67)
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(c) Vertical Advection

For the numerical formulation of the vertical advection terms there are two options. The
first is an explicit scheme where the advective tendencies are evaluated using the variables at
the centre time level n of the leapfrog integration. The spatial discretization is second-order
accurate and reads (

∂ψ

∂t

)n
va

= − 1
√
γ

(W cδζψn) ζ (3.68)

for the scalar variables ψ = p′, T and q,(
∂u

∂t

)n
va

= − 1
√
γ
λ

(
W c λδζun

) ζ
(3.69)(

∂v

∂t

)n
va

= − 1
√
γ
ϕ

(
W c ϕδζvn

) ζ

for the components of the horizontal wind velocity, and(
∂w

∂t

)n
va

= − 1
√
γ
ζ

(
W c ζδζwn

) ζ
(3.70)

for the vertical velocity. These finite difference formulations make use of the mass-weighted
contravariant vertical velocity W c = √γζ̇, which is evaluated from Eq. (3.62) for the current
time level n.

The evaluation of (3.68) - (3.70) at the uppermost and the lowest model layer requires
boundary conditions onW c. As already mentioned in the previous section on the fast modes,
non-penetrative boundary conditions are imposed at the upper (ζ = 1/2) and lower (ζ =
Nζ + 1/2) boundaries, i.e.

W c
1/2 = 0 ,

W c
Nζ+1/2 = 0 . (3.71)

In addition to (3.71), top and bottom boundary conditions on the physical vertical velocity
w are required to calculate the advection term (3.70). These are derived from Eq. (3.71) by
imposing free slip conditions on the horizontal velocity at the upper and lower boundaries.
Details are described in Section 5.

The other option is a modified Crank-Nicolson-scheme which is based on time averaging of
the advected quantities on the right hand side of (3.68) - (3.70) using the time levels n− 1
and n+ 1 of the current time step n. The averaging operator is defined by

(ψn) t,v = β+
v ψ̃

n+1 + β−v ψ
n−1 (3.72)

for any prognostic model variable ψ, where

β+
v = 1

2(1 + βv) and β−v = 1
2(1− βv) = 1− β+

v (3.73)
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are the weighting coefficients. The parameter βv determines the time-weighting. The scheme
is unconditionally stable for βv > 0. βv = 0 gives a time-centred scheme and βv = 1 corre-
sponds to a fully implicit scheme. For stability reasons, as the vertical velocities can become
large in case of applications on the meso-γ scale, the centred implicit scheme with βv = 0 is
used by default.

Since the final value ψn+1 of a prognostic variable in an integration step is not known at the
set-up time n for the slow tendencies, the time average in (3.72) is formulated with respect
to a provisional value ψ̃n+1. This value would result from the leapfrog integration if no fast-
mode terms were present. Thus, the formulation is not completely implicit but quasi-implicit
with respect to the slow modes. The forcing term fψ is then calculated according Eq. (3.35),
where the tendencies due to vertical advection on the right hand side are given by(

∂ψ

∂t

)n
va

= − β+
v√
γ

(
W cδζψ̃n+1

) ζ
− β−v√

γ
(W cδζψn−1) ζ (3.74)

for the scalar variables ψ = p′, T and q, and by(
∂u

∂t

)n
va

= − β+
v
√
γ
λ

(
W c λδζ ũn+1

) ζ
− β−v
√
γ
λ

(
W c λδζun−1

) ζ
(
∂v

∂t

)n
va

= − β+
v√
γ
ϕ

(
W c ϕδζ ṽn+1

) ζ
− β−v√

γ
ϕ

(
W c ϕδζvn−1

) ζ
(3.75)(

∂w

∂t

)n
va

= − β+
v
√
γ
ζ

(
W c ζδζw̃n+1

) ζ
− β−v
√
γ
ζ

(
W c ζδζwn−1

) ζ

for the components of the wind velocity.

The procedure results in a coupled tridiagonal set of equations for the variables in a ver-
tical column. Details on the method of solution are described below. The upper and lower
boundary conditions are the same as for the vertically explicit option.

(d) Vertical Turbulent Diffusion

Similar to vertical advection, LM offers options for an explicit or an implicit numerical
treatment of vertical diffusion. The differential form of the turbulent mixing terms is given
by flux-gradient relations

MTD
T = 1

ρ
√
G

∂

∂ζ

(
ρπKv

h√
G

∂θ

∂ζ

)
, MTD

qx = 1
ρ
√
G

∂

∂ζ

(
ρKv

h√
G

∂qx

∂ζ

)
,

MTD
u = 1

ρ
√
G

∂

∂ζ

(
ρKv

m√
G

∂u

∂ζ

)
, MTD

v = 1
ρ
√
G

∂

∂ζ

(
ρKv

m√
G

∂v

∂ζ

)
,

for temperature (MTD
T ), moisture variables (MTD

qx ) and horizontal momentum (MTD
u and

MTD
v ), using a corresponding turbulent diffusion coefficient for heat (Kv

h) and for momentum
(Kv

m). π denotes the Exner pressure function.

The transport coefficients are calculated by a diagnostic turbulence closure method by de-
fault. Optionally, a prognostic equation for turbulent kinetic energy may be applied (TKE-
scheme, see Eq. (2.154)) to determine the diffusion coefficients. In this case, the flux-gradient
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relations for the heat and moisture fluxes take a different form under cloudy conditions, since
a sub-grid scale condensation scheme is also applied. Details on the TKE scheme and on the
related numerical treatment are described in Part II of the LM Documentation. Perturba-
tion pressure as well as vertical velocity are not subject to turbulent vertical mixing. For the
actual numerical solution, the diffusion coefficients for momentum and heat – Kv

m and Kv
h

– are replaced by the modified coefficients Kv
M and Kv

H from (5.21) to take computational
background mixing in physical space into account.

The spatial discretization uses second-order accurate vertical differencing. Kv
M and Kv

H are
defined at the (i, j, k + 1/2)-position on the staggered grid, i.e. at the half level position of
the vertical velocity. Using (3.18) to express the Jacobian

√
G in terms of √γ yields the finite

difference forms

MTD
T = g

(
ρ0
ρn

) 1
√
γ
δζ
(
Ĥ3
)
, MTD

q = g

(
ρ0
ρn

) 1
√
γ
δζ
(
F 3
q

)
,

(3.76)

MTD
u = g

(
ρ0
ρn

)λ 1
√
γ
λ
δζ
(
τ13
)
, MTD

v = g

(
ρ0
ρn

)ϕ 1
√
γ
ϕ δζ

(
τ23
)
,

where Ĥ3 denotes the vertical flux of sensible heat normalized by cpd (as this factor cancels
in the heat equation). The turbulent fluxes of sensible heat, moisture (F 3

q ) and momentum
(τ13 and τ23) are defined at model half levels and at the horizontal position corresponding
to the transported quantity.

The turbulent fluxes in (3.76) may not be evaluated with the variables from the current time
level n, because the leapfrog scheme is unstable with respect to parabolic friction terms.
Thus, we use a modified Crank-Nicolson-scheme for vertical diffusion which involves the
time levels n− 1 and n+ 1 by applying the averaging operator

(ψn) t,d = β+
d ψ̃

n+1 + β−d ψ
n−1 (3.77)

to the diffused quantities. β+
d determines the time weighting and β−d = 1 − β+

d . The finite
difference formulation for the fluxes is

Ĥ3 = g
(ρ0ρn) ζ
√
γ
ζ
πn ζKv

H

(
β+
d δζ θ̃

n+1 + β−d δζθ
n−1

)
,

F 3
q = g

(ρ0ρn) ζ
√
γ
ζ
Kv
H

(
β+
d δζ q̃

n+1 + β−d δζq
n−1

)
,

(3.78)

τ13 = g
√
γ
ζ,λ

(ρ0ρn) ζ Kv
M

λ (
β+
d δζ ũ

n+1 + β−d δζu
n−1

)
,

τ23 = g
√
γ
ζ,ϕ

(ρ0ρn) ζ Kv
M

ϕ (
β+
d δζ ṽ

n+1 + β−d δζv
n−1

)
.

The vertically explicit option is revealed by setting β+
d = 0 (i.e. β−d = 1). In this case, the

values of the diffusion coefficients are limited according to a stability criterion depending on
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the large time step and the vertical grid spacing:

Kv
H,M ≤

1
8

(δζz)2

∆t = 1
8∆t

√γ ζ
gρ0 ζ

2

. (3.79)

Near the surface, where the vertical grid spacing is usually chosen to be much smaller than
in the free atmosphere, this stability condition may severely limit the turbulent fluxes to
unrealistic small values.

For β+
d > 0 the scheme becomes implicit with respect to the provisional values ψ̃n+1. This

yields a coupled tridiagonal set of equations for the variables in a vertical column which may
be combined with the set resulting from the vertically implicit option for vertical advection.
Details on the method of solution are described below.

A linear stability analysis of the implicit scheme shows that unconditionally stable solutions
are obtained for β+

d ≥ 0.5. However, when the diffusion coefficients are very large, high
frequency oscillation of period 4∆t may be excited. Stable and non-oscillating solutions of
the linear diffusion equation are obtained for the full implicit option using β+

d = 1. Practical
applications in NWP-models have shown that, even if β+

d is set to one, 4∆t oscillation are
frequently excited due to nonlinear effects, especially near the surface where the turbulent
fluxes may become large in case of unstable thermal stratification.

The time weighting parameter β+
d can be used to control these oscillations. It has been found

that super-implicit weighting factors β+
d > 1 efficiently damp the 4∆t noise, but also have

a detrimental impact to the physical solution. Thus, we make the weighting factor to be a
function of the computational vertical coordinate ( β+

d is defined at half-levels to achieve
mass conservation) and assign super-implicit weights only near the surface. By default, β+

d

is set to 1.2 at the lowest model level, and gradually decreasing values are specified with
increasing height in the planetary boundary layer. In the free atmosphere, a constant value
of β+

d = 0.75 is used.

The calculation of the mixing terms in Eq. (3.76) requires boundary conditions on the tur-
bulent fluxes at the top (ζ = 1/2) and the bottom (ζ = Nζ + 1/2) half level of the model.
At the upper boundary, zero flux conditions are specified:

(τ13)ζ=1/2 = 0 ,
(τ23)ζ=1/2 = 0 ,
(Ĥ3)ζ=1/2 = 0 , (3.80)
(F 3

q )ζ=1/2 = 0 .

At the lower boundary, the turbulent fluxes of momentum, heat and moisture are specified
using the surface flux parameterizations as described in Part II of the LM documentation;
the surface fluxes of liquid and solid forms of water are set to zero:

(τ13)ζ=Nζ+1/2 = τ13
sfc = − ρCdm|vh|u ,

(τ23)ζ=Nζ+1/2 = τ23
sfc = − ρCdm|vh| v ,

(Ĥ3)ζ=Nζ+1/2 = ˆH3
sfc = − ρCdh |vh| (θπsfc − Tsfc ) , (3.81)

(F 3
qv)ζ=Nζ+1/2 = (F 3

qv)sfc = − ρCdq |vh| (qv − qvsfc ) ,
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(F 3
ql)ζ=Nζ+1/2 = 0 ,

(F 3
qf )ζ=Nζ+1/2 = 0 .

In (3.81), u, v, θ and qv are, respectively, the horizontal velocity components, potential
temperature and specific humidity at the lowest grid level above the surface (ζ = Nζ), and
|vh| is the absolute horizontal wind speed at the same level. Cdm denotes the drag coefficient
for momentum exchange at the ground and Cdh is the bulk-areodynamical transfer coefficient
for turbulent heat and moisture exchange at the surface. For the calculation of Cdm and Cdh see
Part II. The air density ρ is evaluated from the surface values of temperature, pressure and
humidity. Temperature and specific humidity at the ground are either provided by the soil
model or externally specified. The surface pressure is determined by hydrostatic extrapolation
of the total pressure p = p0 + p′ at the first model layer above the ground.

(e) Other Contributions to Slow-Mode Forcing

Besides horizontal advection, vertical advection and vertical diffusion, the cloud microphys-
ical source terms Sq, the radiative heating Qr, sub-grid scale moist convection MMC

ψ , com-
putational mixing MCM

ψ , lateral boundary relaxation MLB
ψ and Rayleigh damping MRD

ψ at
the upper boundary contribute to the slow mode forcing fψ.

The physical forcings due to radiation and due to moist convection are also evaluated at
time level n− 1. The calculation of these terms by corresponding parameterization schemes
is described in subsequent Part II of the documentation.

Sq contains various source terms related to grid-scale clouds and precipitation (see Part
II). These terms are also evaluated at time level n − 1, except for the condensation and
evaporation rate of cloud water, which is calculated by a saturation adjustment scheme. By
this method, the updated values of temperature, water vapour and cloud water at time level
n + 1 (updated due to all processes except condensation and evaporation) are isobarically
adjusted to yield a saturated thermodynamic state. Details on the adjustment scheme are
described in Part II.

Also, for stability reasons, the computational mixing terms MCM
ψ , the boundary relaxation

termsMLB
ψ and the Rayleigh damping termsMRD

ψ will not be included in the slow-mode forc-
ing. These terms are integrated sequentially by using the Marchuk (1975) splitting method,
using initially the updated variables at time level n + 1 resulting from the small time step
integration followed by saturation adjustment. The numerical formulation of these terms is
discussed in Sections 6.2, 5.2.2 and 6.4, respectively.

(f) Method of Solution

The implicit option on vertical advection and diffusion yields a simultaneous equation for
the provisional values ψ̃n+1 of the prognostic variables for each vertical column in grid-
point space. By evaluating the finite difference equations described above, we obtain a linear
tridiagonal equation system, which may be written in the general form

Ak ψ̃
n+1
k−1 + Bk ψ̃

n+1
k + Ck ψ̃

n+1
k+1 = Dk , (3.82)

for variables defined on main levels indicated by k (k = 1, · · · , Nζ). Boundary conditions will
be included in the inhomogeneous term Dk such that A1 = 0 and CNζ = 0. Thus we have a
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tridiagonal matrix structure of dimensions (Nζ)× (Nζ).

B1 C1

A2 B2 C2

A3 B3 C3

· · ·
· · ·

ANζ−1 BNζ−1 CNζ−1

BNζ CNζ





ψ̃1

ψ̃2

ψ̃3

·
·

ψ̃Nζ−1

ψ̃Nζ



n+1

=



D1

D2

D3

·
·

DNζ−1

DNζ


The matrix diagonals have the form

Ak = β+
v A

v
k + (β+

d )k−1/2A
d
k ,

Ck = β+
v C

v
k + (β+

d )k+1/2C
d
k , (3.83)

Bk = 1
2∆t − Ak − C ′k ,

where

Avk = − 1
2√γ

k

W c
k−1/2 , k = 2, · · · , Nζ

Cvk = + 1
2√γ

k

W c
k+1/2 , k = 1, · · · , Nζ − 1

(3.84)

Adk = − g2
(
ρo
ρ

)
k

1
√
γ
k

(ρ0ρ) ζk−1/2
√
γ
ζ

k−1/2

Kv
k−1/2 , k = 2, · · · , Nζ

Cdk = − g2
(
ρo
ρ

)
k

1
√
γ
k

(ρ0ρ) ζk+1/2
√
γ
ζ

k+1/2

Kv
k+1/2 , k = 1, · · · , Nζ − 1

The term C ′k in the main diagonal Bk (3.83) is equal to Ck for all model layers k < Nζ , but
for the lowest layer C ′k is defined by

C ′k = − g
(
ρo
ρ

)
k

(β+
d )k+1/2√
γ
k

ρk+1/2|vh|k Cd , k = Nζ , (3.85)

according to the lower boundary conditions from Eq. (3.81). The inhomogeneous term Dk

contains all explicit contributions to the slow-mode forcing (except those from condensation-
evaporation, computational mixing, lateral boundary relaxation and Rayleigh damping):

Dk = ψn−1

2∆t +
(
∂ψ

∂t

)n
ha

+MMC
ψ +MCM

ψ +Q

+
(
β−v A

v
k + {β−d }k−1/2A

d
k

) (
ψn−1
k − ψn−1

k−1

)
(3.86)

−
(
β−v C

v
k + {β−d }k+1/2C

d
k

) (
ψn−1
k+1 − ψ

n−1
k

)

Section 3: Discretized Form of the Model Equations Part I – Dynamics and Numerics 5.05



3.3 Discretization and Numerical Integration 81

Other forcings than horizontal advection, moist convection and computational mixing are
abbreviated by Q. For the lowest model layer k = Nζ , the last term in (3.86) is replaced by

−C ′k(β−d /β
+
d )k+1/2

(
ψn−1
sfc − ψ

n−1
k

)
− C ′kψ

n+1
sfc (3.87)

to include the lower boundary conditions.

Eq.(3.82) is solved for ψ̃n+1 using a standard tridiagonal solver based on Gaussian elimina-
tion. Finally, the slow-mode tendencies are calculated from

fnψ = ψ̃n+1 − ψn−1

2∆t . (3.88)

According to the finite difference formulations (3.76) and (3.78), the factors in the diagonals
Ak and Ck for ψ = u and ψ = v are evaluated at the corresponding positions on the C-grid.
In case of ψ = T , the forcing for the turbulent flux of sensible heat is by the vertical gradient
of potential temperature. Thus, the tridiagonal system has to be modified accordingly. To
avoid a coupling of the T - and the p′-equations, the potential temperature is calculated using
the pressure at the centred time level. The tridiagonal matrix equation for the slow-mode
tendency of the vertical velocity takes also a slightly different form due to vertical averaging.

3.3.4 Outline of an Integration Step

As mentioned in the previous subsection, not all terms contributing to the tendency due to
slow modes are considered by the forcing function fψ, which is used in the small time step
sub-integration of the equations. The remaining terms are integrated subsequent to time
splitting using the Marchuk splitting method Marchuk (1975).

To illustrate this method, we rewrite the model equations in the symbolic form (3.31) as
∂ψ

∂t
= sψ + fTSψ + Scψ + MCM

ψ + MLB
ψ + MRD

ψ . (3.89)

sψ denotes the terms related to the fast modes and fTSψ represents the slow-mode tendencies
except for cloud condensation and evaporation (Scψ), computational mixing (MCM

ψ ), lateral
boundary relaxation (MLB

ψ ) and Rayleigh damping at the upper boundary (MRD
ψ ).

The idea of the Marchuk method is to split a complex system of equations into a number of
simpler subsystems representing different processes. These are then solved consecutively one
at a time, where different numerical schemes may be applied for each subsystem. Starting
with given initial values of the variables, the integration of the first subsystem yields updated
variables which are then used as initial conditions to integrate the second subsystem (thus,
the Marchuk splitting is much different from the mode splitting scheme described above).
This procedure is continued until the last subsystem is integrated yielding the final values
of the variables at time level n+ 1.

Applying the Marchuk method to the model equations (3.89) results in the following orga-
nization of time stepping.

(1) Calculation of the Tendencies due to Slow Modes
Given the values of the variable at time level n− 1 and n, the slow-mode forcing fTSψ
has to be set up first. The calculation of this term has been described in Section 4.3.3.
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(2) Mode-Splitting Time Integration
In the second step, the first two subsystem from (3.89),

∂ψ

∂t
= sψ + fTSψ , (3.90)

are then integrated simultaneously using the mode-splitting time scheme as described
in Section 4.3.1 and 4.3.2. After a number of small time steps, this algorithm yields
provisional values ψ∗ of the variables at time level n+ 1.

(3) Saturation Adjustment
Using the updated variables ψ∗ as initial values, the terms related to condensation and
evaporation are then integrated in the third subsystem:

∂ψ

∂t
= Scψ . (3.91)

The saturation adjustment scheme described in Part II of the LM Documentation is
used to integrate (3.91) resulting in new provisional values ψ∗∗ for time level n+ 1.

(4) Computational Mixing
The next step integrates the fourth subsystem from (3.89),

∂ψ

∂t
= MCM

ψ (ψ) , (3.92)

i.e. the provisional variables ψ∗∗ from the previous step are updated for the computa-
tional mixing (horizontal diffusion) terms MCM

ψ to yield new provisional values ψ∗∗∗.
These terms MCM

ψ are treated explicitly, their formulations and finite difference rep-
resentation is discussed in Section 6.2.

(5) Lateral Boundary Relaxation
In the following step, the fifth subsystem from (3.89) is integrated in time,

∂ψ

∂t
= MLB

ψ (ψ) , (3.93)

i.e. the provisional variables ψ∗∗∗ from the previous step are updated for the lateral
boundary relaxation terms MLB

ψ to yield new provisional values ψ∗∗∗∗. As described in
Section 5.2.2, an implicit time scheme is used to integrate (3.93) for stability reasons.

(6) Rayleigh Damping
Finally, the last subsystem from (3.89) considering the Rayleigh damping in the upper
model layers,

∂ψ

∂t
= MRD

ψ (ψ) , (3.94)

is integrated similar to step (5) by an implicit scheme (see Section 6.4) using the
updated variables ψ∗∗∗∗ as initial values. This yields the final values of the variables
valid at time level n+ 1 and completes a time step.

This basic form of an integration cycle is reflected in the structure of the program code.
Details on the implementation of the time integration scheme are discussed in Part IV of the
LM-documentation.
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3.4 Special Transport Schemes

The numerical treatment of 3-d transport using Leapfrog time integration with centred spa-
tial differences will introduce small-scale oscillations due to the Gibbs phenomenon. Negative
oscillations, however, are problematic for positive definite variables such as specific humidity,
cloud water, cloud ice, rain, snow or the turbulent kinetic energy. Setting negative under-
shots simply to zero will result in a mean increase of the corresponding variable, that is in a
continuous increase in mass. Thus, special schemes must be applied to guarantee a positive
numerical solution.

It is also important to note that the equations for the constituents of the hydrological cycle,
(2.148) and (2.149), and for turbulent kinetic energy (2.154) are numerically decoupled from
the scheme concerning the integration of the thermodynamic equations (2.143) - (2.147)
for momentum, temperature and perturbation pressure due to the mode-splitting approach
described in Section 4.3. Thus, numerical integration schemes other than Leapfrog with
centred spatial differences may be applied for the hydrological cycle.

3.4.1 Vertical Redistribution

The default model set-up utilizes the LM standard cloud microphysics scheme (see Part
II of the documentation) which predicts cloud water (qc) and specific humidity (qv) and
diagnoses the precipitation fluxes of rain and snow. In order to avoid negative values of qc
and qv resulting from the time-integration scheme as described in Section 4.3.3, a simple ’hole-
filling’ algorithm based on vertical redistribution is applied. That is, whenever a negative
value occurs in a layer k, it is set back to zero and the corresponding mass deficit is subtracted
from the mass in the layer k + 1 below.

Let q̃n+1
k denote the provisional concentration of water vapour or cloud water at time level

n+ 1 in a layer k as resulting from the inversion of the tridiagonal matrix (3.82). Then the
recursive algorithm to obtain the final values qn+1

k starts at the top level k = 1 and may be
written as

qn+1
k = max

{
0, q̃n+1

k + ∆mk−1/(ρ∆z)k
}
,

(3.95)
∆mk = min

{
0, qn+1

k (ρ∆z)k
}
,

for k = 1, . . . , Nζ . ∆mk is the mass deficit in a layer with density ρ and thickness ∆z. Density
is evaluated at time level n and the start value for the mass deficit is set to ∆m0 = 0. The
algorithm assures that the vertical integral of ρq, i.e the total mass of cloud water or water
vapour per unit area is conserved during redistribution – as long as the mass deficit at the
bottom layer turns out to be zero, ∆mNζ = 0. In this case we have

Nζ∑
k=1

ρkq
n+1
k ∆zk =

Nζ∑
k=1

ρkq̃
n+1
k ∆zk .

If ∆mNζ is negative, the corresponding mass amount is artificially introduced in the model
atmosphere and mass conservation is violated. This simple hole-filling algorithm results in
a strong vertical smoothing of q but can introduce small-scale two-grid-interval noise in the
horizontal direction since negative values resulting from horizontal transport are corrected by
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vertical redistribution. However, the scheme is a computationally cheap method to achieve
a positive definite numerical solution.

3.4.2 Horizontal Advection

Transport of cloud ice (qi) is much more crucial to numerical errors in the advection algo-
rithm since depositional growth is calculated by a non-equilibrium approach in contrast to
the instantaneous saturation adjustment for cloud water condensation-evaporation. Thus, a
special scheme for horizontal transport should be used to predict qi. We have implemented
a variant of the Lin and Rood (1996) (LR hereafter) algorithm for this purpose. This algo-
rithm extends arbitrary 1-d flux-form transport schemes to multi-dimensions and allows for
relatively large time steps.

To outline shortly the LR-scheme, we consider the generic equation for 2-d horizontal trans-
port

∂ρq

∂t
+∇h · (vhρq) = 0 (3.96)

of a tracer constituent with mass fraction q. Without specifying details of the 1-d scheme, let
X and Y denote 1-d operators representing the increments of the partial density field Q = ρq
from timelevel n to n + 1 due to the negative fluxes in x-direction and y-direction, respec-
tively. A straightforward method to advance the solution would be to apply the operators
simultaneously,

Qn+1 = Qn +X(Qn) + Y (Qn) . (3.97)
Such a scheme, however, is unstable due to the neglect of cross-derivative terms (or splitting
terms) in the Taylor series expansions for the fluxes. One method to stabilize the scheme is
to introduce the cross-derivative terms explicitly (Smolarkiewicz (1982); Schlesinger (1985)).
However, the maximum stable Courant number is reduced significantly. Another method is
based on sequential directional time-splitting Crowley (1968), where the X-operator is first
applied in the x-direction, followed by the Y -operator applied in y-direction with the result
of the x-transport as input:

Qx = Qn +X(Qn) , (3.98)
Qn+1 = Qx + Y (Qx) , (3.99)

Substituting (3.98) into (3.99) yields

Qn+1 = Qn +X(Qn) + Y (Qn) + Y X(Qn) , (3.100)

where Y X(Qn) is an abbreviation for Y {X(Qn)}. This is just the splitting-term required
to stabilize the scheme. The Y X-operator has the form of a cross-derivative term, but as
the scheme (3.100) results from directional splitting, it does not reduce the stable Courant-
number in multi-dimensional applications. Actually, the linear CFL stability condition is
max(cx, cy) ≤ 1 instead of the more stringent condition cx+cy ≤ 1 of other multi-dimensional
schemes (cx and cy denote the Courant numbers in x- and y-direction, respectively). This
is the major advantage of directional splitting. However, a directional bias is introduced:
Performing the y-advection first followed by x-advection results in an equally valid scheme

Qn+1 = Qn +X(Qn) + Y (Qn) +XY (Qn) , (3.101)

which is antisymmetric to (3.100) with respect to the splitting term. Both schemes (3.100)
and (3.101) are only first-order accurate in space due to the existence of the directional
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bias. Second-order accuracy can be obtained by a symmetric sequence of the sequential
splitting method Strang (1968). LR derive a symmetric form of the splitting scheme by
simply averaging the two antisymmetric schemes (3.100) and (3.101):

Qn+1 = Qn +X(Qn) + Y (Qn) + 1
2 {Y X(Qn) +XY (Qn)} . (3.102)

This algorithm eliminates the directional bias but is computational more expensive than
either (3.100) or (3.101). To reduce total operation counts, LR rewrite (3.102) in the form

Qn+1 = Qn +X

{
Qn + 1

2Y (Qn)
}

+ Y

{
Qn + 1

2X(Qn)
}
. (3.103)

As pointed out by LR, all three schemes (3.100), (3.101) and (3.103) satisfy mass-conservation
due to the use of flux-form operators, and satisfy the directional-splitting stability condition
max(cx, cy) ≤ 1. But consistency is not guaranteed: In case of a uniform Q-field in incom-
pressible flow with ∇h ·vh = 0 there will be no change in partial density Q. All three schemes,
however, predict a change proportional to the splitting term. To eliminate this error, LR re-
place the inner operators in (3.103) by their advective form counterparts denoted by Xa and
Ya:

Qn+1 = Qn +X

{
Qn + 1

2Ya(Q
n)
}

+ Y

{
Qn + 1

2Xa(Qn)
}
. (3.104)

The contributions from inner advective form operators will be zero for a spatially uniform
Q-field such that the consistency requirement is met. Since the outer operators are still in
flux form, mass conservation is still guaranteed. Also – because the splitting terms are of
higher order in time – it is sufficient to replace the two inner advective operators by first-
order upstream operators to achieve an overall second-order accuracy. Equation (3.104) is
the basic form of the general forward-in-time LR transport algorithm. The advantage is that
it is highly flexible since any 1-d transport scheme including monotonicity constraints can be
utilized, whereas many other methods for multidimensional advection are scheme dependent
(e.g. Bott (1993); LeVeque (1993); Colella (1990)). Also, the extension to a semi-Lagrangian
flux-form scheme with large time steps is possible (see LR). However, this option is not used
in the current version of LM.

The budget equations (2.149) for the constituents of the hydrological cycle are written in
advection form. In order to apply the LR-algorithm, we rewrite the horizontal advection term
into a flux-divergence term and subtract the resulting wind-divergence term. The generic
equation for horizontal transport of q then reads

∂q

∂t
+∇h · (vhq)− q∇h · vh = 0 , (3.105)

where we apply the LR-scheme (3.104) for the flux-divergence term with q instead of Q as
the transported variable. At a gridpoint (i, j) the discretized form of the algorithm is written
as

qn+1 = qn +X(qy) + Y (qx) + qnD∆t . (3.106)

Here, D denotes the discretized wind divergence term

D = 1
a cosϕ { δλ (u) + δϕ (v cosϕ)} , (3.107)

qy and qx are the intermediate values of q updated by the inner advection operators Ya and
Xa, respectively. A simple upstream operator is used for this purpose. Denoting the Courant
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numbers in the horizontal directions at the cell centre (i, j) by

cλ = ∆t
a cosϕ∆λ(uλ) , cϕ = ∆t

a cosϕ∆ϕ(vcosϕϕ) , (3.108)

we have for the intermediate values qy and qx:

qyi,j = qni,j −
1
4 {(cϕ)i,j(qi,j+1 − qi,j−1)− |(cϕ)i,j |(qi,j+1 − 2qi,j + qi,j−1)} , (3.109)

qxi,j = qni,j −
1
4 {(cλ)i,j(qi+1,j − qi−1,j)− |(cλ)i,j |(qi+1,j − 2qi,j + qi−1,j)} . (3.110)

For the outer flux-divergence operators X and Y a second-order Lax-Wendroff method with
a monotonic flux-limiter has been implemented. Formally, we represent the operators as

Xi,j = − ∆t
a cosϕδλF

λ , Yi,j = − ∆t
a cosϕδϕ(cosϕFϕ) . (3.111)

In Equation (3.111), the Lax-Wendroff fluxes F λ and Fϕ are defined at the corresponding
grid interfaces:

F λi+1/2,j = max(0, u)
{
qyi,j + 0.5(1− cλ) ∗ Ci−1/2,j

}
+

min(0, u)
{
qyi+1,j − 0.5(1 + cλ) ∗ Ci+1/2,j

}
, (3.112)

Fϕi,j+1/2 = max(0, v)
{
qxi,j + 0.5(1− cϕ) ∗ Ci,j−1/2

}
+

min(0, v)
{
qxi,j+1 − 0.5(1 + cϕ) ∗ Ci,j+1/2

}
. (3.113)

Here, the Courant numbers cλ and cϕ are defined at the corresponding cell interfaces (i.e. as in
(3.108), but without averaging), and C denotes the flux limiters. At present the monotonized
centred (MC) limiter of van Leer (1977) is implemented. By defining the ratio of the slopes
of the intermediate solution at the cell interfaces by

ri+1/2,j =
qyi+2,j − q

y
i+1,j

qyi+1,j − q
y
i,j

, ri,j+1/2 =
qxi,j+2 − qxi,j+1
qxi,j+1 − qxi,j

, (3.114)

the MC-limiter used in (3.112) and (3.113) can be formulated as

Ci+1/2,j = max
{

0,min ( 2, 2ri+1/2,j ,
1 + ri+1/2,j

2 )
}
,

Ci,j+1/2 = max
{

0,min ( 2, 2ri,j+1/2,
1 + ri,j+1/2

2 )
}
. (3.115)

This version of the scheme is applied to calculate horizontal advection of cloud ice, if the
corresponding parameterization scheme is switched on. The recent model version allows also
to apply a 3-d transport scheme for rain and snow. In this case, the horizontal transport of
qr and qs is also treated by the LR-scheme with the MC-limiter.

In order to combine a two-timelevel forward-in-time integration scheme for qi with the default
three-timelevel Leapfrog scheme for the other variables, and to guarantee a positive definite
solution, a Marchuk-splitting approach is applied. To illustrate the procedure, let us write
the prognostic equation (2.149) for cloud ice as

∂qi

∂t
+ vh · ∇hqi + ζ̇

∂qi

∂ζ
= Si +MTD

qi +MLB
qi +MRD

qi . (3.116)
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Horizontal diffusion is not applied to the cloud ice field, MCM
qi = 0, and with the present

convection scheme there is no feedback from cumulus convection, MMC
qi = 0. In the first

integration step for (3.116), qi is updated due to horizontal advection from timelevel n to
timelevel n+ 1 as described above. These values are used as input to the scheme for vertical
advection in a second step (see below). The resulting total advection tendency is then used
as input the right hand side of the tridiagonal system (3.82) to solve implicitly for turbulent
vertical diffusion MTD

qi (see Section 4.3.3). The resulting values are then used to calculate
the microphysical source terms Si. The updated values from this step are finally subject to
further updates due to lateral boundary forcing MLB

qi and Rayleigh damping MRD
qi .

3.4.3 Vertical Advection

The vertical transport of cloud ice (and of rain and snow, if the 3-d transport scheme is
switched on) is calculated as a second step in a Marchuk splitting with the variables resulting
from horizontal transport as input. This introduces a directional bias which, however, is very
small since horizontal transport dominate the vertical one on the meso-β scale. The advantage
of this splitting is that the solution remains positive as long as a monotonic scheme is applied
for both the horizontal and the vertical direction.

Analogue to the horizontal advection term, the vertical advection term in (3.116) is de-
composed into a vertical flux-divergence term and a divergence term for the contravariant
vertical velocity. For the actual computation, we use the mass-weighted vertical velocity W c

as defined in (3.61). Thus, the following subset of 3.116) is solved during Marchuk splitting:

√
γ
∂q

∂t
+ ∂W cq

∂ζ
− q∂W

c

∂ζ
= 0 . (3.117)

The procedure to solve (3.117) based on a Lax-Wendroff method with a MC-limiter as
described in Section 4.4.2, but now with the fluxes and flux operator referring to the vertical
direction, and the Courant numbers being evaluated for the mass-weighted contravariant
vertical velocity W c. In order to avoid instabilities in case of very large vertical velocities,
the Courant number for vertical transport is artificially limited to a value of one.

3.4.4 Transport of Precipitation

The operational scheme for gridscale precipitation assumes column equilibrium for precip-
itating constituents rain and snow (see Part II of the LM Documentation). That is, sedi-
mentation can be considered to be a fast process compared to the characteristic time scale
of advection. By increasing the model’s spatial resolution, this assumption gets more and
more unrealistic. With the characteristic values of 5 m/s for the terminal velocity speed of
rain and of 1 m/s for snow, the time scales for sedimentation of rain and snow are estimated
as 500 s and 2500 s, respectively, by assuming a vertical fall distance of typically 2500 m
for frontal precipitation. At 15 m/s wind speed, the corresponding horizontal displacements
are about 8 km for rain and 40 km for snow – an effect that should be taken into account
for grid spacings of 10 km or smaller. Horizontal transport is particularly important for the
generation of lee-side precipitation, which is not sufficiently recognized by the operational
LM. When going to the meso-γ scale, deep convection becomes resolved explicitly. Here, all
instationary effects of cloud development, and especially the vertical advection of the precip-
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itation phases must be considered to simulate realistically the life-cycle of deep convective
cells.

In order to take these effects into account, the diagnostic equations for the precipitation fluxes
Px, where x stands for r (rain) or s (snow), respectively, have to be replaced by full prognostic
equations (2.149) for the mixing ratios qx. Considering the large terminal fall velocities of
this hydrometeors, all mixing terms Mqx will be neglected in the 3-d transport equations
for rain and snow. Also, it is sufficient to specify simple outflow boundary conditions on
the outflow boundaries, and zero boundary conditions on the inflow boundaries. With this
simplification the prognostic equations for qr and qs read

∂qx

∂t
+ vh · ∇hqx + ζ̇

∂qx

∂ζ
+ 1
ρ
√
G

∂

∂ζ
(ρvTx qx) = Sx . (3.118)

Here, vTx denotes the terminal fall velocity, which is a nonlinear function of qx. The trans-
formation of the current diagnostic parameterization scheme into a prognostic scheme using
(3.118) requires three steps:

(a) a reformulation of the microphysical processes Sx in terms of qx as dependent model
variables (instead of Px),

(b) an accurate and positive definite advection scheme, and

(c) a numerically efficient treatment of the sedimentation term.

Since the precipitation fluxes and the mixing ratios are uniquely related by basic parame-
terization assumptions, the reformulation of the source terms is straightforward (see Part II
of the documentation). For threedimensional advection, the Lin and Rood (1996) algorithm
as described in Section 4.4.2 and 4.4.3 is used.

The numerical treatment of sedimentation turns out to be more difficult: in case of precipi-
tation falling through thin model layers near the surface, the Courant number may become
larger than one. An implicit scheme, however, cannot be applied because the sedimentation
velocity is a nonlinear function of the mixing ratio. Also, a semi-Lagrangian technique will
be difficult to apply since the source terms have to be taken into account to allow for mi-
crophysical interactions during fallout. For the current testversion of the prognostic scheme,
a relatively efficient integration method for (3.118) has been developed Gaßmann (2002). It
is based on symmetric Strang process-splitting combined with local time-splitting for the
sedimentation process, i.e. splitting is applied only for those layers where the local Courant
number exceeds the stability limit. For details of the scheme, see Gaßmann (2002).

Meanwhile, an alternative numerical treatment of the sedimentation term is in evaluation. It
is based on a quasi-linear approximation to the terminal velocity combined with an implicit
upstream estimate for the fallout flux. Since the large numerical diffusion associated with
the upstream approximation is not of importance due to the fact that fallout is very fast, the
solutions with this scheme turn out to be very similar to the more accurate time-splitting
scheme. However, the implicit upstream approach is by far more efficient. Given a successful
testing, the new scheme will replace the time-splitting method in a future version of the
model.
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Section 4

Initial and Boundary Conditions

In a limited area model, only the lower boundary is physical. The boundaries at the top and
the sides of the model domain are usually artificial. Various conditions at these boundaries
may be specified. The conditions should be chosen to make sense in the context of a specific
application.

With respect to the simulation of real data cases as well as for NWP purposes, it is important
to use open or inflow-outflow lateral boundary conditions to allow the atmosphere in the
model interior domain to interact with the external environment. In the present version of
LM, only an externally specified time dependent forcing is taken into account by a one-way
interactive nesting method. Another option is the use of periodic boundary conditions, which
may be used for specific scientific applications.

We plan to implement additional options on lateral boundary conditions in near future.
These will include Orlanski-type wave-radiation open boundary conditions Orlanski (1976)
and a two-way interactive scheme for self-nesting of the model to focus on regions of interest.
Work on the latter scheme, which will be based on the formulation in the MM5-model Grell
et al. (1994) is in progress.

At the upper boundary, only non-penetrative conditions are supported at present. A Rayleigh
damping scheme may be applied to suppress wave reflections from the rigid top boundary (see
Section 6.4). Work on the implementation of a wave-radiation upper boundary conditions
based on the formulation of Klemp and Durran (1983) has been started.

4.1 Initial Conditions

Typically, the initial conditions for a regional model are provided by interpolation from a
coarse grid analysis or forecast. For operational applications and real data simulations the
initialized analyses of the global model GME of DWD are used for this purpose. The actual
interpolation is done in a separate pre-processor program, GME2LM, which is described in
Part V of the LM-documentation. At present, the GME2LM is extended to provide also
initial conditions derived from the ECMWF model or from an LM analysis or forecast at
coarser resolution (for one-way self-nesting).

A four-dimensional data assimilation cycle based on a nudging analysis scheme can be in-
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stalled for operational NWP with the LM at COSMO meteorological services. In this case,
the initial conditions come from the continuous LM assimilation stream and only boundary
data have to be provided by GME forecasts. The LM data assimilation system is described
in Part III of this documentation.

For various research applications as well as for model testing and evaluation, the LM pro-
vides a capability to handle idealized cases using user-defined artificial initial and boundary
data. For these types of application, periodic lateral boundary conditions can be specified
optionally. Additionally, a 2-dimensional model configuration can be used.

4.2 Lateral Boundary Conditions

4.2.1 Periodic Boundary Condition

The periodic boundary condition assumes that the solution of the model equations replicates
itself indefinitely outside of the computational domain. Thus, the solution at a distance d
to the west (north) of the computational domain western (northern) boundary equals the
solution at the same distance d to the west (north) of the eastern (southern) boundary.

According to the grid definition in Section 4.1.1, the grid-point indices of the computational
domain run from i = Noff +1, · · · , Nλ−Noff in λ-direction and from j = Noff +1, · · · , Nϕ−
Noff in ϕ-direction, where Noff is an offset-parameter (usually set to 2) which assigns the
external model domain outside to the lateral physical boundaries. Denoting the first and the
last grid-point indices in λ-direction by

NW = Noff + 1 , NE = Nλ −Noff (4.1)

and in ϕ-direction by

NS = Noff + 1 , NN = Nϕ −Noff (4.2)

yields the following periodic boundary conditions. ψ denotes scalars defined at the centre of
a grid box as well as the vertical velocities w and ζ̇.

At the western and eastern boundaries:

ψNW−1,j,k = ψNE ,j,k ,

ψNW−2,j,k = ψNE−1,j,k ,

vNW−1,j,k = vNE ,j,k ,

vNW−2,j,k = vNE−1,j,k ,

uNW− 1
2 ,j,k

= uNE− 1
2 ,j,k

,

uNW− 3
2 ,j,k

= uNE− 3
2 ,j,k

,

ψNE+1,j,k = ψNW ,j,k ,

ψNE+2,j,k = ψNW+1,j,k ,

vNE+1,j,k = vNW ,j,k ,

vNE+2,j,k = vNW+1,j,k , (4.3)
uNE+ 1

2 ,j,k
= uNW+ 1

2 ,j,k
,

uNE+ 3
2 ,j,k

= uNW+ 3
2 ,j,k

.

At the southern and northern boundaries:
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ψi,NS−1,k = ψi,NN ,k ,

ψi,NS−2,k = ψi,NN−1,k ,

vi,NS− 1
2 ,k

= v i,NN− 1
2 ,k
,

vi,NS− 3
2 ,k

= v i,NN− 3
2 ,k
,

ui,NS−1,k = ui,NN ,k ,

ui,NS−2,k = ui,NN−1,k ,

ψi,NN+1,k = ψi,NS ,k ,

ψi,NN+2,k = ψi,NS+1,k ,

vi,NN+ 1
2 ,k

= v i,NS+ 1
2 ,k
,

vi,NN+ 3
2 ,k

= v i,NS+ 3
2 ,k
, (4.4)

ui,NN+1,k = u i,NS ,k ,

ui,NN+2,k = u i,NS+1,k .

4.2.2 Relaxation Boundary Condition

When we use a regional model for NWP purposes, information on the variables at the lateral
boundaries and their time evolution must be specified by an external data set. These external
data may be obtained by interpolation from a forecast run of another model or from a coarser
resolution run of LM. At present, boundary data from the operational hydrostatic global
model GME are supported. The actual interpolation is done in the separate pre-processor
program GME2LM, which is described in Part V of the LM Documentation. The GME2LM
is currently extended to provide also boundary conditions derived from ECMWF model
forecasts or from LM forecasts at coarser resolution. Time dependent relaxation boundary
conditions can then be used to force the solution at the lateral boundaries using the external
data. This method is also referred to as one-way interactive nesting.

Nesting a high-resolution limited area model in a low-resolution driving model causes nu-
merical problems, since the time evolution of the model variables is based on a system of
equations that can differ from that of the driving model. The problems are related to a
non-unique information transfer between the models at the boundaries, attributable to dif-
ferences in the spatial resolution as well as to the use of different sets of model equations.
E.g., information that cannot be transferred from the regional model to the driving model is
reflected back from the boundaries and can severely contaminate the high-resolution model
variables. This leads to the generation of numerical noise, which can propagate from the
lateral boundaries inward to the centre of the model domain.

A simple and effective solution to this problem is to apply a sponge to the model variables
within a relaxation zone close to the boundaries. In this zone, the variables of the high-
resolution model are gradually modified to blend them with the driving model variables.
In this way, the information transfer problem is cured, since information near the lateral
boundaries is no longer generated by the high-resolution model but determined by the values
of the low-resolution driving model.

A relaxation boundary condition similar to that discussed by Davies (1976) and Davies
(1983) is used for one-way nesting. With this scheme, an extra forcing term MLB

ψ is added
to the right hand side of the prognostic equations. The tendency due to lateral boundary
forcing is of the form (

∂ψ

∂t

)
LB

= MLB
ψ = −µb (ψ − ψb) (4.5)

where ψb is the externally specified value of a prognostic variable ψ and µb is the relaxation
coefficient. (4.5) is applied to all prognostic model variables except for the vertical velocity.
A free slip lateral boundary condition is specified for w.
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In LM, the external variables ψb are defined as three-dimensional fields which are available
at discrete specified times TN with time interval ∆T (the default value is ∆T = 1hr). Within
each time interval for boundary updating, ψnb at time level n is a value linearly interpolated
between two times TN and TN+1 where external data sets are available:

ψnb = ψb(TN ) + ψb(TN+1)− ψb(TN )
∆T (n∆t− TN ) , TN ≤ n∆t ≤ TN+1 . (4.6)

The time integration of the boundary tendency (4.5) is by Marchuk splitting and uses pro-
visional values ψ∗ of the variables as initial conditions, which are updated due to all other
adiabatic and diabatic processes (see Section 4.3.4). Because the relaxation coefficient µb
may become large in the boundary zone, an implicit integration scheme is applied. The time
discretization reads

ψn+1 = ψ∗ − 2∆tµb
(
ψn+1 − ψn+1

b

)
, (4.7)

which is rewritten in the form

ψn+1 = ψ∗ − αb
(
ψ∗ − ψn+1

b

)
, (4.8)

where
αb = 2∆tµb

1 + 2∆tµb
(4.9)

is a normalized attenuation function for lateral boundary relaxation. αb = 1 at the boundary
and for all grid points outside the computational domain. Within the boundary zone, αb
decreases gradually and becomes zero in the free interior zone of the model domain such
that the predicted values ψ∗ are not affected by relaxation.

The values of the relaxation parameter µb can be chosen to minimize gravity wave reflec-
tion from the lateral boundaries. In LM, we use a formulation of Kallberg (1977) for the
attenuation function αb:

αb = 1 − tanh
(

d

2∆s

)
. (4.10)

∆s is the horizontal grid spacing and d is the distance from the lateral boundary. The values
of the attenuation function αb are calculated separately for the scalar grid points and the
u- and v- grid points because of their different distances to the physical boundaries. Clearly,
αb = 1 for d = 0 and αb → 0 for d � ∆s. Usually, a boundary zone depth of about 8 grid
points is significantly affected by relaxation updating.

4.3 Top Boundary Conditions

The upper boundary of the model domain is defined as the top half level with constant
computational coordinate ζ = 1/2. According to the coordinate transformations discussed
in Section 3.5.3, this level corresponds to a flat surface in physical space with fixed height
zT above mean sea level.

Non-penetrative boundary conditions are imposed at the upper boundary, i.e. the ζ = 1/2
surface is treated as a rigid lid by setting the contravariant vertical velocity ζ̇ to zero. As
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the ζ = 1/2 level is flat, the physical vertical velocity also vanishes here:(
ζ̇
)
i,j,k=1/2

= 0 ,

(4.11)
(w)i,j,k=1/2 = 0 .

For the components of the horizontal velocity, the temperature and the water substances,
the free-slip condition

(δζψ)k=1/2 = 0 (4.12)

is imposed. This is equivalent to the no friction, no subgrid scale flux conditions specified in
Eq. (3.80). Thus, with (4.11) and (4.12) there is no mass transfer across the upper boundary.

The free-slip condition (4.12) is also applied to calculate the metric correction terms in
the diagnostic equation (3.46) for the horizontal wind divergence. In order to evaluate the
metric terms of the pressure gradient force in the equations (3.41) and (3.42) for horizontal
momentum, an additional boundary condition on the perturbation pressure is required. We
impose an extrapolated boundary condition for p′, which is based on the assumption of a
constant vertical gradient at the upper boundary. This condition may be formulated as{

1
√
γ
δζ(p′)

}
k=1/2

=
{

1
√
γ
δζ(p′)

}
k=1+1/2

. (4.13)

Obviously, the additional boundary condition (4.13) is unnecessary in case of hybrid coor-
dinate system with a number of flat model levels adjacent to the upper boundary, since the
metric correction terms vanish there.

4.4 Bottom Boundary Conditions

The lower boundary of the model domain is defined as the bottom half level with constant
computational coordinate ζ = Nζ + 1/2. According to the coordinate transformation dis-
cussed in Section 3.5.3, this level follows the surface terrain with height zs = h(λ, ϕ) in
physical space.

For the components of the horizontal velocity, the temperature and the water substances,
friction boundary conditions are imposed. The subgrid scale turbulent fluxes are specified in
terms of external surface variables and the values of the model variables at the lowest main
level above the ground. These conditions have been formulated by Eq. (3.81).

The lower boundary is non-penetrative with respect to grid-scale mass fluxes. Thus, the
contravariant vertical velocity must vanish:(

ζ̇
)
i,j,k=Nζ+1/2

= 0 . (4.14)

According to the diagnostic equation (2.112) for ζ̇, the vertical velocity w in case of a flow
following the coordinate surfaces is given by

w = Jλ
a cosϕ u + Jϕ

a
v . (4.15)
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To evaluate (4.15) at the surface, we assume free slip conditions on the horizontal wind
velocity. This yields the following discretized form of the lower boundary condition on w:

wNζ+1/2 = 1
a cosϕ

{
(δλh)uNζ

λ + (δϕh) vNζ cosϕϕ
}
. (4.16)

The free-slip condition on u and v used in (4.16) is also applied to calculate the metric
correction terms in the diagnostic equation (3.46) for the horizontal wind divergence. In
order to evaluate the metric terms of the pressure gradient force in the equations (3.41)
and (3.42) for horizontal momentum, an additional boundary condition on the perturbation
pressure is required. Similar to the top boundary, we impose an extrapolated boundary
condition for p′, which is based on the assumption of a constant vertical gradient at the
lower boundary. This condition may be formulated as{

1
√
γ
δζ(p′)

}
k=Nζ+1/2

=
{

1
√
γ
δζ(p′)

}
k=Nζ−1/2

, (4.17)

where the right hand side is known from model interior values of perturbation pressure.

Numerical experimentation has shown that the model solution is very sensitive to the for-
mulation of the lower boundary condition on pressure, i.e. relatively small changes to the
extrapolation scheme may have a large impact on the flow structure near the surface. This is
typical for overspecified boundary conditions. We plan to implement an alternative condition
on pressure, which is consistent with the kinematic boundary condition (4.16) on the vertical
velocity, in a future version of the model.

4.5 Initialization

Initial data for an NWP-model, which are obtained by an intermittent analysis scheme in
the assimilation cycle or by interpolation from a coarse grid driving model, typically contain
unbalanced information for the mass and wind field. This will give rise to spurious high-
frequency oscillations of large amplitude during the first hours of the model integration.
Thus, the initial data must be modified to reduce the unbalanced gravity and sound wave
components to a realistic level. This process is called initialization. A number of initialization
schemes have been developed to control the high-frequency oscillations, a well known example
is the implicit normal mode initialization scheme used in many hydrostatic models. These
schemes, however, are very complex and their extensions for use in a nonhydrostatic model
framework is not straightforward. A relatively simple alternative approach based on time
filtering was proposed by Lynch (1990): the high frequencies are removed by applying a digital
filter to a short time series of the prognostic model variables obtained by an integration from
the initial data.

The theoretical background of digital filtering is described in Lynch and Huang (1992),
and shortly summarized as follows. In order to filter out the high-frequency components of
a continuous function f(t), one may proceed as follows: (i) calculate the Fourier transform
F (ω) of f(t), (ii) set the Fourier coefficients of the high frequencies to zero, and (iii) calculate
the inverse transform of the modified F (ω). Step (ii) is performed by multiplying F (ω) by
an appropriate weighting function H(ω). Typically, H(ω) is a step function

H(ω) =
{ 1 , |ω| ≤ |ωc| ;

0 , |ω| > |ωc| ,
(4.18)
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where ωc is a cutoff frequency (i.e. higher frequencies are to be filtered out). These three
steps are equivalent to a convolution of f(t) with h(t), denoted by (h ∗ f)(t). Here, h(t) =
sin(ωct)/πt is the inverse Fourier transform of H(ω). That is, to filter f(t) one calculates the
integral

f∗(t) = (h ∗ f)(t) =
∫ +∞

−∞
h(τ)f(t− τ)dτ , (4.19)

where f∗ denotes the filtered input function f . Filtering of a discrete sequence of values
of f, {fn} = {. . . , f−2, f−1, f0, f1, f2, . . .} valid at times tn = n∆t proceeds in the same
way by using discrete Fourier transforms operating on the discrete frequency θ = ω∆t. The
convolution of the discrete {hn} with {fn} yields

f∗n = (h ∗ f)n =
k=+∞∑
k=−∞

hkfn−k (4.20)

for the filtered input values of f . hn is the discrete inverse transform of the step function
(4.18) for filtering,

hn = sinnθc
nπ

, (4.21)

where θc = ωc∆t = 2π∆t/τc denotes the digital cutoff frequency for a given cutoff time
period τc. In practice, the summation must be truncated at some finite value N of k, which
gives rise to Gibbs oscillations. These may be reduced by means of a window function wn
multiplying the weights hn. An example is the Lanczos window defined by

wn = sin{nπ/(N + 1)}
nπ/(N + 1) . (4.22)

Thus, an approximation to the low-frequency part of {fn} is given by

f∗n =
k=+N∑
k=−N

hkwkfn−k. (4.23)

The discrete convolution (4.23) for the time span Ts = 2N∆t is formally identical to a non-
recursive digital filter, where the output depends on both past and future values of the input,
but not on other output values. Thus, also other digital filters than those defined by (4.21)
and (4.22) may be used.

Given a sequence of model values, the application of digital filtering according to (4.23) is
straightforward. However, if the filtered values shall be valid at initial time t = 0, specific
set-ups must be designed such that model variables for times t < 0 are generated and that
(4.23) can be calculated by running sums during a model run. Lynch and Huang (1992)
developed an adiabatic initialization scheme for the HIRLAM model by applying a simple
non-recursive filter to a sequence of values of model variables centred on the initial time t = 0.
These values were generated by two short adiabatic model integrations, one forwards and
one backwards from t = 0. Huang and Lynch (1993) (hereafter HL93) described a method
to incorporate diabatic effects: the backward adiabatic integration is followed by a diabatic
forecast of twice the length, and the values generated by the diabatic forward integration
are processed by the filter. This results in filtered values valid at initial time t = 0. Other
initialization techniques such as finalization and launching, as described in Lynch and Huang
(1994)(hereafter LH94), are also possible but then the filtered fields are not applicable at
initial time. These methods are not considered here.
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LH94 proposed also an alternative method for diabatic initialization by digital filtering: the
backward adiabatic integration was processed with a recursive filter, and the output values
were used to initiate the forward diabatic integration, to which the filtering is applied again.
This method also gives a filtered initial stage valid at time t = 0, but requires less CPU-
time. Figure 4.1 illustrate the HL93 and LH94 methods for diabatic initialization by digital
filtering.

The LH94 filtering approach of filtering both the the backwards and the forwards integrations
is also possible using a more efficient non-recursive filter, as shown in Lynch et al. (1997)).
This scheme has been implemented in LM. The extension to non-hydrostatic dynamics is
very simple, it involves filtering of just two additional model variables – vertical velocity and
perturbation pressure. The scheme uses a Dolph-Chebyshev window, and the resulting filter
many properties of an optimal filter but is much easier to construct. For details about the
filter design and the calculation of the filter weights wn, see Lynch (1997).

The default set-up of the LM initialization is a diabatic digital filtering scheme as shown
in Fig. 4.1b. Optionally, an adiabatic version may be used by specifying the second filter
stage as an adiabatic forward integration. The backward integration is realized by simply
changing the time step from ∆t to −∆t. For both the forward and backward stage, the same
timestep as in the free forecast is used. Care must be taken for horizontal diffusion during
the backward integration: here, the sign of the corresponding diffusion coefficients has to
be reversed in order to generate a smooth solution. Another problem arises from specifying
appropriate boundary conditions for the backward model run. At present, the boundary
fields for t < 0 are simply set to the initial conditions. Thus, the filter time span Ts should
not exceed 1 hour of integration in order to get reasonable results along the boundaries.

(a)

(b)

+ T

+ T

+ T/2− T/2

− T

− T

Figure 4.1: Schematic illustration of diabatic digital filtering procedures. Dashed lines indicate the
adiabatic backward integration, full lines indicate the diabatic forward integration. (a): HL93 scheme.
The adiabatic integration from t=0 to t = −T is not filtered, but its terminal stage is used as initial
condition (open circle) for the forward model run from −T to T . The model variables from this run
are subject to filtering with a span of Ts = 2T , and the output is valid at t = 0 (full circle).
(b) LH94 scheme. Both the backward and the forward integration are subject to a filter of span
Ts = T . Filtering of the backward stage yields output valid at t = −T/2 (full circle). These values
are used to initiate the forward diabatic integration from t = −T/2 to t = T/2. Filtering of this stage
yields the final initialized variables valid at t = 0 (full circle)

.

Section 4: Initial and Boundary Conditions Part I – Dynamics and Numerics 5.05



4.6 Interactive Self-Nesting 97

This, however, implies to set the cutoff period τc to a value smaller than 1 hour to achieve
reasonable filter characteristics. For the current meso-β-scale applications, we do not intend
to filter out time signals with periods larger than 1 hour.

The LM initialization should only be used when starting from interpolated initial conditions,
derived e.g. from GME or the ECMWF model. Starting the model from the continuous data
assimilation suite based on nudging (see Part III of the documentation) does not require any
initialization.

4.6 Interactive Self-Nesting

We plan to implement an additional option for self-nesting which is based on two-way in-
teraction. With such a scheme, a coarse grid model solution is used to start and to provide
boundary conditions for a fine grid, which is embedded in the coarse grid. The solution for
the fine grid feeds back to the coarse grid, usually in a region where both grids overlap. The
coupling of the two solutions is every time step of the coarse grid model solution. This type
of nesting is similar to local static grid refinement techniques used in computational fluid
dynamics.

A prototype scheme which is based on the nesting strategy as used in the MM5-model
Grell et al. (1994) has been implemented in a test version of LM. The nesting proceeds in
three major steps. First, at a given time t with solutions on both the coarse and fine grid,
the coarse grid model solution is integrated for one coarse grid timestep ∆t. Second, the
prognostic variables on the coarse grid are interpolated to the fine grid boundaries and for
the time interval (t, t+∆t). The fine grid model solution is then advanced from t to ∆t using
several smaller time steps. For a grid aspect ration of 3, the small time step size is ∆t/3.
And third, the coarse grid variables are finally replaced with averaged fine grid values in the
overlap region. The MM5 scheme uses a monotonic interpolation algorithm Smolarkiewicz
and Grell (1992) for the interpolation to the fine grid. For the feedback stage, the fine grid
values are directly inserted to the coarse grid points. A detailed description of the method
is given by Grell et al. (1994).

A specific feature of the implementation is that multiple fine grids can be used. The first
option is to use a number of fine grids of the same resolution within the coarse grid domain
(but the fine grids may not overlap). The second option is to use telescoping grids which are
successively nested into each other. The scheme allows also the use of high-resolution external
parameters (e.g. topography, land-sea mask, soil-type etc.) within the fine grids, except for
a transition zone along the lateral boundaries. At present, the prototype implementation
is tested at HNMS. Thereafter, the scheme will be transfered to the model source code. A
comprehensive description of the 2-way nesting scheme will be given in a future version of
this documentation.

4.7 Spectral Nudging

Spectral nudging von Storch et al. (2000) is an approach to force the regional model to
follow the steering provided by the driving model. In the “standard" approach Davies (1976)
in current use, the steering takes place exclusively along the lateral boundaries in the spirit
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of a classical boundary value problem. In the “spectral nudging" approach, the atmospheric
state inside the integration area is also forced to accept the large-scales of the driving model
whereas smaller scales are left to be determined by the regional model.

In the “spectral nudging" approach, the lateral “sponge forcing" is kept and an additional
steering is introduced as described next.

Consider the expansion of a suitable COSMO quantity Ψ:

Ψ(λ, φ, t) =
Jm,Km∑

j=−Jm,k=−Km
cmj,k(t)eijλ/Lλeikφ/Lφ (4.24)

with zonal coordinates λ, zonal wave-numbers j and zonal extension of the area Lλ. Merid-
ional coordinates are denoted by φ, meridional wave-numbers by k, and the meridional
extension by Lφ. t represents time. For COSMO, the number of zonal and meridional wave-
numbers is Jm and Km. A similar expansion is done for the driving model, which are given on
a coarser grid. The coefficients of this expansion are labeled caj,k, and the number of Fourier
coefficients is Ja < Jm and Ka < Km. The confidence we have in the realism of the different
scales of the re-analysis depends on the wavenumbers j and k and is denoted by ηj,k.

The model is then allowed to deviate from the state given by the re-analysis conditional
upon this confidence. This is achieved by adding “nudging terms” in the spectral domain in
both directions

Ja,Ka∑
j=−Ja,k=−Ka

ηj,k(caj,k(t)− cmj,k(t))eijλ/Lλeikφ/Lφ (4.25)

In the following, we will use the nudging terms dependent on height. That is, our confidence
in the reanalysis increases with height. On the other hand, we leave the regional model more
room for its own dynamics at the lower levels where we expect regional geographical features
are becoming more important. The better the confidence, the larger the ηj,k-values and the
more efficient the nudging term.

Following F. et al. (1993) we use a height dependence nudging coefficient.

η0(p) =

 α
(
1− p

pmax

)2
for p < pmax

0 for p > pmax
(4.26)

with p denoting pressure. We set ηj,k = η0 for j = 0 . . . jmax north-south direction, k =
0 . . . kmax in the east-west direction and ηj,k = 0 otherwise. jmax and kmax are the maximum
wave numbers which are determined by

jmax = Nϕm∆xm
Namax∆xa

(4.27)

kmax = Nλm∆xm
Namax∆xa

where Nϕm, Nλm are the number of COSMO grid points in meridional and zonal direction,
respectively. ∆xm is the maximum grid width of the specific COSMO configuration and ∆xa
that one for the driving model. Namax denotes the minimum number of grid points needed
to resolve a wave (i.e. five in general, see Pielke (2002) ).
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Figure 4.2: Schematic sketch of the energy spectrum of global and regional
models.

Spectral nudging is switched off by default. It may be controlled by the following options in
namelist GRIBIN:

Name Type Definition / Purpose / Comments Default
lspecnudge Logical switch for spectral nudging .FALSE.
yvarsn CHAR list of quantities for spectral nudging ’U ’,’V ’
isc sn INT wave numbers i-direction, i.e. kmax 2
jsc sn INT wave numbers i-direction, i.e. jmax 2
pp sn REAL lowest pressure level in hPa for spectral nudging,

i.e. pmax
850.

alpha sn REAL amplification factor for spectral nudging, , i.e. α
(0. <=alpha sn<= 1.)

0.05
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Section 5

Numerical Smoothing

The subgrid scale fluxes of momentum, heat and moisture provide a spatial smoothing of the
prognostic fields. However, this physical type of smoothing is related to turbulent processes
and is efficient only in regions where sufficiently strong turbulence occurs. In regions with
stable thermal stratification the turbulent fluxes are zero or negligible small and there is no
turbulent mixing. For these cases a small amount of additional mixing is required to prevent
the initiation and the subsequent growth of nonlinear instabilities and to control small-scale
computational noise at or near the two grid interval (2∆x) wavelength by artificial damping.
Numerical noise of such type is continuously generated by numerical dispersion, especially
within the Leapfrog time integration using centred difference operators for advection. Also,
weak nonlinear numerical instabilities resulting from aliasing can contribute to the generation
of small-scale noise, and physical processes, which in general act discontinuously at single grid
points, will always introduce noise at the 2∆x-scale. The formation of non-resolvable small-
scale structures will also arise from topographical forcing and from surface inhomogeneities.

Artificial damping can be achieved by modifying the diffusion coefficients for turbulent mix-
ing. In the model turbulent mixing is formulated to operate along the coordinate lines of
the orthogonal z-system (see Part II of the LM documentation). Therefore, this method
is referred to as background mixing in physical space. Another technique to control small-
scale noise is to introduce an additional artificial mixing term on the right hand side of the
prognostic equations. This method is referred to as computational mixing, which in LM is
formulated to operate along the coordinate lines of the nonorthogonal ζ- system.

To ensure numerical stability, all computational mixing terms are evaluated by a forward-
in-time integration scheme in the context of Marchuk-splitting (see Section 4.3.4), since the
explicit evaluation at time-level n− 1 was found to destabilize the solution when the model
is run close to the advective CFL-limit. Thus, the time integration of these terms is only
conditionally stable and the constraints on the time step size imposed by artificial mixing
can be more severe than by other processes. In LM the stability of the time integration is
automatically ensured by limiting the values of the coefficients for computational diffusion
according to the corresponding stability criterion for the specified model time step.

In the following subsections the time filter to avoid high frequency oscillations and various
options on spatial numerical smoothing are discussed. Additionally, a Rayleigh damping
formulation is described, that has been implemented to suppress gravity wave reflection at
the upper boundary of the model.
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5.1 Time filter

When all adiabatic and diabatic processes have been treated by the time integration proce-
dure at time level t, the time step is complete and the new values of the prognostic model
variables at time t + ∆t are known. A time filter is then applied to the variables at the
mid-time level t of the leapfrog scheme. The purpose of this filter is to control rapid os-
cillations and instabilities of the computational mode, which are generated by the leapfrog
integration. Thereby, the temporal decoupling of the physical and the computational modes
of the numerical solution is avoided.

In LM we use the Robert-Asselin time filter (Robert (1966); Asselin (1972), which is defined
as follows:

ψ̃n = ψn + εA(ψn+1 − 2ψn + ψ̃n−1). (5.1)

ψ represents one of the prognostic model variables and the tilde denotes the filtered value of
ψ. The n− 1, n and n+ 1 superscripts indicate the corresponding time levels t−∆t, t and
t+ ∆t, respectively. εA denotes the Asselin filter coefficient. Both too large (e.g. εA = 0.25)
and too small a value (e.g. εA = 0.001) may damp the physical mode excessively. Moderate
values of the filter coefficient in the range 0.05 ≤ εA ≤ 0.2 result in a strong damping of
the computational mode with only a small impact on the physical mode of the numerical
solution. The value εA = 0.15 is used as a default in LM.

When the time integration scheme is run very close to the stability limit for the large time
step, the Robert-Asselin filter can destabilize the numerical solution Déqué and Cariolle
(1986). In these cases, either the value of the filter coefficient or of the time step has to be
reduced to recover stability. For practical applications, a reduction of the large time step is
recommended.

Time filtering does not only damp the computational mode efficiently and prevents a tempo-
ral decoupling of the numerical solution, but is also of crucial importance for a stabilization
of the time-split algorithm which is used for the integration of the equations. Skamarock and
Klemp (1994) have shown that the interaction between propagating and advecting acoustic
modes can introduce severe constraints on the maximum allowable time step. These con-
straints are removed by applying the time filter (5.1). It serves to stabilize the time-split
method and masks the fact that the stability of the individual small and large time-step
schemes does not ensure the stability of the coupled integration scheme.

The time filter (5.1) is applied to all prognostic model variables, i.e. the thermodynamic
variables u, v, w, T , p′ and the concentrations of the water constituents qv, ql and qf . In
cloudy regions, the application of the filter can disrupt the saturation equilibrium, which is
imposed as a closure condition to calculate condensation and evaporation of cloud water by
a saturation adjustment method (see Part II of the LM documentation). Thus, subsequent
to time filtering, the saturation adjustment scheme is applied once again to the filtered
variables.

5.2 Computational Mixing

Numerical smoothing is designed to remove shortwave grid-scale noise from the fields. Such
small scale noise is usually of computational origin and is introduced by, e.g., the advection
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scheme which generates overshoots and undershoots, or the numerical representation of the
energy cascade which is related to nonlinear instability. Computational mixing is therefore
designed as a spatial filter operating on the sloping coordinate lines of the ζ-system and not
as a mathematical representation of a physical diffusion process. The latter would require
a complete transformation of the Laplace operator to the ζ-system to take the direction of
diffusive fluxes in physical space correctly into account. This is computationally expensive.
Thus, the formulation of the computational mixing terms is done with a pseudo-orthogonal
diffusion operator. In case of high-resolution modelling with steep slopes of the model layers,
however, a 2-D numerical diffusion along terrain-following model layers will imply a large
but unwanted vertical mixing (e.g. between mountain tops and narrow valleys), especially
in an atmosphere with strong stratification of the thermodynamic variables. To tackle this
problem, a simple orographic flux-limiter has been implemented which reduces numerical
diffusion with increasing steepness of the topography.

LM offers three options for 4th-order computational mixing: (i) regular linear horizontal dif-
fusion, (ii) a monotonic version of the horizontal diffusion scheme, and (iii) the monotonic
version with a simple flux-limiter to reduce numerical diffusion with increasing steepness
of the topography. These schemes are described in the following subsections. Vertical com-
putational mixing is not considered by these schemes, but some vertical smoothing is done
by background mixing in the physical space (see Section 6.3). It is important to note that
the computational mixing should be as small as possible because of its non-physical origin.
Otherwise the physical solution may be affected in a detrimental way.

5.2.1 Fourth order Horizontal Diffusion

Higher order computational mixing is mostly realized by introducing an additional operator
to the right hand side of the prognostic equations:

∂ψ

∂t
= S(ψ) + (−1)m/2+1αm∇mψ , (5.2)

where ψ is one of the prognostic variables and S represents all physical and dynamical source
terms for ψ. The last term in Eq.(5.2) is the added linear diffusion term where m (m =
2, 4, 6, · · ·) denotes the (even) order of computational diffusion and αm is the corresponding
diffusion coefficient of order m.

The higher the order of the diffusion operator, the more scale selectively wavelength com-
ponents are damped. Figure 5.1 shows the amplification factor (here: damping factor) for
a one dimensional version of Eq. (5.2) using a forward in time and centred in space finite
difference scheme for integration, plotted against the normalized wavelength k∆x where k
is the wavenumber and ∆x is the grid spacing. For each of the second, fourth and sixth
order schemes the corresponding diffusion coefficient αm is chosen so that the shortest waves
representable on a discrete grid (2∆x, i.e. k∆x = π) are damped completely within one
integration time step.

As can be seen from Fig. 5.1, all schemes damp not only the two grid interval wavelength,
but also longer wave components in a wave spectrum. For example, the amplitude of a 4∆x
wave is reduced by a factor of 0.5 in the second order scheme, and longer waves are also
damped significantly. The fourth and sixth order scheme have much less damping for these
longer waves, which contain physical meaningful information in a simulation and should not
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Figure 5.1: Amplification factor plotted against the normalized wavenumber.

be affected by a numerical filter. Clearly, higher order schemes provide a more scale selective
damping.

Many models use the 4th-order linear computational diffusion scheme because of its relative
computational efficiency compared to the 6th order scheme and of its superior damping
properties compared to the second order scheme. The 4th-order linear scheme is also applied
in LM and we do not plan to implement a 6th or even higher order filter. Schemes of higher
than 2nd order, however, have unwanted side effects. The 2nd order scheme has a Laplacian
form and thus is always monotonic: by transferring higher values of the field into regions
with smaller values no new minima or maxima can be created. This is not the case for the
4th, 6th and even higher order schemes, where spatial oscillations are introduced (Gibbs
phenomenon), as can be seen in Fig. 5.2.

Figure 5.2 shows the one dimensional numerical solution of Eq.(5.2)(with S = 0) for 2nd, 4th
and 6th order diffusion applied to an initial rectangular structure. The second order scheme
(left) is strongly diffusive even for the large scale structure. At the end of the integration
(t = 100) the amplitude of the entire square wave is significantly reduced. The 4th (middle)
and 6th order (right) schemes retain the initial structure much better, and at the lateral
edges, where short wavelengths components dominate, the sharp gradients are maintained
in the solution (somewhat better by using the 6th order scheme).

However, over- and undershoots are generated by the numerical solution. The amplitude of
these unphysical, both positive and negative spatial oscillations is increased by increasing
the order of the diffusion operator. That is, going to higher than 4th-order diffusion will not
cure this side effect. Obviously, the 2∆x waves are removed from the solution, but at the cost
of introducing new noise on the resolvable scales. In the context of a full simulation model
these oscillations will interact nonlinearly with the physics as well as with the dynamics (as
they are on the resolvable scales) and thus can result in unforeseeable effects. Moreover,
negative oscillations are unacceptable for positive definite fields such as cloud water content
or specific humidity.
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Figure 5.2: 1-D numerical solution of Eq.(1) for an initial square wave (red, t = 0) in case of 2nd
(left), 4th (middle) and 6th order (right) linear diffusion. The domain has 51 grid points with a grid
spacing of 1/50 m and the time step is 1 sec. The diffusion coefficients are chosen such that there is
full damping of a 2∆x wave within one time step, i.e. αm = (∆x/2)m/∆t. The solutions are plotted
at 10 timestep intervals (thin lines).

Before we present a monotonic version of the 4th-order scheme for computational mixing
in the following subsection, the implementation of the regular 4th-order horizontal diffusion
is described. Let MCM

ψ denote the computational mixing term of a model variable ψ. The
evaluation of this term according to (5.2) for quasi-horizontal diffusion along model surfaces
in lat/lon coordinates takes the form

MCM
ψ = −α4

1
a2cos2ϕ

{
∂2sψ
∂λ2 + cosϕ ∂

∂ϕ

(
cosϕ∂sψ

∂ϕ

)}
(5.3)

with
sψ = 1

a2cos2ϕ

{
∂2ψ̃

∂λ2 + cosϕ ∂

∂ϕ

(
cosϕ∂ψ̃

∂ϕ

)}

where α4 is the diffusion coefficient for 4th-order mixing and ψ̃ is the diffused quantity. ψ̃ = ψ
for all model variables except for temperature with T̃ = T−T0. This so-called slope correction
for smoothing of temperature – where instead of the actual temperature the difference of
temperature and a reference profile is diffused – tries to reduce the spurious biases resulting
from quasi-horizontal mixing along steep model levels. Also, a reduction factor of the diffusion
coefficient α4 may be specified to apply a smaller smoothing for temperature and humidity.
In the operational version of LM, we use a reduction factor of 0.75 for temperature and
pressure diffusion, and of 0.5 for the diffusion of specific humidity and cloud water content.

To discretize (5.3) in finite difference form, it is convenient to define the nondimensional
Laplace operator

∇̂2 ≡ ∆λ2δλ
(
δλψ̃

)
+ cosϕ

(∆λ
∆ϕ

)2
∆ϕ2δϕ

(
cosϕδϕψ̃

)
(5.4)

with the horizontal finite difference operators δλ and δϕ as in Section 4. The discretized form
of the 4th-order horizontal diffusion term is now written as

MCM
ψ = −α̂4∇̂2

(
∇̂2ϕ̃

)
(5.5)
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where
α̂4 = α4/(a4cos4ϕ∆λ4)

is a the normalized 4th-order diffusion coefficient of dimension 1/s. The calculation of the
mixing terms given in (5.5) is straightforward by a two-step procedure. First, the nondimen-
sional Laplacian of ψ̃, ∇̂2ψ̃, is evaluated at interior gridpoints and at gridpoints just outside
the physical boundary. This can be done without additional artificial boundary conditions,
because the LM model domain is defined to have two rows/columns of gridpoints adjacent
to each lateral boundary of the computational domain (see Section 4). In a second step, the
Laplacian is then applied to the intermediate field ∇̂2ψ̃ according to (5.5). The evaluation
of these terms can now be done at all gridpoints inside the physical boundary.

The 4th-order horizontal diffusion terms are integrated in time using the explicit Euler-
forward scheme. The corresponding linear stability analysis reveals the following condition
for stable and nonoszillating solutions of symmetrical waves (∆λ = ∆ϕ) at the equator of
the rotated grid (cosϕ = 1):

0 ≤ 128∆tα̂4 ≤ 1, (5.6)

For a specified time step ∆t, α̂4 has to be limited according to (5.6) for stability reasons. In
LM, the default value of the normalized diffusion coefficient α̂4 is set to

α̂4 = 1
2π4∆t . (5.7)

This value results in a decrease of the amplitudes of the shortest resolvable waves with
wavelengths 2∆λ and 2∆ϕ by about a factor of 1/3 within every large time step ∆t. Other
values may be specified by the user.

5.2.2 A Monotonic Diffusion Operator

In order to avoid the over- and undershoots generated by linear higher order diffusion, Xue
(2000) proposed a scheme with a simple flux limiter. However, practical applications showed
that this scheme is not strictly monotonic. For LM a new scheme based on multi-dimensional
flux limiting has been developed Doms (2001). The formulation of the limiter factor closely
follows the approach of Smolarkiewicz (1989).

The basic pre-requisite to derive the scheme is to rewrite the diffusion operator in Eq.(5.2)
in a flux form. Omitting the source term S, the diffusive tendency then reads

∂ψ

∂t
= (−1)m/2+1αm∇mψ = −∇ · F , (5.8)

where F denotes the diffusive flux being defined by

F ≡ (−1)m/2αm∇(∇m−2ψ) . (5.9)

For 4th-order diffusion and in a rotated geographical coordinate system (λ, ϕ), the longitu-
dinal and meridional flux components of F are given by

Fλ = α4
a cosϕ

∂sψ
∂λ

, Fϕ = α4
a

∂sψ
∂ϕ

, (5.10)
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with sψ as in Eq. (5.3). The numerical scheme for integrating the 2-D version of the diffusion
equation (5.8) using a forward in time and centred in space scheme reads

ψn+1
i,j = ψni,j − (Ani+1/2,j −A

n
i−1/2,j +Ani,j+1/2 −A

n
i,j−1/2), (5.11)

where n denotes the time level, (i, j) are the gridpoint indices with i counting in λ-direction
and j in ϕ-direction, and

Ani±1/2,j ≡ (F λi±1/2,j)
n ∆t
a cosϕj∆λ

, Ani,j±1/2 ≡ (Fϕi,j±1/2)n
cosϕj±1/2∆t
a cosϕj∆ϕ

, (5.12)

are the normalized 4th-order diffusive fluxes at cell interfaces calculated from Eq. (5.10). In
case of a leapfrog time integration, ∆t is replaced by 2∆t and the time levels have to be
changed accordingly. The numerical scheme (5.11) can be rewritten as

ψn+1
i,j = ψni,j +Aini,j −Aouti,j , (5.13)

with Aini,j denoting the sum of all fluxes into a grid cell and Aouti,j denoting the sum of all
fluxes going out of a grid cell. Both the sum of the incoming and outgoing fluxes, Aini,j and
Aouti,j , respectively, are defined to be positive. Using the notation

A+
.,. = max (An.,. , 0) , A−.,. = min (An.,. , 0) (5.14)

to indicate positive and negative fluxes at the cell interfaces, the sum of the incoming and
outgoing fluxes is given by

Aini,j = −A−i+1/2,j +A+
i−1/2,j −A

−
i,j+1/2 +A+

i,j−1/2 ,

Aouti,j = +A+
i+1/2,j −A

−
i−1/2,j +A+

i,j+1/2 −A
−
i,j−1/2 .

The difference Aini,j − Aouti,j is equivalent to the discretized total flux divergence. Since a
monotonic numerical scheme shall not produce new minima or maxima within a time step,
the monotonicity constraint is

ψmini,j ≤ ψn+1
i,j ≤ ψmaxi,j , (5.15)

where ψmini,j is the minimum and ψmaxi,j is the maximum of the field variable ψ at the point
(i, j) and the adjacent grid points at time level n:

ψmini,j = min (ψni,j , ψni+1,j , ψ
n
i−1,j , ψ

n
i,j+1, ψ

n
i,j−1) ,

ψmaxi,j = max (ψni,j , ψni+1,j , ψ
n
i−1,j , ψ

n
i,j+1, ψ

n
i,j−1) .

Using the monotonicity constraint (5.15) in the numerical scheme (5.13) yields

ψmini,j ≤ ψni,j +Aini,j −Aouti,j ≤ ψmaxi,j . (5.16)

Thus, the following conditions on the sum of the incoming and outgoing fluxes are sufficient
to ensure monotonicity:

Aini,j ≤ ψmaxi,j − ψni,j ,
Aouti,j ≤ ψni,j − ψmini,j .

With these conditions, the sum of all incoming fluxes cannot add more mass within one time
step than that required to reach the maximum value ψmaxi,j and the sum of all outgoing fluxes
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cannot remove more mass than that to fall to the minimum value ψmini,j . These conditions
can be rewritten in the form of flux limiter ratios

βini,j =
ψmaxi,j − ψni,j
Aini,j + ε

,

βouti,j =
ψni,j − ψmini,j

Aouti,j + ε
, (5.17)

where ε is a small number to avoid division by zero in the computer program. Whenever
βini,j ≥ 1, the total incoming flux does not need to be modified. But if βini,j < 1 the incoming
fluxes are overestimated and the flux limiter has to be applied. Similar, if βouti,j ≥ 1, the
total outgoing fluxes will ensure monotonicity, but if βouti,j < 1, the outgoing fluxes are
overestimated and have to be limited.

Since the total incoming and outgoing fluxes are additively composed of the fluxes at the
cell interfaces, the limiter (5.17) is applied for each of these fluxes. And as the limiter for the
incoming fluxes has been constructed independently of the limiter for the outgoing fluxes
and because the outgoing flux at a cell interface is equivalent to the incoming flux at the
adjacent cell, it is sufficient to simply take the minimum of both limiters. The application of
the limiters (5.17) to the fluxes at the cell interfaces in the i- and j-direction can be written
in a compact manner:

Ãni+1/2,j = min (1, βouti,j , β
in
i+1,j)A+

i+1/2,j + min (1, βouti+1,j , β
in
i,j)A−i+1/2,j ,

Ãni,j+1/2 = min (1, βouti,j , β
in
i,j+1)A+

i,j+1/2 + min (1, βouti,j+1, β
in
i,j)A−i,j+1/2 . (5.18)

For example, if the flux Ai+1/2,j at the cell interface separating cell (i, j) and (i + 1, j) is
positive, i.e. is an outgoing flux from cell (i, j) and thus an incoming flux for cell (i+ 1, j), it
will be limited with the minimum of the limiter βouti,j of cell (i, j) and the limiter βini+1,j from
cell (i + 1, j). By replacing the normalized fluxes A in the time integration scheme (5.11)
with the limited normalized fluxes Ã from Eq. (5.18), a monotonic diffusion scheme is finally
obtained.

Figure 5.3 shows the solution of the one-dimensional square wave test using the 4th and 6th
order monotonic scheme based on direct flux limiting according to (5.18). When compared to
the solution of the regular higher order schemes as shown in Figure 5.2, the unwanted numer-

Figure 5.3: As in Fig. 2, but for 4th (middle) and 6th order (right) flux-limited monotonic linear
diffusion.
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ical effects associated with the Gibbs phenomena are no longer present, but the smoothing
characteristic is maintained.

5.2.3 Fourth-order Horizontal Diffusion with Orographic Flux Limiting

Most mesoscale NWP models use a terrain-following sigma-type vertical coordinate and
numerical smoothing is realized as horizontal diffusion, i.e. along quasi-horizontal surfaces
of constant vertical coordinate. Over complex terrain, this may lead to systematic numerical
biases which are induced by horizontal diffusion, as an unwanted vertical mixing in physical
space will be implied. Clearly, the impact of this type of numerical error will increase with
increasing steepness of the topography and is thus more noticeable in models with very high
resolution.

For instance, if horizontal diffusion is applied directly to temperature in the prognostic equa-
tion for temperature, the smoothing will tend to cool the valleys and to heat the mountain
tops in any stratification where the temperature decreases with height. Similarly, in an atmo-
sphere with decreasing specific humidity with height, horizontal diffusion will dry the valley
ground and moisten the adjacent mountains, which can have an unwanted positive feedback
to precipitation formation over mountain tops.

Various modifications have been proposed to reduce the spurious biases resulting from quasi-
horizontal mixing. Most models use a so-called slope correction for horizontal smoothing in
the temperature equation, where instead of the actual temperature the difference of temper-
ature and a reference profile is diffused. In LM, we use the model base state for this purpose.
Errors from unwanted vertical mixing are then zero when the actual vertical temperature
gradient is identical to the gradient of the base-state profile. However, when the profiles
deviate from each other, large error may still be introduced (e.g. in very stable or unstable
stratification). Slope corrections for other variables are normally not used.

Another popular method is the use of "true" horizontal diffusion, i.e. along surfaces of con-
stant height or constant pressure (e.g. Ballard and Golding (1991), Zängl (2000)). Here, the
values of the diffused variables at the adjacent gridpoints are interpolated to the height or
pressure level of each gridpoint before diffusion is applied. Since the gridpoints usually have
different heights, however, the diffusive fluxes at the cell interfaces will differ for neighboring
gridpoints. Thus, mass conservation cannot be guaranteed with such a scheme. One could
also try to locally reduce the value of the diffusion coefficient depending on the steepness
of the orography (a commonly used measure is the Laplacian of topographical height). But
here again the diffusive fluxes at the cell interface between two neighboring gridpoints will
be different and mass can be artificially generated or lost.

Numerical smoothing schemes which introduce uncontrollable sources or sinks in momentum,
heat or water mass are problematic, especially in an operational NWP model. With the flux-
limited scheme discussed in the preceding Section, we have the opportunity to reduce the
topography-induced biases without violating mass conservation: One can simply reduce the
diffusive fluxes at the cell interfaces, depending on the steepness of the model surfaces. As the
scheme is in flux-form, mass will be conserved automatically. And if the fluxes are artificially
reduced before the monotonic flux limiters are applied, the monotonicity of the diffused field
will also be guaranteed.

Various functional forms for orographic flux limiters have been tested. To keep things simple,
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a simple quadratic form has been implemented, where the fluxes are gradually reduced with
increasing steepness of the terrain-following coordinate surfaces and become zero when a
threshold value for the height difference between neighboring grid points is exceeded. Defining
this height differences at cell interfaces and denoting them by

∆hi+1/2,j = |hi+1,j − hi,j | , ∆hi,j+1/2 = |hi,j+1 − hi,j | , (5.19)
where hi,j is the geometrical height of a grid point at a surface of constant vertical coordinate,
the limiter function for the diffusive fluxes A in Eq. (5.11) is written as

Ani+1/2,j = max{ 0 , 1− (∆hi+1/2,j/Hmax)2} · (F λi+1/2,j)
n ∆t
a cosϕj∆λ

,

Ani,j+1/2 = max{ 0 , 1− (∆hi,j+1/2/Hmax)2} · (Fϕi,j+1/2)n
cosϕj+1/2∆t
a cosϕj∆ϕ

. (5.20)

Here, Hmax is a threshold value for the maximal height difference where the diffusive fluxes
become zero. In the operational version of LM, the value Hmax = 250m is specified by default
for the 7 km grid spacing. This value has to be adjusted for other horizontal resolutions.

Tests with the the orographic limiter (5.20) applied to the monotonic diffusion scheme de-
scribed in Section 6.2.2 revealed a significant reduction of topography-induced biases and a
noticeable improvement to the structure of the precipitation field above the Alps. Parallel
test experiments with the modified horizontal diffusion scheme have been conducted at Me-
teoSwiss and at DWD for longer time periods. The statistical evaluation against observed
surface weather parameters revealed a neutral impact of the new smoothing scheme to most
parameters, but a beneficial impact to the predicted precipitation, especially in mountainous
areas.

5.3 Background Mixing in Physical Space

This type of additional artificial mixing operates in physical space and thus becomes part
of the parameterization scheme for turbulent processes. Background mixing is included by
adding a user-specified constant to the diffusion coefficients for turbulent fluxes, or, with
a similar effect, by setting a constant lower limit for the diffusion coefficients. The latter
method is applied in LM.

Because turbulent mixing operates on the total fields, the impact of a background mixing
coefficient is to diffuse also the base-state temperature and density stratification. This prop-
erty may not be desirable in most cases and the coefficient for background diffusion should
be chosen as small as possible. For too large values of the coefficient, the model will tend
to establish a uniform adiabatic stratification, which masks and finally destroys the physical
solution.

In the present version of LM, horizontal turbulent fluxes are neglected and only the domi-
nating vertical turbulent fluxes are considered. Consequently, background mixing operates in
the vertical direction only. The calculation of the coefficients for turbulent vertical diffusion
of momentum and heat, which are denoted by Kv

m and Kv
h, respectively, and the treatment of

the mixing terms is described in Part II of the documentation. Constant background mixing
is introduced by setting lower limits according to

Kv
M = max (Kv

m,K
v
mb)
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Kv
H = max (Kv

h,K
v
hb) . (5.21)

Kv
mb and Kv

hb are limiting constants which replace the values of the physical diffusion co-
efficients in case of weak turbulence. In this way a small background vertical diffusion is
enabled. By default, these constants have the values Kv

mb = 1.0 m2/s and Kv
hb = 0.2 m2/s.

If the vertical resolution of the model is increased, these values should be reduced following
the guidelines for the assignment of the coefficients for horizontal computational mixing.

Because computational mixing, as formulated in Section 6.2 operates only along the sloping
horizontal coordinate surfaces, the constant background mixing according to Eq. (5.21) is at
present the only scheme for vertical smoothing. It has been found that this type of smoothing
is very important to avoid a decoupling of the surface and the atmosphere in cases with strong
thermal stability.

5.4 Upper Boundary Damping Layer

Enhanced damping can optionally be included in a number of model layers just below the
upper boundary. The task of this type of damping is to absorb upward propagating wave
disturbances and to suppress gravity wave reflection at the top boundary resulting from the
rigid lid upper boundary condition, which is applied in the model. The prevention of wave
energy reflection at the upper boundary is of crucial importance for a proper simulation of
orographically induced flows. An alternative, more physically based method to avoid wave
reflection is the application of a radiative upper boundary condition instead of the rigid lid
condition. This option, however, is not yet implemented.

In LM enhanced damping near the top of the model domain is accomplished by Rayleigh
friction terms which are added to the right hand side of the prognostic equations for mo-
mentum, temperature and pressure perturbation. These terms are formulated to damp the
deviations from the corresponding boundary fields, which are defined as threedimensional
time dependent fields and are obtained by interpolation from the driving model (see Section
5). Thus, the LM formulation of the damping layer tends to restore the externally specified
boundary fields near the top of the domain.

The Rayleigh damping term of a variable ψ is denoted by MRD
ψ and has the form

MRD
ψ = −µR(z) (ψ − ψb) . (5.22)

ψb is the externally specified boundary value of ψ, µR(z) is the vertical profile of the damping
coefficient (i.e. the inverse e-folding time scale of damping at height z) and ψ represents u,
v, w, T or p′. For the vertical velocity, wb = 0 is specified.

In the present version of LM we apply a rather simple profile of the damping coefficient µR:

µR(z) =


1

2nR∆t

{
1− cos

(
π
z − zD
zT − zD

)}
for z ≥ zD ,

0 for z < zD .
(5.23)

zD is the height of the bottom of the damping layer and zT the height of the model top
boundary. The depth of the damping layer (zT − zD) depends on the type of problem being
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considered. In general, a layer depth of 1/3 of the total domain height or at least one vertical
wavelength is recommended. Of course, the damping layer should be located above the part
of the model where the solution is of interest. nR∆t is the e-folding time scale of damping
at z = zT . According to the profile function (5.23), the corresponding damping coefficient
decreases to µR = 0 at z = zD.

Both zD and nR are disposable parameters. The default values are set to zD = 11000m and
nR = 10.

Similar to the treatment of the lateral boundary relaxation terms in Section 5, the time
integration of the Rayleigh damping terms is done by an implicit scheme to ensure numerical
stability. The prognostic equation of a model variable ψ is written as

∂ψ

∂t
= f(ψ) +MRD

ψ = f(ψ)− µR (ψ − ψb) ,

where f(ψ) represents all adiabatic and diabatic forcings as well as computational mixing
and lateral boundary relaxation. The time discretization reads

ψn+1 = ψn−1 + fn(ψ)2∆t− 2∆tµR
(
ψn+1 − ψn+1

b

)
,

which may be rewritten as

ψn+1 = ψ̃n+1 − 2∆tµR
1 + 2∆tµR

(
ψ̃n+1 − ψn+1

b

)
. (5.24)

Here, ψ̃n+1 = ψn−1 +2∆tfn(ψ) is a preliminary value of ψ which results from the integration
of the prognostic equation taking all processes except Rayleigh damping into account. Thus,
the final value of ψ is obtained from the preliminary value ψ̃ by a local updating according
to Eq. (5.24).

5.5 Rayleigh Friction

For operational NWP-purposes, a Rayleigh friction term in the equations for the horizontal
wind components u and v has been introduced. In the split-explicit time integration scheme
described in Section 4.3, the big time step size ∆t for stable integration is limited by the
advective wind speed and may estimated by the CFL-condition

∆t ≤ ∆s√
2 vmaxa

(5.25)

where ∆s is the minimum horizontal grid spacing and vmaxa maximum absolute horizontal
wind speed. Thus, for a given grid spacing, the time step has to be chosen from an estimate
of the maximum vmaxa which will occur during the forecast. However, the maximum wind
speed can become very large near the tropopause, especially during winter where vmaxa can
exceed 130 m/s on some days.

In order to not restrict the time step for operational forecasts on the few events where vmaxa

reaches such large values, Rayleigh friction is introduced in the u- and v-equations in the
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form
∂u

∂t
= · · · − εRu (5.26)

∂v

∂t
= · · · − εRv (5.27)

in order to slow down the wind speed whenever a critical value is exceeded during the forecast.
The Rayleigh friction coefficient εR is set to

εR =


0.0005
2∆t

(va − 0.95 vcfla )
0.05 vcfla

for va ≥ 0.95 vcfla ,

0 for va < 0.95 vcfla .
(5.28)

Here, va is the maximum absolute wind speed at a time step within the model domain and
vcfla is the maximum wind speed allowed for stable integration. vcfla is estimated from the
CFL-condition (5.25) for a given grid spacing and time step, i.e. vcfla = ∆s/(

√
2∆t). Thus,

the time step should be chosen carefully to achieve a realistic (not too small) critical wind
speed.

According to (5.28), Rayleigh friction is applied to the horizontal wind components whenever
the wind speed exceeds 95% of vcfla somewhere in the model domain. The damping coefficient
then increases linearly from zero to 0.05% per 2∆t interval at va = vcfla .

5.6 Filtering of Topographical Forcing

A long-standing problem in high-resolution modelling is the prediction of unrealistic precipi-
tation fields in mountainous areas. During the first year of the operational NWP-application
of LM, two main deficiencies became evident:

• extremely large amounts of precipitation occur directly over mountain tops and

• at the same time deep valleys and mountain lee-sides receive no precipitation at all,
turning into a desert-like climate within the model’s assimilation cycle.

These effects are most noticeable over the Alpine region, but are also noticeable over mid-
range mountain areas. All in all, the predicted precipitation fields look very noisy in regions
with steep topography.

A reason for this behaviour is the use of mean topography at the grid-scale ∆x, which will
result in ’singular’ mountain tops and valley grounds being represented by one gridpoint
only. Constant dynamical surface forcing of this type introduces a hopelessly inaccurate
numerical feedback to the simulated flow, which then can affect the physics in a strange
way. To investigate this effect, convergence tests of the solutions corresponding to mountain
generated 3-D gravitational waves have been performed Gaßmann (2001). The conclusion of
these tests is that topographical structures must be reasonably well resolved by the grid in
order to obtain a quantitatively correct flow. Similar tests have been performed by Davies
and Brown. (2001) for a 2-D flow.

Thus a weak filtering of topography, i.e. a removal of the very small-scale components from
the wave spectrum, is necessary to allow for a more correct interaction of the dynamics
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Figure 5.4: Left: Amplitude response function of the 10-th order Raymond filter for various values
of the filter parameter ε. Right: South-north cross section of the LM-topography along the Brenner
line for original (black) and filtered (grey) topography.

Figure 5.5: 24-h precipitation amount of a LM simulation starting at 8 February 2000 00 UTC. Left:
Experimental run with filtered topography. Right: Operational run with unfilterd topography.

with the surface. A 10-th order Raymond (1988) filter using a filter parameter of ε = 0.1
is applied for this purpose. Figure 5.4 (left) shows the amplitude response function for this
filter. 2∆x and 3∆x wave components are filtered almost completely whereas 4∆x and larger
scale components remain untouched. The impact of this weak filter on the LM topography
is also shown in Figure 5.4 (right): all singular mountain and valley structures are removed.
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The use of a filtered topography has a dramatic impact on the predicted precipitation field.
An example is shown in Figure 5.5 for a test simulation starting at 8 February 2000 00
UTC. The routine run (right) exhibits the well known features with unrealistic minima and
maxima of the 24-h accumulated precipitation amount in the Alps. A much smoother spatial
distribution is predicted in the experimental run with filtered topography. All larger scale
patterns and the area mean value of precipitation are very similar compared to the routine
run, whereas the maximum and the variance of precipitation is reduced by about a factor of
two. Outside the mountainous Alpine region, the differences are negligible.

Results from other simulations and the statistical evaluation of a quasi-operational test
suite revealed an overall positive impact of using a weakly filtered topography. In general,
there is no loss of meteorological relevant information and the precipitation patterns appear
to be more realistic. We conclude that filtering of topography is necessary to avoid the
formation of non-coherent dynamical structures generated by under-resolved surface forcing.
Since winter 2000/2001, all operational runs of LM at COSMO meteorological centres use a
filtered topography. For experimental runs with interpolated initial and boundary conditions,
the filter can optionally be switched on and off.
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Section 6

Alternative Time Integration
Schemes

An alternative algorithm for time integration schemes has been implemented for optional use:
a three-timelevel Leapfrog-based Eulerian 3-D semi-implicit scheme according to Thomas
et al. (2000). This scheme has the potential for being more accurate at the same efficiency
or being more efficient at the same accuracy than the default three-timelevel HE-VI scheme.
However, the method is still under development and require further testing for operational
application.

6.1 A 3-D Semi-Implicit scheme

As the default time integration scheme for LM, a variant of the Klemp and Wilhelmson
(1978) time-splitting method has been implemented. The extensions proposed by Skamarock
and Klemp (1992) are applied whereby horizontally propagating waves are treated explicitly
with a forward-backward scheme and buoyancy oscillations are integrated with an implicit
Crank-Nicholson method (see Section 4.3).

However, steep orography may provoke instabilities in such 1D semi-implicit schemes Step-
peler (1995). The stability of these schemes has been analyzed by Ikawa (1988) and a stability
criterion for MM5 was derived by Dudhia (1995). Fully 3D semi-implicit schemes can avoid
such stability problems by treating all pressure gradient and divergence terms implicitly
(Skamarock et al. (1997); Saito (1997)). A model comparison study by Saito et al. (1998)
suggests that fully 3D semi-implicit schemes may be more cost-effective than split-explicit
schemes at higher resolutions when the number of small time steps increases with the sound
speed Courant number. Thus, a semi-implicit time scheme has been designed for the LM
which does not depend on approximations such as mass lumping to simplify the resulting
variable-coefficient elliptic boundary value problem. The resulting elliptic boundary value
problem is solved with a minimal residual Krylov iterative method whose convergence rate
is accelerated by line relaxation preconditioners (Skamarock et al. (1997) and Thomas et al.
(1998)).

The development work and implementation of the semi-implicit scheme was conducted by
Steve Thomas during his stay as guest scientist at DWD. We describe here only the numerical
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formulation of the scheme. For tests of the scheme for idealized mountain wave flows and
for real cases – including accuracy and efficiency considerations – we refer to Thomas et al.
(2000).

6.1.1 Semi-implicit Time Discretization

(a) Governing Equations

In this section we derive a fully three-dimensional semi-implicit scheme for the LM model
governing equations (2.143) - (2.147) which are rewritten in the mode-splitting form (see
Section 4.2).

∂u

∂t
+ 1
ρa cosϕ

(
∂p′

∂λ
− 1
√
γ

∂p0
∂λ

∂p′

∂ζ

)
= fu (6.1)

∂v

∂t
+ 1

ρa

(
∂p′

∂ϕ
− 1
√
γ

∂p0
∂ϕ

∂p′

∂ζ

)
= fv (6.2)

∂w

∂t
− g
√
γ

ρ0
ρ

∂p′

∂ζ
− gρ0

ρ

{
p

p0

[
T − T0
T

− p′

p

]}
= fw (6.3)

∂p′

∂t
− gρ0w + pcpd

cvd

{
Dh −

gρ0√
γ

∂w

∂ζ

}
= fp′ (6.4)

∂T

∂t
+ RdT

cvd

{
Dh −

gρ0√
γ

∂w

∂ζ

}
= fT (6.5)

The f -terms on the right-hand side denote the slow mode forcings, the terms on the left-
hand side describe sound and gravity wave propagation. Dh denotes the horizontal wind
divergence given by

Dh = 1
a cosϕ

{
∂u

∂λ
− 1
√
γ

∂p0
∂λ

∂u

∂ζ
+ ∂

∂ϕ
(v cosϕ)− cosϕ

√
γ

∂p0
∂ϕ

∂v

∂ζ

}
. (6.6)

For practical reasons, the factor p/(ρcvd) for the wind divergence in the thermodynamic
equation (2.147) has been approximated by RdT/cvd. Also, the "dry" buoyancy term appear-
ing in (2.145) has been rewritten in the equation (6.3) for the vertical velocity using the
identity

B(T − T0, p
′) := g

ρ0
ρ

{(T − T0)
T

− T0p
′

Tp0

}
= g

ρ0
ρ

{
p

p0

[
T − T0
T

− p′

p

]}
. (6.7)

The fast-mode forcing terms will be discretized by employing the time-tendency formulation
of the semi-implicit scheme. Time discretization operators appearing in the Leapfrog or
three-time-level semi-implicit scheme are given by

δτ (ψ) = ψn+1 − ψn−1

2∆τ , (6.8)

µτ (ψ) = ψn+1 + ψn−1

2 = ∆τ δτ (ψ) + ψn−1 . (6.9)

Here, ∆τ is the time step, δτ denotes the time differencing operator and µτ is the time
averaging operator. Using (6.8) and (6.9), a fully 3D semi-implicit scheme applied to the LM
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governing equations results in the following system of time and space discretized equations,
where the linearization about the current time step n is based on pn, Tn and ρn.

δτ (u) + µτ δ̃
(1)
x (p′) = fnu

δτ (v) + µτ δ̃
(1)
y (p′) = fnv

δτ (w) + µτ δ̃
(1)
z (p′)− µτ B(T − T0, p

′) = fnw

δτ (p′) +
(
pncpd
cvd

)
µτD − µτ g ρ0 µζ(w) = fnp′

δτ (T ) +
(
RdT

n

cvd

)
µτD = fnT

Using the notations from Section 4.1 for finite space differencing, the difference operators for
the pressure gradient force are defined by

δ̃(1)
x (p′) = 1

ρnλ a cosϕ

 δλ(p′)− 1
(√γ)ζ,λ

δλ(p0) δ2ζ(p′)
λ

 ,

δ̃(1)
y (p′) = 1

ρnϕ a

 δϕ(p′)− 1
(√γ)ζ,ϕ

δϕ(p0) δ2ζ(p′)
ϕ

 ,

δ̃(1)
z (p′) = − g

√
γ

ρ0
ζ

ρnζ
δζ(p′) .

Operators appearing in the discretized divergence are given by

δ̃(2)
x (u) = 1

a cosϕ

 δλ(u)− µλ
1

(√γ)ζ,λ
δλ(p0) δ2ζ(u)λ

 ,

δ̃(2)
y (v) = 1

a cosϕ

 δϕ(v cosϕ)− µϕ
cosϕ

(√γ)ζ,ϕ
δϕ(p0) δ2ζ(v)ϕ

 ,

δ̃(2)
z (w) = −gρ0√

γ
δζ(w) ,

where the horizontal (Dh) and total divergence (D) are

Dh = δ̃(2)
x (u) + δ̃(2)

y (v), D = Dh + δ̃(2)
z (w) .

µλ and µϕ denote the operators for horizontal averaging according to (3.4). In a similar way,
we abbreviate the vertical averaging operator by µζ . Vertical averaging is defined by (3.13)
for transforming half-level values to full levels, and by (3.19) for averaging full-level values
to half levels. For convenience we define also the weighted averaging operator µ̃ζ by

µ̃ζ = ρ0
ζ

ρnζ
µζ(w) . (6.10)

The buoyancy must be averaged in the vertical momentum equation and thus we define the
discretized B as

B(T − T0, p
′) = g µ̃ζ

{
pn

p0

[
T − T0
Tn

− p′

pn

]}
. (6.11)

Part I – Dynamics and Numerics 5.05 Section 6: Alternative Time Integration Schemes



118 6.1 A 3-D Semi-Implicit scheme

Following Skamarock et al. (1997), time averages are replaced by differences to avoid numer-
ical cancellation and thus only time tendencies appear on the left-hand side. The remaining
terms at time level n − 1 are placed on the right-hand side of the equations (forming the
explicit part of the discretized equations):

δτ (u) + ∆τ δ̃(1)
x δτ (p′) = qu , (6.12)

δτ (v) + ∆τ δ̃(1)
y δτ (p′) = qv , (6.13)

δτ (w) + ∆τ δ̃(1)
z δτ (p′)−∆τ δτ B(T − T0, p

′) = qw , (6.14)

δτ (p′) + ∆τ
(
pncpd
cvd

)
δτD −∆τ g ρ0 µζδτ (w) = qp′ , (6.15)

δτ (T ) + ∆τ
(
RdT

n

cvd

)
δτD = qT , (6.16)

where the right-hand sides now become

qu = fnu − δ̃(1)
x (p′)n−1 ,

qv = fnv − δ̃(1)
y (p′)n−1 ,

qw = fnw − δ̃(1)
z (p′)n−1 +B(T − T0, p

′)n−1 ,

qp′ = fnp′ −
(
pncpd
cvd

)
Dn−1 + g ρ0 µζ(w)n−1 ,

qT = fnT −
(
RdT

n

cvd

)
Dn−1 .

Observe in particular that since δτ T0 = 0,

δτ B(T − T0, p
′) = B(δτ (T ), δτ (p′)) = δτ B(T, p′)

and the full T , as opposed to the perturbation temperature T ′ = T − T0, can be used in the
thermodynamic equation.

(b) Discrete Wave Equation

To obtain an elliptic problem for the pressure perturbation p′, we proceed to eliminate
the buoyancy and divergence from the discretized system of equations (6.12) – (6.16). The
buoyancy B is eliminated from the system of equations by first observing that from equations
(6.15) and (6.16)

δτ (T )
Tn

= −∆τ
(
Rd
cvd

)
δτD + qT

Tn
, (6.17)

δτ (p′)
pn

= −∆τ
(
cpd
cvd

)
δτD + ∆τ g ρ0

pn
µζδτ (w) + qp′

pn
. (6.18)

Subtracting (6.18) from (6.17) and then applying the relation

R

cv
= Rd
cvd

= cpd − cvd
cvd

,

we obtain
δτ (T )
Tn

− δτ (p′)
pn

+ ∆τ
[
−δτD + g

ρ0
pn

µζδτ (w)
]

= qT
Tn
−
qp′

pn
.

Given that
B(δτ (T ), δτ (p′)) = g µ̃ζ

{
pn

p0

[
δτ (T )
Tn

− δτ (p′)
pn

]}
,

Section 6: Alternative Time Integration Schemes Part I – Dynamics and Numerics 5.05



6.1 A 3-D Semi-Implicit scheme 119

it follows that

B(δτ (T ), δτ (p′)) + ∆τ g µ̃ζ
[
−p

n

p0
δτD + g

ρ0
p0
µζδτ (w)

]
= B(qT , qp′) . (6.19)

Next, we apply the operator ∆τgµ̃ζcvd/(cpdp0) to Eq. (6.15) resulting in

∆τ g µ̃ζ
cvd
cpd

δτ (p′)
p0

+ ∆τ2 g µ̃ζ

[
pn

p0
δτD − g

cvd
cpd

ρ0
p0
µζδτ (w)

]
= ∆τ g µ̃ζ

cvd
cpd

qp′

p0
, (6.20)

and also write equation (6.14) as

δτ (w) + ∆τ δ̃(1)
z δτ (p′)−∆τ B(δτ (T ), δτ (p′)) = qw . (6.21)

Finally, eliminate the buoyancy B from the equations by combining

∆τ (6.19) + (6.20) + (6.21)

to obtain [
1 + ∆τ2 µ̃ζ N

2
0 µζ

]
δτ (w) + ∆τ D̃(1)

z δτ (p′) = q∗w , (6.22)

where

q∗w = qw + ∆τ g µ̃ζ

{
pn

p0

[
qT
Tn
− Rd
cpd

qp′

pn

]}
.

To eliminate the horizontal divergence Dh from the system of equations, form

cvd
cpd

1
pn

(6.15)−∆τ Dh( (6.12), (6.13) )

and thus obtain[
cvd
cpd

1
pn
−∆τ2 Dh( δ̃(1)

x , δ̃(1)
y )

]
δτ (p′) + ∆τ D̃(2)

z δτ (w) = q′p′ , (6.23)

where
q′p′ = cvd

cpd

1
pn

qp′ −∆τ Dh( qu, qv ) .

Solve for δτ (w) in (6.22) and substitute into (6.23) to the wave equation in the final form

[
cvd
cpd

1
pn
−∆τ2 Dh( δ̃(1)

x , δ̃(1)
y )

]
δτ (p′)−∆τ2 D̃(2)

z N−1 D̃(1)
z δτ (p′) = q∗p . (6.24)

Here, the right-hand side is defined by

q∗p = q′p′ −∆τ D̃(2)
z N−1 q∗w .

The vertical operators N , D̃(1)
z and D̃(2)

z appearing above are all defined in Section 7.1.2.

(c) Backsubstitution
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Having solved the resulting elliptic problem L δτ (p′) = q∗p′ from Eq. (6.24), the remaining
tendencies are obtained by back substitution as follows:

δτ (u) = qu −∆τ δ̃(1)
x δτ (p′) , (6.25)

δτ (v) = qv −∆τ δ̃(1)
y δτ (p′) , (6.26)

δτ (w) = N−1
[
q∗w −∆τ D̃(1)

z δτ (p′)
]
, (6.27)

δτ (T ) = qT −∆τ
(
RdT

n

cvd

)
D(δτu) , (6.28)

where u = (u, v, w ). An off-centered time average can also be employed by replacing ∆τ by

∆τ+ = ( 1 + βsw ) ∆τ = 2β∆τ

on the left-hand side of the discretized governing equations. The traditional semi-implicit
scheme uses the centered weighting β = 1/2 or βsw = 0.

To compute the final values of the prognostic variables at time level n+ 1, we employ

(ψ)n+1 = (ψ)n−1 + 2∆τδτ (ψ) .

6.1.2 Implementation Details

(a) The Elliptic Operator

Operators appearing in the discrete formulation of the fully 3D semi-implicit scheme consist
of both matrices and associated boundary conditions applied to a given field. We now proceed
to develop the precise structure of the operators appearing in the discretized wave equation
(6.24). Vertical operators are derived first. The operator D̃(2)

z is defined by

D̃(2)
z =

[
δ̃(2)
z − g

cvd
cpd

ρ0
pn

µζ

]
, δ̃(2)

z = −gρ0√
γ
δζ ,

and moves data from model half levels k′ = k − 1/2 to main levels k as follows.

[
D̃(2)
z wk′

]
k

=
[
δ̃(2)
z − g

cvd
cpd

(ρ0)k
(pn)k

µζ

]
wk′

=
[
−g(ρ0)k

(√γ)k
(wk′+1 − wk′)− g cvd

cpd

(ρ0)k
(pn)k

(wk′+1 + wk′)
2

]

=
[
−g(ρ0)k

(√γ)k
− g

2
cvd
cpd

(ρ0)k
(pn)k

]
wk′+1 +

[
g(ρ0)k
(√γ)k

− g

2
cvd
cpd

(ρ0)k
(pn)k

]
wk′ .

The result can be written in the form of a recurrence formula[
D̃(2)
z wk′

]
k

= b
(2)
k wk′+1 − a

(2)
k wk′ , (6.29)

where

b
(2)
k = −g(ρ0)k

[
1

(√γ)k
+ 1

2
cvd
cpd

1
(pn)k

]
, a

(2)
k = −g(ρ0)k

[
1

(√γ)k
− 1

2
cvd
cpd

1
(pn)k

]
,
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or equivalently

b
(2)
k = −g(ρ0)k

(√γ)k

[
1 + 1

2
cvd
cpd

(√γ)k
(pn)k

]
, a

(2)
k = −g(ρ0)k

(√γ)k

[
1− 1

2
cvd
cpd

(√γ)k
(pn)k

]
.

The matrix structure of D̃(2)
z is lower bi-diagonal with dimensions (Nζ + 1)× (Nζ + 1).

b
(2)
0
−a(2)

1 b
(2)
1
−a(2)

2 b
(2)
2
· ·
· ·
−a(2)

Nζ−1 b
(2)
Nζ−1

−a(2)
Nζ

b
(2)
Nζ





w1

w2

w3

·
·

wNζ
wNζ+1


=



p0

p1

p2

·
·

pNζ−1

pNζ


From dimensional analysis, we have as a final check that

−
√
γ

p
∼ ∆ ln p ∼ g∆Z

RT
, −

√
γ

ρ
∼ g∆Z, −cvd

cpd

√
γ

p

1
∆Z ∼

cvd
cpd

g

RT
∼ g

c2
s

,

and therefore the operator is of the correct form.

The operator D̃(1)
z is defined by

D̃(1)
z =

[
δ̃(1)
z + µ̃ζ

cvd
cpd

g

p0

]
, δ̃(1)

z = − g
√
γ

ρ0
ζ

ρnζ
δζ , µ̃ζ = ρ0

ζ

ρnζ
µζ .

The operator moves data from full levels k to half levels k′ = k − 1/2 according to

[
D̃(1)
z p′k

]
k′

=
[
δ̃(1)
z + µ̃ζ

cvd
cpd

g

(p0)k

]
p′k .

In discrete form, we have

[
δ̃(1)
z p′k

]
k′

= − g

(√γ)k′

(ρ0
ζ)k′

(ρnζ)k′
(p′k − p′k−1) ,

[
µζ

(p′)k
(p0)k

]
k′

= 1
2(√γ)k′

{
(√γ)k−1

(p′)k
(p0)k

+ (√γ)k
(p′)k−1
(p0)k−1

}
,

where
(√γ)k′ = 1

2 { (√γ)k−1 + (√γ)k } .

Therefore, we can immediately write down the recurrence formula[
D̃(1)
z p′k

]
k′

= b
(1)
k′ p
′
k − a

(1)
k′ p
′
k−1 (6.30)

with coefficients

b
(1)
k′ = − g

(√γ)k′

(ρ0
ζ)k′

(ρnζ)k′

[
1− 1

2
cvd
cpd

(√γ)k−1
(p0)k

]
, a

(1)
k′ = − g

(√γ)k′

(ρ0
ζ)k′

(ρnζ)k′

[
1 + 1

2
cvd
cpd

(√γ)k
(p0)k−1

]
.
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The matrix structure of D̃(1)
z is lower bi-diagonal with dimensions (Nζ + 1)× (Nζ + 1).

b
(1)
1
−a(1)

2 b
(1)
2
−a(1)

3 b
(1)
3
· ·
· ·
−a(1)

Nζ
b
(1)
Nζ

−a(1)
Nζ+1 0





p1

p2

p3

·
·
pNζ
pNζ+1


=



w1

w2

w3

·
·

wNζ
wNζ+1


≡



w1/2

w3/2

w5/2

·
·

wNζ−1/2

wNζ+1/2


Vertical boundary conditions are handled by[

D̃(1)
z

]
1/2

= b
(1)
1 = 0,

[
D̃(1)
z

]
Nζ+1/2

=
{
α δ̃(1)

x + β δ̃(1)
y

}
= −a(1)

Nζ+1
.

The form of the vector D̃(2)
z D̃

(1)
z p′ is obtained from the matrix–vector product

b
(2)
0
−a(2)

1 b
(2)
1
−a(2)

2 b
(2)
2
· ·
· ·
−a(2)

Nζ−1 b
(2)
Nζ−1

−a(2)
Nζ

b
(2)
Nζ





0
b
(1)
2 p′2 − a

(1)
2 p′1

b
(1)
3 p′3 − a

(1)
3 p′2

·
·

b
(1)
Nζ
p′Nζ − a

(1)
Nζ
p′Nζ−1

−a(1)
Nζ+1p

′
Nζ


=



x0

x1

x3

·
·

xNζ−1

xNζ


By expanding, we obtain for k = 2, . . . , Nζ − 1:[

D̃(2)
z D̃(1)

z p′
]
k

= −a(2)
k

(
b
(1)
k p′k − a

(1)
k p′k−1

)
+ b

(2)
k

(
b
(1)
k+1p

′
k+1 − a

(1)
k+1p

′
k

)

= a
(2)
k a

(1)
k p′k−1 −

(
a

(2)
k b

(1)
k + b

(2)
k a

(1)
k+1

)
p′k + b

(2)
k b

(1)
k+1p

′
k+1 .

For model main levels k = 1 and k = Nζ :[
D̃(2)
z D̃(1)

z p′
]

1
= b

(2)
1

(
b
(1)
2 p′2 − a

(1)
2 p′1

)
,

[
D̃(2)
z D̃(1)

z p′
]
Nζ

= −a(2)
Nζ

(
b
(1)
Nζ
p′Nζ − a

(1)
Nζ
p′Nζ−1

)
− b(2)

Nζ
a

(1)
Nζ+1p

′
Nζ

= a
(2)
Nζ
a

(1)
Nζ
p′Nζ−1 −

(
a

(2)
Nζ
b
(1)
Nζ

+ b
(2)
Nζ
a

(1)
Nζ+1

)
p′Nζ .

The reference state Brunt-Väisällä frequency and sound speed are

N2
0 = g2 ρ0

p0

Rd
cpd

= g2

cpdT0
c2

0 = cpd
cvd

p0
ρ0

= γ RdT0 .

The Brunt-Väisällä operator is defined by

N =
[

1 + ∆τ2 µ̃ζ N
2
0 µζ

]
, µ̃ζ = ρ0

ζ

ρnζ
µζ .
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The operator moves data from half levels k′ to main levels k and then back to half levels
k′. A three-term recurrence involving three vertical levels k′ − 1, k′ and k′ + 1 results in a
tridiagonal matrix.

[Nwk′ ]k′ =
[

1 + ∆τ2 (ρ0
ζ)k′

(ρnζ)k′
µζ (N2

0 )k µζ

]
wk′ , (N2

0 )k = g2 (ρ0)k
(p0)k

Rd
cpd

,

where

µζ wk′ = (wk′+1 + wk′)
2 , µζ ψk = 1

2(√γ)k′
{ (√γ)k−1 (ψ)k + (√γ)k (ψ)k−1 } .

Expanding individual terms, we obtain

µζ (N2
0 )k (wζ)k = 1

2(√γ)k′

{
(√γ)k−1 (N2

0 )k (wζ)k + (√γ)k (N2
0 )k−1 (wζ)k−1

}
= 1

2(√γ)k′

{
(√γ)k−1 (N2

0 )k
(wk′+1 + wk′)

2

}
+ 1

2(√γ)k′

{
(√γ)k (N2

0 )k−1
(wk′ + wk′−1)

2

}
= 1

4(√γ)k′
(√γ)k−1 (N2

0 )k wk′+1

+ 1
4(√γ)k′

{
(√γ)k−1 (N2

0 )k + (√γ)k (N2
0 )k−1

}
wk′

+ 1
4(√γ)k′

(√γ)k (N2
0 )k−1 wk′−1 .

The resulting three-term recurrence is given by

[Nwk′ ]k′ = ak′wk′−1 + bk′wk′ + ck′wk′+1 = w̄k′ ,

where

ck′ = ∆τ2 (ρ0
ζ)k′

(ρnζ)k′

1
4(√γ)k′

(√γ)k−1 (N2
0 )k ,

bk′ = 1 + ∆τ2 (ρ0
ζ)k′

(ρnζ)k′

1
4(√γ)k′

{
(√γ)k−1 (N2

0 )k + (√γ)k (N2
0 )k−1

}
,

ak′ = ∆τ2 (ρ0
ζ)k′

(ρnζ)k′

1
4(√γ)k′

(√γ)k (N2
0 )k−1 .

In particular, the matrix element weighting is such that

bk′ = 1 + ak′ + ck′ .

The matrix structure of N is tridiagonal with dimensions (Nζ + 1)× (Nζ + 1).

1
a2 b2 c2

a3 b3 c3

· · ·
· · ·

aNζ−1 bNζ−1 cNζ−1

aNζ bNζ cNζ
1





w1

w2

w3

·
·

wNζ−1

wNζ
wNζ+1


=



w1

w̄2

w̄3

·
·

w̄Nζ−1

w̄Nζ
wNζ+1


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An important property of N is that the product Nw leaves the boundary conditions w1/2
and wNζ+1/2 unmodified. Mass–lumping of the operator N is applied to simplify the precon-
ditioner, with diagonal coefficients bk′ = 1 + 2ak′ + 2ck′ :

b̄k′ = 1 + ∆τ2 (ρ0
ζ)k′

(ρnζ)k′

1
2(√γ)k′

{
(√γ)k−1 (N2

0 )k + (√γ)k (N2
0 )k−1

}
.

(b) Lateral Boundary Conditions

Lateral boundaries are open with inflow/outflow determined by the normal components of
the velocity. To a large extent the Arakawa ‘C’ grid and semi-implicit scheme determine the
precise numerical form of boundary conditions. In the horizontal direction, the normal veloc-
ity components uNW−1/2,j,k in the west, uNE+1/2,j,k in the east, vi,NS−1/2,k in the south and
vi,NN+1/2,k in the north intersect the boundary. For equations (6.12) – (6.16), the relations

[ δτ (u) ]NW−1/2,j,k = [ qu ]NW−1/2,j,k = [ δτ (ue) ]NW−1/2,j,k
[ δτ (u) ]NE+1/2,j,k = [ qu ]NE+1/2,j,k = [ δτ (ue) ]NE+1/2,j,k
[ δτ (v) ]i,NS−1/2,k = [ qv ]i,NS−1/2,k = [ δτ (ve) ]i,NS−1/2,k
[ δτ (v) ]i,NN+1/2,k = [ qv ]i,NN+1/2,k = [ δτ (ve) ]i,NN+1/2,k

along with the implied Neumann boundary conditions below for the discrete wave equation,
effectively close the numerical problem.[

δ̃(1)
x (δτ (p′))

]
NW−1/2,j,k

=
[
δ̃(1)
x (δτ (p′))

]
NE+1/2,j,k

= 0[
δ̃(1)
y (δτ (p′))

]
i,NS−1/2,k

=
[
δ̃(1)
y (δτ (p′))

]
i,NN+1/2,k

= 0

An implicit scheme for the pressure implies that the time tendency of the pressure gradient
force must be zero at lateral boundaries so that the momentum equations are self-consistent.
This is purely a numerical boundary condition to close the problem. Mass flux across lateral
boundaries appears in right-hand side terms at time level n− 1.

(c) Top and Bottom Boundary Conditions

In Section 5.2 the top and bottom boundary conditions on the contravariant ζ̇ and covariant
w vertical velocity components have been specified. The model top at k = 1/2 is treated as
a rigid lid where the vertical velocity vanishes:(

ζ̇
)
i,j,k=1/2

= ( w )i,j,k=1/2 = 0 .

The lower boundary is non-penetrative and the contravariant vertical velocity vanishes(
ζ̇
)
i,j,k=Nζ+1/2

= 0 .

From equation (3.112) of Section 3.5, this implies that the vertical velocity w follows coor-
dinate surfaces according to

w = Jλ
a cosϕu+ Jϕ

a
v .

Section 6: Alternative Time Integration Schemes Part I – Dynamics and Numerics 5.05



6.1 A 3-D Semi-Implicit scheme 125

To evaluate w at the surface k = Nζ+1/2, free-slip conditions on the horizontal wind compo-
nents are assumed and these are extrapolated to the surface resulting in

wNζ+1/2 = 1
a cosϕ

{
µλ(δλh)uNζ + µϕ(δϕh)vNζ cosϕ

}
. (6.31)

The vertical velocity equation (6.14) does not apply at the top or bottom surfaces even though
equations (6.15) and (6.16) require values at these points. In the current LM implementation,
the values of uNζ and vNζ at time level n+ 1 are available in the split-explicit scheme. Thus,
the values of w1/2 and wNζ+1/2 may be computed using the above relations. Then w is
computed implicitly at interior points using a tridiagonal solver.

In a fully implicit scheme for the pressure, the horizontal velocity components are defined
implicitly through the horizontal momentum equations (6.12) and (6.13).

δτ (u) = qu −∆τ δ̃(1)
x δτ (p′) , (6.32)

δτ (v) = qv −∆τ δ̃(1)
y δτ (p′) . (6.33)

The time tendency of the vertical velocity equation (6.31) can be written in the general form

(δτw)Nζ+1/2 = α δτ (uNζ ) + β δτ (vNζ ) , (6.34)

where α and β represent averaging operators and associated metric terms. Substituting
equations (6.32) and (6.33) into (6.34) results in

(δτw)Nζ+1/2 + ∆τ
{
α δ̃(1)

x + β δ̃(1)
y

}
(δτp′)Nζ = α (qu)Nζ + β (qv)Nζ . (6.35)

Comparing (6.35) with (6.22) given below,

N δτ (w) + ∆τ D̃(1)
z δτ (p′) = q∗w ,

a vertical velocity equation satisfying the top and bottom boundary conditions is obtained.
At the model lid,

N (δτw)1/2 = 0 ,

and therefore
N1/2 = 1 ,

[
D̃(1)
z

]
1

= 0 , (q∗w)1/2 = 0 .

At the surface level k = Nζ+1/2,

N (δτw)Nζ+1/2 + ∆τ D̃(1)
z (δτp′)Nζ+1/2 = (q∗w)Nζ+1/2 ,

where

NNζ+1/2 = 1,
[
D̃(1)
z

]
Nζ+1/2

=
{
α δ̃(1)

x + β δ̃(1)
y

}
Nζ
, (q∗w)Nζ+1/2 = α (qu)Nζ + β (qv)Nζ .

(d) Elliptic Solver

The elliptic problem (6.24) contains cross-derivative terms with variable coefficients and
is solved using a GMRES Krylov type iteration (Saad and Schultz (1986), Saad (1993)).
Smolarkiewicz and Margolin (1994), Smolarkiewicz and Margolin (1997) employ a right-
preconditioned variant of the GCR algorithm of C. et al. (1983) for the pressure solver in
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anelastic models. GMRES is mathematically equivalent to the GCR algorithm when the
symmetric part of the elliptic operator L is negative-definite. In this case, both algorithms
produce an identical sequence of iterates. Smolarkiewicz et al. (1997) propose a convergence
test based on ‖Lδτ (p′)−q∗p′‖ < εc where εc is an estimate of the RMS divergence. Skamarock
et al. (1997) apply a similar test to the compressible equations and their approach is adopted
in the LM solver. To accelerate convergence, a suitable preconditioning technique must be
found. In essence, a preconditioner P is an approximate inverse of L.

The relative magnitude of the horizontal and vertical parts of L is determined by the square
of the grid aspect ratio ∆X2/∆Z2 and can differ by several orders of magnitude when this
ratio is large. For example, consider a quasi-hydrostatic LM model run with

∆X ≈ a∆λ ≈ 6 km, ∆Z ∼ −
√
γ

gρ
= 60 m to ∆Z ∼ −

√
γ

gρ
= 600 m,

implying ∆X2/∆Z2 varies from 102 up to 104. Therefore, an effective preconditioning strat-
egy is to derive an implicit iteration using operator splitting in the vertical direction since
these will be the dominant terms in the discretized system of equations for typical grid reso-
lutions employed at meso-β and meso-γ scales. A vertical preconditioner will also be efficient
at micro-α scales, however, a fully 3D scheme is preferable in the case of isotropic grids.
Consider the simple two-dimensional diffusion equation

∂u

∂τ
= ∇2u− r .

The vertical Alternating Direction Implicit (ADI) preconditioner proposed by Skamarock
et al. (1997) is based on a forward-in-time integration scheme and a splitting of the discretized
Laplacian into vertical and horizontal components. In discrete form,

( I − β2 δzz ) uν+1 = ( I + β1 δxx ) uν −∆τ r , (6.36)

where δxxu = ui+1,k − 2uik + ui−1,k, δzzu = ui,k+1 − 2uik + ui,k−1, β1 = ∆τ/∆x2 and
β2 = ∆τ/∆z2. The largest ‘pseudo’ time step ∆τ < ∆x2/2 is chosen so that the scheme
remains stable when integrated to steady-state. Tridiagonal systems must be inverted along
each vertical grid line in such an implicit scheme. When used as a preconditioner P, one
pseudo-time step or iteration of (6.36) is applied within each GMRES iteration.

A more implicit time integration scheme can be derived by including the diagonal terms
appearing in δxx on the left hand side. In general, a preconditioned fixed-point iteration is
derived from a matrix splitting A = M −N and can be written in the equivalent forms

xν+1 = xν +M−1(b−Axν) = M−1Nxν +M−1b

with iteration matrix G = M−1N = (I −M−1A). The Jacobi and Gauss-Seidel iterations
are based on the splitting A = D−E−F . D is diagonal, whereas E and F are strictly lower
and upper triangular matrices. For Jacobi M = D, whereas M = D−E in the Gauss-Seidel
iteration. The forward-in-time, central-space scheme in 2D is

uν+1
ik − uνik

∆τ =
uνi+1,k − 2uνik + uνi−1,k

∆x2 +
uνi,k+1 − 2uνik + uνi,k−1

∆z2 − rik

Assume that ∆x = ∆z so that the above scheme becomes

uν+1
ik = uνik + ∆τ

∆x2

[
uνi+1,k + uνi−1,k + uνi,k+1 + uνi,k−1 − 4uνik −∆x2ri

]
.
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Setting ∆τ/∆x2 = 1/4, the point Jacobi iteration in 2D is obtained:

4uν+1
ik = uνi+1,k + uνi−1,k + uνi,k+1 + uνi,k−1 −∆x2ri .

The above ‘point’ relaxation applies a weighted average of the four neighboring points to
update the solution. Alternatively, a vertical line Jacobi relaxation scheme results from the
implicit time-stepping scheme given below,

−uν+1
i,k−1 + 4uν+1

ik − uν+1
i,k+1 = uνi+1,k + uνi−1,k −∆x2ri , (6.37)

and requires the solution of tridiagonal systems of equations. The LM preconditioner is a
simple generalization of the splitting (6.37) to non-isotropic grids and a detailed derivation
is provided below.

(e) Line Jacobi Preconditioner

The first step in the construction of a vertical line Jacobi preconditioner for the LM model is
to derive an approximate form for L which still contains the dominant terms. Off–diagonal
cross–derivative terms will be ignored in the preconditioner, since only the main diagonal is
retained in the matrix splitting. Therefore, the first approximation to the elliptic operator
drops terrain following terms in the horizontal gradient ∇ and divergence operators (∇·) ,[

cvd
cpd

1
pn
−∆τ2 ∇ · 1

ρn
∇
]
δτ (p′)−∆τ2 D̃(2)

z N−1 D̃(1)
z δτ (p′) = q∗p′ .

In discrete form, we have

∇ · 1
ρn
∇ = 1

a cosϕδλ
1

ρnλ a cosϕ
δλ + 1

a cosϕδϕ cosϕ 1
ρnϕ a

δϕ .

To obtain the operator splitting, apply the operator to the pressure p{
1

a cosϕδλ
1

ρnλ a cosϕ
δλ p

}
ij

= 1
(∆λ a cosϕj)2

[
pi+1,j − pij
(ρnλ)i+1/2,j

− pij − pi−1,j

(ρnλ)i−1/2,j

]
,

and { 1
a cosϕδϕ cosϕ 1

ρnϕ a
δϕ p

}
ij

= 1
(a∆ϕ)2 cosϕj

[
cosϕj+1/2

pi,j+1 − pij
(ρnϕ)i,j+1/2

]

− 1
(a∆ϕ)2 cosϕj

[
cosϕj−1/2

pij − pi,j−1
(ρnϕ)i,j−1/2

]
.

The diagonal of the horizontal operator is therefore given by[
cvd
cpd

1
pn
−∆τ2 dij

]
,

where the diagonal coefficient −dij appearing in the line Jacobi splitting is

1
(∆λ a cosϕj)2

[
1

(ρnλ)i+1/2,j
+ 1

(ρnλ)i−1/2,j

]
+ 1

(a∆ϕ)2 cosϕj

[
cosϕj+1/2

(ρnϕ)i,j+1/2
+

cosϕj−1/2
(ρnϕ)i,j−1/2

]
.
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Neumann boundary conditions are imposed along the lateral boundaries. For the eastern
and western boundaries, NS ≤ j ≤ NN ,

pNE ,j − pNE−1,j = 0 , pNW+1,j − pNW ,j = 0 ,

and the southern and northern boundaries, NE ≤ i ≤ NW

pi,NS − pi,NS−1 = 0 , pi,NN+1 − pi,NN = 0 .

In the vertical direction, the form of x = D̃
(2)
z N−1D̃

(1)
z p′ with mass-lumping is

b
(2)
0
−a(2)

1 b
(2)
1
−a(2)

2 b
(2)
2
· ·
· ·
−a(2)

Nζ−1 b
(2)
Nζ−1

−a(2)
Nζ

b
(2)
Nζ





0
b̄−1
2

(
b
(1)
2 p′2 − a

(1)
2 p′1

)
b̄−1
3

(
b
(1)
3 p′3 − a

(1)
3 p′2

)
·
·

b̄−1
Nζ

(
b
(1)
Nζ
p′Nζ − a

(1)
Nζ
p′Nζ−1

)
−a(1)

Nζ+1p
′
Nζ


By expanding, we obtain for k = 2, . . . , Nζ − 1

[ x ]k = −a(2)
k b̄−1

k

(
b
(1)
k p′k − a

(1)
k p′k−1

)
+ b

(2)
k b̄−1

k+1

(
b
(1)
k+1p

′
k+1 − a

(1)
k+1p

′
k

)

= a
(2)
k b̄−1

k a
(1)
k p′k−1 −

(
a

(2)
k b̄−1

k b
(1)
k + b

(2)
k b̄−1

k+1a
(1)
k+1

)
p′k + b

(2)
k b̄−1

k+1b
(1)
k+1p

′
k+1

= a
(3)
k p′k−1 + b

(3)
k p′k + c

(3)
k p′k+1 .

For model main levels k = 1 and k = Nζ

[ x ]1 = b
(2)
1 b̄−1

2

(
b
(1)
2 p′2 − a

(1)
2 p′1

)

= b
(3)
1 p′1 + c

(3)
1 p′2 ,

[ x ]Nζ = −a(2)
Nζ
b̄−1
Nζ

(
b
(1)
Nζ
p′Nζ − a

(1)
Nζ
p′Nζ−1

)
− b(2)

Nζ
a

(1)
Nζ+1p

′
Nζ

= a
(2)
Nζ
b̄−1
Nζ
a

(1)
Nζ
p′Nζ−1 −

(
a

(2)
Nζ
b̄−1
Nζ
b
(1)
Nζ

+ b
(2)
Nζ
a

(1)
Nζ+1

)
p′Nζ

= a
(3)
Nζ
p′Nζ−1 + b

(3)
Nζ
p′Nζ .

The preconditioner is based on solving tridiagonal systems in the vertical direction with
Dirichlet boundary conditions on the pressure at k = 0 and k = Nζ + 1. Thus, coefficients of
the above operator are computed only for interior points and the LU factorization of the ver-
tical tridiagonal systems is performed once per time step in order to minimize computations.
One further approximation in the preconditioner is to set

−a(1)
Nζ+1

=
[
D̃(1)
z

]
Nζ+1/2

=
{
α δ̃(1)

x + β δ̃(1)
y

}
= 0 .
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Section 7

The Runge-Kutta dynamical core

In addition to the so called Leapfrog-scheme (Klemp and Wilhelmson (1978), mainly chapters
4 and 5) and a semi-implicit solver (Thomas et al. (2000), section 6.1) a new dynamical core
for the solution of the compressible Euler-equations, called Runge-Kutta (RK) dynamical
core, is available in the COSMO-model since about the start of the pre-operational test phase
(August 2006) of the COSMO-DE (the convection permitting model with 2.8 km resolution).
It bases on the time-splitting approach of Wicker and Skamarock (2002) with the intention
that for successful convective-scale simulations a numerical solver is needed that produces
much less numerical noise at the grid scale as the up to now used centered-difference schemes
of the leapfrog solver.

The Euler equations. Since the Euler equations in the RK dynamical core are slightly
different to their formulation in the leapfrog scheme, we here repeat them for spherical, ter-
rain following coordinates (λ, φ, ζ) with ζ = ζ(λ, φ, z), r = rearth + z (for relations between
the occurring coordinate derivatives we refer to eqns. (2.100)). The prognostic equations
for the dynamical variables spherical wind components (u, v and w), and the deviations of
temperature and pressure T ′, p′ from a base state are split into a slow and a fast part. The
slow part, denoted by the tendencies ∂u

∂t

∣∣∣
slow

, . . . , ∂T ′

∂t

∣∣∣
slow

, consists of the advection terms
(section 7.1.2), the Coriolis terms (section 7.1.3) and tendencies from all the physical pa-
rameterisations Doms et al. (2004). The fast parts (see section 7.2) are the pressure gradient
terms and the working terms in the T ′- and p′-equation, thus leading to sound expansion,
and the buoyancy terms, leading to the expansion of gravity waves.

∂u

∂t
= −1

ρ

1
r cosφ

(
∂p′

∂λ
+ ∂ζ

∂λ

∂p′

∂ζ

)
+Ddamp,u + ∂u

∂t

∣∣∣∣
slow

(7.1)

∂v

∂t
= −1

ρ

1
r

(
∂p′

∂φ
+ ∂ζ

∂φ

∂p′

∂ζ

)
+Ddamp,v + ∂v

∂t

∣∣∣∣
slow

(7.2)

∂w

∂t
= −1

ρ

∂ζ

∂z

∂p′

∂ζ
+ g

(
p0
p

T ′

T0
− p′

p
+ p0

p

T

T0
qx

)
+Ddamp,w + ∂w

∂t

∣∣∣∣
slow

(7.3)

∂p′

∂t
= − cp

cV
pD + gρ0w + ∂p′

∂t

∣∣∣∣
slow

(7.4)

∂T ′

∂t
= − R

cV
T D − ∂T0

∂z
w + ∂T ′

∂t

∣∣∣∣
slow

(7.5)
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The artificial divergence damping terms are abbreviated by

Ddamp,u = 1
ρ

1
r cosφ

(
∂ αhdiv ρD

∂λ
+ ∂ζ

∂λ

∂ αhdiv ρD

∂ζ

)
(7.6)

Ddamp,v = 1
ρ

1
r

(
∂ αhdiv ρD

∂φ
+ ∂ζ

∂φ

∂ αhdiv ρD

∂ζ

)
(7.7)

Ddamp,w = 1
ρ

∂ζ

∂z

∂ αvdiv ρD

∂ζ
(7.8)

To indicate the optional divergence damping in the w-equation, too, the diffusion coefficient
αvdiv carries an upper index ’v’.

The divergence is denoted by D = divv. One difference to the former version of the fast-
waves solver is the use of its so-called strong conservation form (we here repeat eq. (2.122)):

D ≡ divv = 1
r2 cosφ

1
√
g

[
∂

∂λ
(r√g u) + ∂

∂φ
(r cosφ√g v) + ∂rZ

∂ζ

]
(7.9)

with the definition

Z := r cosφ √g ζ̇ = ∂z

∂λ
u+ ∂z

∂φ
cosφ v − r cosφ w. (7.10)

Obviously, the divergence is expressed on the one hand by derivatives in terrain following
coordinates but on the other hand of the physical components u, v, w in spherical coordinates.
Here one can cancel one factor r due to the shallow atmosphere approximation r ≈ rearth =
const., which is used throughout in the COSMO model

D = 1
r cosφ

1
√
g

[
∂

∂λ
(√g u) + ∂

∂φ
(cosφ√g v) + ∂Z

∂ζ

]
. (7.11)

It is advisable to introduce some other abbreviations

d̃hor := ∂

∂λ
(√g u) + ∂

∂φ
(cosφ√g v) , d̃vert := ∂Z

∂ζ
, (7.12)

so we can write the divergence as

D = 1
r cosφ

1
√
g

[
d̃hor + d̃vert

]
. (7.13)

Furthermore we define
Z = Zhor + Zvert (7.14)

with

Zhor := Zx + Zy, (7.15)

Zx := ∂z

∂λ
u, Zy := ∂z

∂φ
cosφ v, (7.16)

Zvert := −r cosφ w. (7.17)

The buoyancy term in the w-equation has a slightly different form than in the former COSMO
versions. To derive it we use the ideal gas equation for moist air

p = ρRd (1 + qx)T, (7.18)
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where
qx :=

(
Rv
Rd
− 1

)
qv − qcond, (7.19)

describes the so-called ’water loading’ in the buoyancy term. From this we can derive the
buoyancy term, expressed by p′ and T ′, without any approximation

−gρ
′

ρ
= −g 1

ρ
(ρ− ρ0) = −g 1

ρ

(
p

Rd(1 + qx)T −
p0
RdT0

)
= −gρ0

ρ

(
T0
p0

p

(1 + qx)T − 1
)

= −g ρ0
ρ(1 + qx)

(
T0
p0

p′ + p0
T

− (1 + qx)
)

= −g ρ0
ρ(1 + qx)

(
T0
T

p′

p0
+ T0 − T

T
− qx

)
= +g ρ0

ρ(1 + qx)

(
−T0
T

p′

p0
+ T ′

T
+ qx

)
In former versions of the fast waves solver, (1+qx) was neglected in the denominator because
qx is at most about 1%. Nevertheless one can avoid this neglect by

−gρ
′

ρ
= +g p0

T0

T

p

(
−T0
T

p′

p0
+ T ′

T
+ qx

)
= +g

(
−p
′

p
+ p0

p

T ′

T0
+ p0

p

T

T0
qx

)
, (7.20)

i.e. densities are expressed by pressure and temperature in an efficient manner. By the way,
inserting T ′ = T − T0 results in

−gρ
′

ρ
= +g

(
−1 + p0

p

T

T0
(1 + qx)

)
. (7.21)

This form is used for the ’dynamical bottom boundary condition’ (section 7.2.2). The reason
is, that for parallelization no boundary exchange of T ′ is needed; instead an estimation of T
by the starting value is used.

7.1 Slow processes in the Runge-Kutta scheme

In the splitting idea of Wicker and Skamarock (2002) the tendency of the slow processes
is calculated and added in each sub step of the fast processes. The methodology of the
subcycling is described in section 3.2, with the difference, that now the deviation T ′ is used
as a prognostic variable, instead of the absolute temperature T .

The horizontal advection of the dynamical variables is done by an upwind scheme of 5th order,
where the tendencies in x and y-direction are added. To stabilize this scheme a Runge-Kutta
RK3 time integration scheme is used as proposed in Wicker and Skamarock (2002). This
scheme is formally of 2nd order but for linear problems of 3rd order and its combination
with the 5th order advection is one of the most effective advection schemes of this type
Baldauf (2008). The vertical advection tendencies are calculated by an implicit scheme with
centered differences of 2nd order.

Here some sort of a flow diagram of the Runge-Kutta solver is sketched:
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solve: Φ̃− Φn

∆t
3

= βAz(Φ̃) + (1− β)Az(Φn)

+Ax(Φn) +Ay(Φn) + C(Φn) + P (Φn)

... and define its tendency: L(Φn) := Φ̃− Φn

∆t
3

1. RK-substep: Φ∗ = Φn + ∆t
3 L(Φn)

fast waves with slow tendency S∗ := Φ∗ − Φn

∆t/3 , starting at Φn ⇒ Φ∗

solve: Φ̃− [αΦn + (1− α)Φ∗]
∆t
2

= βAz(Φ̃) + (1− β)Az(Φ∗)

+Ax(Φ∗) +Ay(Φ∗) + C(Φ∗) + P (Φn)
... and define its tendency: L(Φ∗) := lhs. of the above expression1

2. RK-substep: Φ∗∗ = Φn + ∆t
2 L(Φ∗)

fast waves with slow tendency S∗∗ := Φ∗∗ − Φn

∆t/2 , starting at Φn ⇒ Φ∗∗

solve: Φ̃− [αΦn + (1− α)Φ∗∗]
∆t = βAz(Φ̃) + (1− β)Az(Φ∗∗)

+Ax(Φ∗∗) +Ay(Φ∗∗) + C(Φ∗∗) + P (Φn)
... and define its tendency: L(Φ∗∗) := lhs. of the above expression

3. RK-substep: Φn+1 = Φn + ∆t L(Φ∗∗)

fast waves with slow tendency S∗∗∗ := Φn+1 − Φn

∆t , starting at Φn ⇒ Φn+1

Ax and Ay are spatial discretizations of the horizontal advection where an upwind scheme
of 5th order is used Wicker and Skamarock (2002) more general operators are described in
section 7.1.2). Az is the spatial discretization of the vertical advection processes, a 2nd order
centered difference scheme. For the weighting of the implicitness of the vertical advection
β = 1/2 was chosen which therefore constitutes a true Crank-Nicholson scheme. C denotes
the Coriolis terms and metric correction terms of the advection due to the earth curvature in
the momentum equations. P (Φn) contains the tendencies of the physical parameterizations
(with the exception of the microphysics) and are calculated once outside of the RK-scheme.
The general stability properties of this time splitting together with the fast waves processes
are inspected in Baldauf (2010).

Generally α = 1 is chosen. This alters the property of the implicit scheme, but proved to be
stable in a broad range of vertical advection Courant numbers, yet not been unconditionally
stable.

The fast waves calculation consists of several steps with a small time step ∆τ :

Φν+1 = Φν + ∆τ F (Φν ,Φν+1) + ∆τ S (7.22)

F is an abbreviation for the vertical implicit, horizontal forward-backward scheme for the
sound and gravity wave expansion. S is the (constant) tendency of the appropriate slow
processes.
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A further extension of the new dynamical core is the possibility to abandon the shallow
atmosphere approximation Petrik (2006). In this approximation metrical terms of the velocity
advection, e.g. uw tanφ/r, and Coriolis terms, e.g. 2Ωw cosφ, which contain the vertical
velocity are neglected in comparison to similar terms which contain the horizontal velocity
component. Now all advection and Coriolis terms can be used. Whereas the advection terms
seem to have no significant influence, this statement is not as clear for the Coriolis terms. At
least in the vicinity of the equator these terms are even bigger than the traditionally used
terms.

7.1.1 Some implementation details of the Runge-Kutta scheme

The following steps are performed in subroutine org_runge_kutta (in src_runge_kutta.f90):

• At the beginning the tendencies of the Rayleigh friction layer and the tendencies of
the physical parameterizations of radiation, convection and the explicit parts of the
turbulence (if 3D turbulence is switched on) are summed up:

utens = Ray + ut_conv + 3Dturb_expl
vtens = Ray + vt_conv + 3Dturb_expl
wtens = + 3Dturb_expl
ttens = sohr + thhr + tt_conv + (t_inc) + 3Dturb_expl
pptens =
qvtens = + qv_conv + 3Dturb_expl

• Then in implicit_vert_diffusion_uvwt the implicit (Crank-Nicholson) vertical tur-
bulent tendencies are added to utens, vtens, wtens, pptens and ttens

• rename T to T ′

• add Coriolis tendencies to utens, vtens, wtens (if this is not done in every RK-substep)

• Start of the Runge-Kutta substeps:

– calculate the horizontal advection tendencies uadvt, vadvt, wadvt, tadvt, ppadvt
(add. wcon) in subroutine advection

– if not done above: add Coriolis tendencies to uadvt, vadvt, wadvt

– if the implicit version of vertical advection is used, then call complete_tendencies_uvwtpp:
Using the previously calculated tendencies from horizontal advection uadvt, ...)
and the above mentioned tendencies due to physics and adiabatic processes of
the dynamic variables (stored in utens, ...) the vertical advection is solved by
a vertically implicit scheme. The resulting tendencies again are stored in uadvt,
vadvt, wadvt, ppadvt and tadvt.

– now insert these complete slow tendencies (uadvt, vadvt, wadvt, ppadvt and
tadvt into the fast_waves solver.

end of the Runge-Kutta substeps.

• if the latent heating from the previous time step was added, then substract it (it is
later added in the cloud microphysics scheme))
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• T now contains again T0 + T ′

• Advection of the moisture fields qx, aerosol and gaseous components of COSMO-ART,
and the TKE (in subroutine advection_pd)

• and then in an operator splitting manner perform the horizontal diffusion of qx and
the implicit vertical diffusion of qv, qc, qi and TKE

• apply artificial diffusion:

– apply targeted diffusion on T ′ to avoid cold pools
– apply artificial horizontal diffusion to u, v, w, T ′, p′

– if chosen: apply horizontal Smagorinsky diffusion on u and v

• call the saturation adjustment (number of iterations depends from ζ̇)

7.1.2 Advection for the RK dynamical core

As mentioned in section 3.3.2 the advection terms for any scalar quantity s are

∂s

∂t
+ (v · ∇)s = ∂s

∂t
+A(s,v) = . . . (7.23)

with a ’scalar’ advection operator in spherical coordinates (eq. (2.66))

A(s,v) = u

r cosφ
∂s

∂λ
+ v

r

∂s

∂φ
+ w

∂s

∂r
(7.24)

or in spherical and terrain-following coordinates

A(s,v) = u

r cosφ
∂s

∂λ
+ v

r

∂s

∂φ
+ ζ̇

∂s

∂ζ
. (7.25)

u, v, w are velocity components along spherical, normalized base vectors.

For the velocity components
∂v
∂t

+ (v · ∇)v = . . . , (7.26)

the equations can be written as

∂u

∂t
+A(u,v)− uv

r
tanφ+ uw

r
= . . . , (7.27)

∂v

∂t
+A(v,v) + u2

r
tanφ+ vw

r
= . . . , (7.28)

∂w

∂t
+A(w,v)− u2 + v2

r
= . . . . (7.29)

The rightmost terms in every equation can be switched off in COSMO, which belongs to the
shallow atmosphere approximation.

According to eq. (2.112) the contravariant vertical velocity sounds

ζ̇ = u

r cosφ
∂ζ

∂λ
+ v

r

∂ζ

∂φ
− 1√

G
w. (7.30)
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With the transformation rules (2.100) this can be rewritten to

ζ̇ = 1√
G

(
u

r cosφ
∂z

∂λ
+ v

r

∂z

∂φ

)
− 1√

G
w. (7.31)

The first term in (...) on the r.h.s is obviously a horizontal advection of the ’height-field’
z(x, y, ζ) and therefore can be treated with the following advection operators.

Horizontal advection operators

Therefore we need horizontal advection operators in which the ’velocities’ u/(r cosφ) and
v/r are inserted. In Wicker and Skamarock (2002) the advection operators in flux form are
described. In the current version of the COSMO-model the above mentioned advection form
is used. Therefore we determine the appropriate advection operators by comparing for a
constant velocity u

∂uq

∂x
→

Fi+1/2 − Fi−1/2
∆x (7.32)

u
∂q

∂x
→ Ai (7.33)

In the follwing we list the available horizontal advection operators.

advection operator of 2nd order

A
(2)
i = ūi

2 ∆x (qi+1 − qi−1) , (7.34)

advection operator of 1st order

A
(1)
i = A

(2)
i − S

|ūi|
2 ∆x (qi+1 − 2qi + qi−1) , (7.35)

advection operator of 4th order

A
(4)
i = ūi

12 ∆x (8(qi+1 − qi−1)− (qi+2 − qi−2)) , (7.36)

advection operator of 3rd order

A
(3)
i = A

(4)
i + S

|ūi|
12 ∆x (qi+2 − 4qi+1 + 6qi − 4qi−1 + qi−2) , (7.37)

advection operator of 6th order

A
(6)
i = ūi

60 ∆x (45(qi+1 − qi−1)− 9(qi+2 − qi−2) + (qi+3 − qi−3))) , (7.38)

advection operator of 5rd order

A
(5)
i = A

(6)
i − S

|ūi|
60 ∆x ((qi+3 + qi−3)− 6(qi+2 + qi−2) + 15(qi+1 + qi−1)− 20qi) . (7.39)

S =sgn ∆t denotes the sign of the timestep. The even order advection operators are pure
centered difference schemes, whereas the odd order operators can be written as a sum of the
next higher even order operator and a diffusion term.
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The factor S is needed for the digital filtering initialization (DFI), where some timesteps
into the past (i.e. with a negative timestep) are made. Without this factor the diffusion term
would have a negative diffusion coefficient and therefore would become unstable.

The calculation of the averaged velocities ūi is done in dependence from the advected variable:
for the advected velocity component u, one calculates ūi+1/2 = 1

3(ui−1/2 + ui+1/2 + ui+3/2).
This procedure stabilizes momentum advection in sheared velocity fields.

For the advection of the scalar variables one can use ūi = 1
2(ui−1/2 + ui+1/2). Recently U.

Blahak found that for the odd order advection schemes it is recommendable to use this
formula only in front of the centered difference advection operators,whereas one should use
|ūi| := 1

2(|u|i−1/2 + |u|i+1/2) in front of the diffusion operators.

In combination with the RK3 scheme the advection operator of 3rd order is stable for Courant
numbers up to 1.62, advection 5th order ist stable up to 1.42 Wicker and Skamarock (2002),
for an extended stability analysis see Baldauf (2008)).

For the two horizontal directions the tendencies of the two one-dimensional advection oper-
ators are added in every RK-substep (i.e. no operatorsplitting in the different directions).

Vertical advection operator

The vertical advection is done in an implicit manner using an advection operator

Az,k(q) = dζ

dt

qi,j,k+1 − qi,j,k−1
2∆ζ (7.40)

7.1.3 Coriolis terms

The Coriolis terms in the spherical, terrain-following coordinate system are
∂u

∂t
= . . .+ fv − fcw (7.41)

∂v

∂t
= . . .− fu (7.42)

∂w

∂t
= . . . + fcw (7.43)

with f = 2|Ω| sinφ and fc = 2|Ω| cosφ. Neglecting terms fc is part of the ’shallow atmo-
sphere’ approximation. (see e.g. Petrik (2006) and references therein).

In the leapfrog dynamical core, the tendencies of the Coriolis terms are simply added to
the tendencies of the physical parameterizations. This is formally not correct in the Runge-
Kutta-scheme, because Coriolis terms would be integrated by an Euler forward (EF) scheme.
The EF-scheme for the Coriolis terms is well known to be unstable with an amplification
factor 1 + i ∆t f . Obviously, this is a very week instability: e.g. if a time step of 66 sec. is
used, the amplitude of the variables increases by a factor of 10 % in about 4500 time steps
(=78 h). Such slow instabilities are not so important for weather forecasting applications
but possibly for long lasting climate runs.

Nevertheless, from a formal point of view a stable integration of the Coriolis terms should be
achieved, that means, their tendencies should be calculated in every RK-substep like the hori-
zontal advection terms. (this is done, if the internal parameter l_Coriolis_every_RK_substep
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= .TRUE., whereas the ’leapfrog-like’ treatment similar to the physical tendencies is chosen
by .FALSE.). Moreover, despite the fact, that some spatial averaging is needed, the calcula-
tion of the tendencies is a very cheap operation. Every call of the subroutine coriolis takes
currently about 0.2 % of a model run time.

It should be remarked that a 2-stage Runge-Kutta scheme is unstable, too. Only RK-schemes
with order equal or higher 3 can stably integrate at least the shallow atmosphere Coriolis
terms (precisely all so-called LC-RK-schemes Baldauf (2008) of order 3 or higher can provide
this).

7.2 Fast processes in the Runge-Kutta scheme

The basic methodology to integrate the fast waves is mainly described in section 4.3.2. The
main difference here is the use of T ′ instead of T as a prognostic variable. This results in an
additional fast term w ∂T0/∂z, which contributes to the ’buoyancy’ terms.

Since July 2012 (COSMO version 4.24), the fast waves solver again has been revised. The
main original goals of this revision are the following:

• The consideration of the vertical grid stretching by introduction of appropriate weight-
ings in all vertical discretizations of the fast waves solver. In particular their use in
the implicit terms in the discretization of the Euler equations requires a complete
re-derivation of the tridiagonal equation system.

• The usage of the ’strong conservation form’ for the divergence operator. Though mainly
developed for finite volume schemes with conservation properties, there was the hope
to gain advantages by a more direct discretization of the metric terms and by a better
formulation of the lower boundary conditions.

• The option for a fully 3-dimensional (3D) isotropic divergence damping instead of the
’traditional’ quasi-3D version should be available. Gaßmann and Herzog (2007) have
derived the dispersion relation of sound and gravity waves and have found a larger
deviation from the correct one in the case of the quasi-3D version compared to the
isotropic version.

• A further option should be the alternative discretization of the horizontal pressure
gradients by the methodology of Mahrer (1984). This z-plane treatment should result
in a more stable behavior in steep terrain.

The new module fast_waves_sc additionally contains other, smaller improvements, too,
concerning e.g. the formulation of boundary conditions, the use of the reference state, a
more accurate formulation of the buoyancy term. It should be emphasized, that this whole
section is mainly an excerpt of the according COSMO technical report Baldauf (2013).

7.2.1 Integration of the ’fast waves’

To write down the discretization of the fast part of the Euler-equations (7.1)-(7.5) we define
the following numerical spatial two-point operators, leading to at most second order formulas.
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Here we will keep the half indices for the staggered velocity positions for clarification. One
should notice that in the COSMO code the staggered grid positions (i+ 1

2 , j, k), (i, j+ 1
2 , k),

and (i, j, k− 1
2) (minus sign!) are denoted as (i,j,k) (this is indicated by the gray connection

lines in Figure 7.1).

Horizontal averaging is done by

ψ
λ
∣∣∣
i,j,k
≡ Aλψ|i,j,k := 1

2(ψi− 1
2 ,j,k

+ ψi+ 1
2 ,j,k

), (7.44)

ψ
φ
∣∣∣
i,j,k
≡ Aφψ|i,j,k := 1

2(ψi,j− 1
2 ,k

+ ψi,j+ 1
2 ,k

). (7.45)

For the vertical averaging we have to keep in mind the special definition of the so called main
levels (index k) and the half levels (index k + 1

2). As stated above, in the COSMO model,
the user can prescribe the grid positions of the half levels z(h)

i,j,k− 1
2
. The height of the main

levels is a simple arithmetic average

z
(m)
i,j,k := 1

2

(
z

(h)
i,j,k− 1

2
+ z

(h)
i,j,k+ 1

2

)
. (7.46)

Accordingly an averaging from half level variables (e.g. w) to the main level is done by
arithmetic averaging:

ψ
ζ
∣∣∣
i,j,k
≡ Aζψ|i,j,k := 1

2(ψi,j,k− 1
2

+ ψi,j,k+ 1
2
). (7.47)

But averaging from main level variables (e.g. p′, T ′, ...) to the half level position is done by
a weighting

ψ
ζ,N
∣∣∣
i,j,k− 1

2
≡ ANζ ψ

∣∣∣
i,j,k− 1

2
:= gi,j,k− 1

2
ψi,j,k + (1− gi,j,k− 1

2
)ψi,j,k−1 (7.48)

with

gi,j,k− 1
2

:=
z

(h)
i,j,k− 1

2
− z(h)

i,j,k− 3
2

z
(h)
i,j,k+ 1

2
− z(h)

i,j,k− 3
2

. (7.49)

To be complete, we also note the extrapolation formula

ψi,j,k+ 1
2

= −(1− gi,j,k− 1
2
) ψi,j,k−1 + (2− gi,j,k− 1

2
) ψi,j,k. (7.50)

For vertical averages for u and v one has to use appropriate weights gi+ 1
2 ,j,k−

1
2
or gi,j+ 1

2 ,k−
1
2
,

respectively. The appropriate averaging operators are denoted by a bar above the N : AN̄ζ
(of course one should even distinguish between the u or v position; but this can be easily
seen from the context). In the program code the denotations gi,j,k− 1

2
= wgtfac(i,j,k) ,

gi+ 1
2 ,j,k−

1
2

= wgtfac_u(i,j,k) and gi,j+ 1
2 ,k−

1
2

= wgtfac_v(i,j,k) (introduced by G.
Zängl) are used.

Now we turn to spatial derivatives. For horizontal derivatives we can simply use the standard
centered difference formulas

δλψ|i,j,k :=
ψi+ 1

2 ,j,k
− ψi− 1

2 ,j,k

∆λ , (7.51)

δφψ|i,j,k :=
ψi,j+ 1

2 ,k
− ψi,j− 1

2 ,k

∆φ , (7.52)
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Figure 7.1: Denotation of the levels and the position of variables in the COSMO-model.
Grey connection lines indicate staggered grid positions with the same indices in the COSMO
program code.

and analogous for staggered variables.

In the case of vertical derivatives things become a little bit more complicated. Here one has
to distinguish if the variable is either defined on the half or the main level and if the target
point is on a half or a main level. The derivative of a half level variable at the position of
the main level is obviously done by

δζψ|i,j,k :=
ψi,j,k+ 1

2
− ψi,j,k− 1

2

∆ζ . (7.53)

The derivative of a main level variable to the half level position could be done in the same
way

δNζ ψ
∣∣∣
i,j,k− 1

2
:= ψi,j,k − ψi,j,k−1

∆ζ (7.54)

with the argumentation, that from two neighbouring points one can calculate a derivative
only in one manner, independently from the position of the target point. But a second order
formula can only be achieved if the target point is exactly in between the two main level
points. For a decentered target point, the formula is only of first order accurate. Therefore,
one should avoid this type of derivation operator, if possible.

Vertical derivative of a ’scalar variable to the u-Position’:

δ
(s,u)
ζ ψ := AλδζA

N
ζ ψ (7.55)

For the vertical derivative ’u-Position to a scalar point’ one can use

δ
(u,s)
ζ u := AλδζA

N̄
ζ u (7.56)

analogous to eq. (7.55). Vertical derivatives ’scalar to v-position’ or ’v-position to scalar’ are
discretized analogously.

Now we define operators for combinations or products of vertical derivatives. Such larger
stencils occur in particular in the metric correction terms. For the grid position definition of
the metric terms one has to notice that the half level positions z(h) (or ’hhl’), i.e. with the
’w’-position indices (i, j, k − 1

2) are prescribed. Therefore, ∂z
∂ζ and ∂ζ

∂z or √g and 1/√g are
defined most naturally at the scalar (’s’) position (i, j, k) (in this context it might by denoted
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equally as the ’ww’-position), ∂z∂λ is defined most naturally at the ’uw’-position (i+ 1
2 , j, k−

1
2),

and ∂z
∂φ most naturally at the ’vw’-position (i, j + 1

2 , k −
1
2).

The following metric term occurring in the ’strong conservation’-form of the divergence is
best discretized as

discr.(s)
[
∂z

∂λ
u

]
= δζ

(
Aλ

(
∂z

∂λ
AN̄ζ u

))
. (7.57)

Analogous for the φ-direction.

Metric terms of ∇p and ∇D are discretized by

discr.(u)
[
∂ζ

∂λ

∂ψ

∂ζ

]
= −

(
Aζ

∂z

∂λ

)
·

Aλ
(
∂ζ

∂z
δζA

N
ζ ψ

)
︸ ︷︷ ︸
=discr.(s)[ ∂ψ∂z ]

 . (7.58)

This means that a ζ-derivative can be expressed most naturally by a z-derivative (again
analogous for the φ-direction).

For the z-derivative of a scalar variable at the s-position we use the following

discr.(s)
[
∂ψ

∂z

]
≡ δ(s,s)

z ψ := ∂ζ

∂z
δζA

N
ζ ψ. (7.59)

The basic time integration idea behind the fast waves solver is the horizontally explicit-
vertically implicit (HE-VI) scheme, in which the horizontal integration is further done by a
forward-backward scheme and the vertical implicit step is a general Crank-Nicholson scheme
Klemp and Wilhelmson (1978). It is therefore reasonable to define a general time averaging
operator, here called a ’Crank-Nicholson time averaging operator’, by

β̂
(a)
i φ := β

(a)
i φn+1 +

(
1− β(a)

i

)
φn. (7.60)

The upper index (a) denotes a process, e.g. (s) for sound expansion terms, the lower index
i simply enumerates terms. This nomenclature for the Crank-Nicholson weights is adopted
from Baldauf (2010). To limit the number of weights β(a)

i , not for every term an own Crank-
Nicholson weighting parameter is introduced. u- and v-terms, which are analogous in a
process, get the same weighting parameter, because the both horizontal directions have
often quite equal rights in real model applications and their appropriate grid stretching in a
limited area model are not so different.

Now, the discretized Euler equations are expressed by the formerly defined operators:

un+1 − un

∆t = −1
ρ

λ 1
r cosφ

λ
β̂s1δλp′ − β̂s7 ∂z∂λ

ζ

Aλ
(
δ(s,s)
z p′

)+

+1
ρ

λ 1
r cosφ

λ
δλ(αhdivρD(uv))−

∂z

∂λ

ζ

Aλ
(
δ(s,s)
z (αhdivρD(uv))

)+ ∂u

∂t

∣∣∣∣
slow

(7.61)

vn+1 − vn

∆t = −1
ρ

φ 1
r

φ
β̂s1δφp′ − β̂s7 ∂z∂φ

ζ

Aφ
(
δ(s,s)
z p′

)+
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+1
ρ

φ 1
r

φ
δφ(αhdivρD(uv))−

∂z

∂φ

ζ

Aφ
(
δ(s,s)
z (αhdivρD(uv))

)+ ∂v

∂t

∣∣∣∣
slow

(7.62)

wn+1 − wn

∆t = −1
ρ

ζ,N
β̂s2 ∂ζ∂z

ζ,N

δNζ p
′

+

+g
(
β̂b1
p0
p

ζ,N 1
T0

ζ,N

ANζ T
′ − β̂b2

1
p

ζ,N

ANζ p
′ + p0

p

ζ,N T

T0

ζ,N

qx
ζ,N

)
+

+1
ρ

ζ,N
∂ζ

∂z

ζ,N

δNζ (αvdivρD(w)) + ∂w

∂t

∣∣∣∣
slow

(7.63)

p′n+1 − p′n

∆t = − cp
cV
pD(p) + β̂b3gρ0Aζw + ∂p′

∂t

∣∣∣∣
slow

(7.64)

T ′n+1 − T ′n

∆t = − R
cV
TD(T ) − β̂b4

∂T0
∂z

Aζw + ∂T ′

∂t

∣∣∣∣
slow

(7.65)

Here, different divergences D(p), D(T ), D(uv), D(w) have been introduced, because they can
carry different Crank-Nicholson weights (see section 7.2.1). Be aware, that each variable has
a distinct time index, too, by the Crank-Nicholson operators β̂. Only the additional slow
processes ∂u

∂t

∣∣∣
slow

, . . . , ∂T ′

∂t

∣∣∣
slow

don’t carry any time index: they are assumed to be constant
during the small time step integration.

In deviation from the above defined operators, the following coefficient functions occurring
in the buoyancy terms are calculated by

1
p

ζ,N

= 1
p0(zk+1/2) +ANζ p

′ ,
p0
p

ζ,N

= 1

1 + AN
ζ
p′

p0(zk+1/2)

, (7.66)

1
T0

ζ,N

= 1
T0(zk+1/2) ,

T

T0

ζ,N

= 1 +
ANζ T

′

T0(zk+1/2) . (7.67)

The writing for the reference state variables T0 and p0 indicates that they can be calculated
exactly at their grid position2 (proposal by A. Will (personal communication)).

Discretization of the divergence The horizontal contributions of the divergence can be
discretized by

d̃hor := δλ(√gλ u) + δφ(cosφφ√gφ v). (7.68)

For the vertical contribution
d̃vert := δζZ, (7.69)

Z, Zx, Zy, Zhor and Zvert are needed. They are most naturally defined at the w-position
(i, j, k − 1

2). However, one cannot directly use d̃vert, because the implicit weighting must be
considered. Zhor is calculated in the subroutine calc_Z_horiz, and discretized by

Zhor = Zx + Zy, (7.70)

Zx = Aλ

(
∂z

∂λ
AN̄ζ u

)
, (7.71)

2 Therefore the reference state variables have to be calculated not only on the main levels but on the half
level positions, too. This must be done in all modules, which calculate them. In particular in the interpolation
program int2lm one has to set the namelist switch lanalyt_calc_p0T0=.TRUE., if irefatm=1 is still used.
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Zy = Aφ

(
∂z

∂φ
cosφ AN̄ζ v

)
. (7.72)

In this manner Zhor can be calculated for k = 2, 3, ..., ke. At k = 1 (upper boundary) one
immediately gets Zhor = 0 (due to ∂z

∂λ = 0, ...). At k = ke + 1 (lower boundary) u and v
must be extrapolated. In contrast

Zvert := −r cosφ w (7.73)

can be calculated at the boundaries, too.

The different divergence terms are:

D(p) = 1
r cosφ

1
√
g

[
β̂s3 d̃hor + β̂s8 δζZhor + β̂s4 δζZvert

]
. (7.74)

D(T ) = 1
r cosφ

1
√
g

[
β̂s5 d̃hor + β̂s9 δζZhor + β̂s6 δζZvert

]
. (7.75)

D(uv) = 1
r cosφ

1
√
g

[
β̂d1 d̃hor + β̂d5 δζZhor + β̂d2 δζZvert

]
. (7.76)

D(w) = 1
r cosφ

1
√
g

[
β̂d3 d̃hor + β̂d6 δζZhor + β̂d4 δζZvert

]
. (7.77)

Mahrer discretization of the horizontal pressure gradients The basic idea behind
the discretization of the horizontal pressure gradient by Mahrer (1984) consists in using the
gradient ∂p

′(λ,z)
∂λ on z-planes instead of the conventional form ∂p′(λ,ζ)

∂λ + ∂ζ
∂λ

∂p′(λ,ζ)
∂ζ (equivalently

for the φ-direction). To this purpose p′ is interpolated vertically on the left- and right hand
side of the target u-position. This means, at both columns (i, j) and (i+1, j) p′ is interpolated
at the height zi+ 1

2 ,j,k
from the vertically nearest p′-values (analogous to the λ-direction). In

this manner, the nearest values of p′ are used in steep terrain. In contrast, in the above
mentioned ’conventional’ discretization, it can happen, that ∂p′(λ,ζ)

∂ζ is estimated from p′-
values, which are (vertically) quite far away. This bears the risk of an instability, which does
not occur in the Mahrer-approach.

A crucial point in the Mahrer discretization lies in the fact, that in the vicinity of steep
terrain, interpolation is not longer possible, when zi+ 1

2 ,j,k
lies under the orography at least on

one side of the u-position. As pointed out by Zängl (2012), the then required extrapolation of
p′ often leads to similar instabilities as the conventional discretization. Zängl (2012) describes
a way, how to estimate the extrapolation by the hydrostatic approximation in the ICON
dynamical core. Unfortunately, the need for a (quasi-)3-dimensional divergence damping
necessary in the time-splitting approach (Skamarock and Klemp (1992), Baldauf (2010))
does not allow to transfer this idea to the COSMO fast waves solver (there is no hydrostatic
approximation for the divergence).

However, in the new fast waves solver, an also linear extrapolation is used if zi,j,ke > zi+ 1
2 ,j,k

(similar for the other neighboring orography heights). This indeed can help to increase sta-
bility in steep terrain in idealized test scenarios. But in real case applications, this approach

Section 7: The Runge-Kutta dynamical core Part I – Dynamics and Numerics 5.05



7.2 Fast processes in the Runge-Kutta scheme 143

is not entirely satisfying. One reason could be the occurring of a mixed term in the Tay-
lor expansion (see Baldauf (2013)). Therefore, though the Mahrer discretization has proven
as a stable method in several real case runs (mainly for COSMO-DE), the conventional
discretization is still recommended.

The tridiagonal equation system for the vertical velocity

The detailed derivation of the implicit vertical equation for w is derived in Baldauf (2013)
Here we cite only the resulting equations. First of all, one only ends up with a tridiagonal
equation system, if the following requirements for the implicit weightings are fulfilled:

β
(s)
1 = 0, β

(s)
7 = 0, β

(d)
1 = 0, β

(d)
2 = 0, β

(d)
5 = 0, β

(d)
7 = 0. (7.78)

This simply means, that the equations for u and v, (7.61) and (7.62), are solved explicitly,
i.e. in a pure forward sense. This can be done at the beginning of the small time step. As
said above, the updated values un+1, vn+1 are already available to formulate the boundary
condition for the implicit equation system for wn+1. Baldauf (2010) determines optimal
values of the remaining off-centering weights by a stability analysis to

β
(s)
3 = β

(s)
5 = 1, β

(s)
2 = β

(s)
4 = β

(s)
6 = 0.7, (7.79)

β
(b)
1 = β

(b)
2 = β

(b)
3 = β

(b)
4 = 0.7, (7.80)

β
(d)
3 = β

(d)
4 = 1.0. (7.81)

Further we use for the metric correction terms β(s)
8 = β

(s)
4 , β(s)

9 = β
(s)
6 , and β(d)

6 = β
(d)
4 .

Finally the equation system can be formulated as a linear system of equations for w

Ak− 1
2
wk− 3

2
+Bk− 1

2
wk− 1

2
+ Ck− 1

2
wk+ 1

2
= rhsk− 1

2
(7.82)

(A, B, C, rhs and w are further defined at (i, j)) with the coefficients

Ak− 1
2

= −awp1 | k− 1
2
· apw1 | k−1 · rc

+awp1 | k− 1
2
· apw2 | k−1 ·

1
2

+awp2 | k− 1
2
· (1− gk− 1

2
) · apw1 | k−1 · rc

−awp2 | k− 1
2
· (1− gk− 1

2
) · apw2 | k−1 ·

1
2

+awT | k− 1
2
· (1− gk− 1

2
) · aTw1 | k−1 · rc

−awT | k− 1
2
· (1− gk− 1

2
) · aTw2 | k−1 ·

1
2

+ 1
∆t aww1 | k− 1

2
· aww2 | k−1 · rc

Bk− 1
2

= +awp1 | k− 1
2
·
[
apw1 | k + apw1 | k−1

]
· rc

−awp1 | k− 1
2
·
[
apw2 | k − apw2 | k−1

]
· 1

2
−awp2 | k− 1

2
·
[
−gk− 1

2
· apw1 | k + (1− gk− 1

2
) · apw1 | k−1

]
· rc
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−awp2 | k− 1
2
·
[
+gk− 1

2
· apw2 | k + (1− gk− 1

2
) · apw2 | k−1

]
· 1

2
−awT | k− 1

2
·
[
−gk− 1

2
· aTw1 | k + (1− gk− 1

2
) · aTw1 | k−1

]
· rc

−awT | k− 1
2
·
[
+gk− 1

2
· aTw2 | k + (1− gk− 1

2
) · aTw2 | k−1

]
· 1

2
− 1

∆t aww1 | k− 1
2
·
[
aww2 | k + aww2 | k−1

]
· rc

+ 1
∆t2

Ck− 1
2

= −awp1 | k− 1
2
· apw1 | k · rc

−awp1 | k− 1
2
· apw2 | k ·

1
2

−awp2 | k− 1
2
· gk− 1

2
· apw1 | k · rc

−awp2 | k− 1
2
· gk− 1

2
· apw2 | k ·

1
2

−awT | k− 1
2
· gk− 1

2
· aTw1 | k · rc

−awT | k− 1
2
· gk− 1

2
· aTw2 | k ·

1
2

+ 1
∆t aww1 | k− 1

2
· aww2 | k · rc

using the denotations

awp1 :=
(1
ρ

)ζ,N
∂ζ

∂z

ζ,N

βs2, awp2 := g βb2

(1
p

)ζ,N
, (7.83)

aww1 :=
(1
ρ

)ζ,N
∂ζ

∂z

ζ,N

, aww2 := αvdiv ρ
1

r cosφ
1
√
g
βd4 , (7.84)

awT := −g
(
p0
p

)ζ,N ( 1
T0

)ζ,N
βb1, (7.85)

apw1 := −cp
cv
p

1
r cosφ

1
√
g
βs4, apw2 := −βb3gρ0, (7.86)

aTw1 := −R
cv
T

1
r cosφ

1
√
g
βs6, aTw2 := βb4

∂T0
∂z

, (7.87)

and
rc := r cosφζ . (7.88)

In apw1, aTw1, and aww2 one can cancel r cosφ terms by the shallow atmosphere approxima-
tion and may set rc = 1. (By efficiency reasons the averaging factor 1/2 is defined into apw2
and aTw2 in the program code.)

The right hand side of eq. (7.82) reads

rhs := −Awp

[
b(n)
p −

(
cp
cv
p

1
r cosφ

1
√
g

[
βs3 d̃

n+1
hor + βs8 δζZ

n+1
hor

])]
︸ ︷︷ ︸

=:b4,p

−AwT

[
b
(n)
T −

(
R

cv
T

1
r cosφ

1
√
g

[
βs5 d̃

n+1
hor + βs9 δζZ

n+1
hor

])]
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+ 1
∆t

b(n)
w −

−(1
ρ

)ζ,N
∂ζ

∂z

ζ,N

δNζ

[
αvdiv ρ

r cosφ
1
√
g

(
βd3 d̃

n+1
hor + βd6 δζZ

n+1
hor

)]
,

 .(7.89)

where d̃n+1
hor is calculated via (7.68) and Zn+1

hor via (7.70) (both with un+1 and vn+1). Further-
more, the operators

Awp =
(1
ρ

)ζ,N
∂ζ

∂z

ζ,N

βs2 δ
N
ζ + gβb2

1
p

ζ,N

ANζ , (7.90)

AwT = −gβb1
p0
p

ζ,N 1
T0

ζ,N

ANζ , (7.91)

Apw = −cp
cv
p

1
r cosφ

1
√
g
βs4 δζ(r cosφ · ...)− βb3gρ0Aζ , (7.92)

are used. Using again the shallow atmosphere approximation (r ≈ rearth in all the prefactors)
we can cancel r cosφ in Apw,

The explicit right hand sides of the prognostic equations are

bn(w) = 1
∆tw

n − 1
ρ

ζ,N

(1− βs2)∂ζ
∂z

ζ,N

δNζ p
′n +

+g
(

(1− βb1)p0
p

ζ,N 1
T0

ζ,N

ANζ T
′ − (1− βb2) 1

p

ζ,N

ANζ p
′ + p0

p

ζ,N T

T0

ζ,N

qx
ζ,N

)
+

+1
ρ

ζ,N
∂ζ

∂z

ζ,N

δNζ (αvdiv ρDn
(w)) + ∂w

∂t

∣∣∣∣
slow

, (7.93)

bn(p) = 1
∆tp

′n − cp
cV
pDn

(p) + (1− βb3)gρ0Aζw
n + ∂p′

∂t

∣∣∣∣
slow

, (7.94)

bn(T ) = 1
∆tT

′n − R

cV
TDn

(T ) − (1− βb4)∂T0
∂z

Aζw
n + ∂T ′

∂t

∣∣∣∣
slow

, (7.95)

with the explicit divergence terms

Dn
(p) = 1

r cosφ
1
√
g

[
(1− βs3) d̃nhor + (1− βs8) δζZnhor + (1− βs4) δζZnvert

]
, (7.96)

Dn
(T ) = 1

r cosφ
1
√
g

[
(1− βs5) d̃nhor + (1− βs9) δζZnhor + (1− βs6) δζZnvert

]
, (7.97)

Dn
(w) = 1

r cosφ
1
√
g

[
(1− βd3) d̃nhor + (1− βd6) δζZnhor + (1− βd4) δζZnvert

]
. (7.98)

Here d̃nhor is calculated by eq. (7.68) and Znhor by eq. (7.70)-(7.72) (in both cases with un and
vn, Znvert analogous to eq. (7.73) with wn).

The explicit solution for p′n+1 reads

p′n+1 = ∆t
(
b4,p − Apww

n+1
)

(7.99)

(this can be calculated without any further boundary conditions/treatments).

The explicit equation for T ′n+1 directly follows from eq. (7.65) using p′n+1 from eq. (7.99).
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7.2.2 Boundary conditions

The free slip condition

At the upper and lower boundaries the pure Euler equations (i.e. without friction/diffusion)
possess only one physical boundary condition: the free slip condition, i.e. the velocity com-
ponent perpendicular to the boundary must be zero

ζ̇ = 0, (7.100)

which is equivalent to
w = 1

r cosφ
∂z

∂λ
u+ 1

r

∂z

∂φ
v. (7.101)

At the top boundary we can simply prescribe

ζ̇i,j,k= 1
2

= 0 ⇒ wn+1
i,j, 12

= 0. (7.102)

At the lower boundary the free slip condition reduces to

wn+1
i,j,ke+ 1

2
= 1
r cosφ

[
Aλ

(
∂z

∂λ
un+1

(sfc)

)
+Aφ

(
∂z

∂φ
cosφ vn+1

(sfc)

)]
, (7.103)

where the cosφ-terms are arranged analogous to the strong conservation form of the diver-
gence. un+1

(sfc) and vn+1
(sfc) must be known at k = ke+ 1

2 , therefore they must be extrapolated.

Boundary treatments

The following considerations does not concern true physical boundary conditions, but bound-
ary treatments in the sense that the appropriate terms cannot longer be calculated by cen-
tered differences but need a different numerical treatment.

The vertical pressure gradient in the horizontal equations of motion. In the both
horizontal momentum equations there is a need to have a different discretization of ∂p′/∂z
or alternatively of ∂

(
p′ − αhdivρD

)
/∂z.

At the bottom boundary there exist two options. The first option is to use a one sided
formula. Günther Zängl proposed to use a one sided derivative of 2nd order accuracy (a first
order formula is not accurate enough!) instead of the boundary treatment described in3 (see
4.4).

For three arbitrarily prescribed points

z1, z2 = z1 + h1, z3 = z1 + h2, (7.104)

one can derive a one-sided derivative formula of 2nd order for a function f(z) in z1 by

af(z1) + bf(z2) + cf(z3) = (a+ b+ c)f + (bh1 + ch2)f ′ +
(
b
h2

1
2 + c

h2
2

2

)
f ′′ + . . . . (7.105)

3 Therefore the switch ldyn_bbc=.FALSE. has a different meaning in the two fast waves solver versions.
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This results in the weights

a = −(b+ c), (7.106)

b = 1− ch2
h1

, (7.107)

c = h1
h2(h1 − h2) . (7.108)

This is active if the switch ldyn_bbc=.FALSE. is set. If it is set to .TRUE., then the other
possibility is used, the so called ’dynamical bottom boundary condition’ Gaßmann (2004),
described in the next paragraph.

At the top boundary a one sided derivative formula of first order is sufficient.

Dynamic bottom boundary condition for the pressure. In section 4.4 the strong
influence of the formulation of the lower boundary condition for the pressure p′ was men-
tioned. Instead of a pressure extrapolation, Gaßmann (2004) proposed a so called ’dynamic
bottom (or lower) boundary condition’ for p′. The goal is to determine ∂p′/∂ζ in a manner
consistent to the free-slip condition ζ̇ = 0. The starting point for the derivation is the bottom
boundary condition ζ̇ = 0 at the surface z = hs(λ, φ), explicitly written

ζ̇ = u

r cosφ
∂ζ

∂λ

∣∣∣∣
z

+ v

r

∂ζ

∂φ

∣∣∣∣
z

+ w
∂ζ

∂z
= 0. (7.109)

The vertical pressure gradient occurs in the three momentum equations, therefore we differ-
entiate by time to obtain

∂ζ̇

∂t
= 1
r cosφ

∂ζ

∂λ

∣∣∣∣
z

∂u

∂t
+ 1
r

∂ζ

∂φ

∣∣∣∣
z

∂v

∂t
+ ∂ζ

∂z

∂w

∂t
= 0. (7.110)

Here we insert the momentum equations (7.1)-(7.3) in the form

∂u

∂t
= Fu −

1
ρ

1
r cosφ

∂z

∂λ

(
−∂ζ
∂z

∂p̃

∂ζ

)
,

∂v

∂t
= Fv −

1
ρ

1
r

∂z

∂φ

(
−∂ζ
∂z

∂p̃

∂ζ

)
,

∂w

∂t
= Fw −

1
ρ

∂ζ

∂z

∂p̃

∂ζ
,

with p̃ = p′ − αhdivρD and

Fu := −1
ρ

1
r cosφ

∂p̃

∂λ
+ ∂u

∂t

∣∣∣∣
slow

(7.111)

Fv := −1
ρ

1
r

∂p̃

∂φ
+ ∂v

∂t

∣∣∣∣
slow

(7.112)

Fw := +g
(
−1 + p0

p

T

T0
(1 + qx)

)
+ 1
ρ

∂ζ

∂z

∂(αvdiv − αhdiv)ρD
∂ζ

+ ∂w

∂t

∣∣∣∣
slow

. (7.113)

In Fw the form (7.21) of the buoyancy term was used. Sorting by ∂ζ
∂z

∂p′

∂ζ finally results in

∂ζ

∂z

∂p′

∂ζ

1
ρ

[( 1
r cosφ

∂z

∂λ

)2
+
(1
r

∂z

∂φ

)2
+ 1

]
= − 1

r cosφ
∂z

∂λ
Fu −

1
r

∂z

∂φ
Fv + Fw. (7.114)
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This delivers the needed value of ∂ζ
∂z

∂p′

∂ζ at the lower boundary (for k = ke) in the u- and
v-equation. The discretization of this expression and the averaging to the u and v position
is straightforward. Nevertheless, several spatial interpolations with 4-point or even 8-point
formulas are needed.

Boundary treatment of the divergence. In the ’strong conservation form’ the hori-
zontal derivatives may be calculated in every grid point by centered differences, even at the
boundary points (see eq. (7.10)).

For the remaining vertical derivative ∂Z
∂ζ one needs Z at the boundary, i.e. at k = ke + 1/2

and k = 1/2. For this two variants are possible. First it can be calculated by extrapolation;
this is currently implemented.
Second, through the use of the exact boundary condition Z = 0. This is a theoretical advan-
tage of the ’strong conservation form’. An important requirement for this is that the implicit
weightings are chosen as

βs8 = βs4, and βs9 = βs6. (7.115)

But nevertheless, there remains the problem that Z must be subdivided into horizontal and
vertical parts, due to the vertically implicit solver. Therefore one cannot pose this exact
boundary condition for the divergence itself. This probably is the reason, why this second
boundary treatment does not work until now.

7.2.3 Stability of the divergence damping in tilted terrain

Though the divergence damping is in general necessary to stabilize the whole split-explicit
time integration scheme, it can itself become unstable. Beyond the stability limitation
αdiv∆t/∆x2 ≤ 1/2 (Baldauf (2010)), there is an additional constraint in tilted terrain (Bal-
dauf (2013)):

αhdiv ∆t
{

1
∆x2

(
2 + ∆x

∆z

∣∣∣∣∂z∂x
∣∣∣∣)2

+ 1
∆y2

(
2 + ∆y

∆z

∣∣∣∣∂z∂y
∣∣∣∣)2}

≤ 2. (7.116)

This is a quite general stability condition not only for the divergence damping but for explicit
discretizations of the diffusion equation in general. Because ∆h := ∂z

∂x ∆x is just the height
jump along a ζ-coordinate line, the expression

∆h
∆z ≡

∆x
∆z

∂z

∂x
(7.117)

describes the ratio between the height change ∆h of a coordinate plane over one grid mesh
size ∆x and the vertical thickness ∆z of the grid box.

Near the ground, where small ∆z ∼ 20 m are common, the ratio ∆h/∆z can be quite large
even for rather gentle slopes. Therefore, in steep terrain the dimensionless value xkd :=
αdiv/(c2

s∆t) must be chosen much smaller than the recommended value of 0.1 by Wicker and
Skamarock (2002) or even as the recommendation of 0.3 by Baldauf (2010). It is interesting
that ∆h/∆z often achieves higher values for coarser resolutions, where the jumps from one
grid box to another are larger than for finer resolutions. Hence, the steeper slopes occurring
in fine scale model applications are not the limiting factor in this case.
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The good news is that in practice, the limitation (7.116) must not be strictly fulfilled. One
reason is, that the forward-backward scheme of the fast waves solver rather adds the ten-
dencies of sound, buoyancy and divergence damping instead of doing an operator splitting.
Therefore, in the COSMO code a namelist variable divdamp_slope was introduced to weaken
up the condition (7.116). The true value of αhdiv is determined by

αhdiv = min
(
xkd · c2

s ∆t, divdamp_slope · αdiv,slope
)
,

where xkd is the namelist variable for divergence damping, and αdiv,slope is the value deter-
mined by (7.116). Consequently, the divergence damping coefficient never exceeds the value
given by xkd.

7.3 Tracer transport

For the advection of scalar tracer fields, i.e. all water constituents, possible aerosol particles
and gaseous substances used in the framework of COSMO-ART, and the turbulent kinetic
energy mainly two different schemes are available. One can either choose a fully 3-dimensional
semi-Lagrangian scheme or a direction splitted finite volume scheme. For the latter several
flux calculation formulations exist under which the flux calculation by Bott (1989a) is the
standard choice.

The advantage of the finite volume scheme is the inherent mass conservation (at least for
Courant numbers less than 1). The disadvantage is the direction splitting necessary to com-
bine the one-dimensional schemes, which can lead to instabilities in strongly deformational
flows. The semi-Lagrangian scheme does not suffer from those kinds of instabilities. But it
is not mass conserving, which again in strongly deformational flows can negatively affect
the quality of the simulation. Therefore currently the Bott scheme is used in most of the
COSMO applications.

7.3.1 The semi-Lagrangian scheme

The semi-Lagrangian (SL) scheme mainly bases on the work of Staniforth and Côté (1991).
An advection equation in the form

∂ql
∂t

+ ~v∇ql = Sl (7.118)

can be equivalently formulated as
dql
dt

= Sl. (7.119)

Here the lower index l denotes the kind of the tracer (e.g. water vapor l = v, cloud water
l = c, ...) and Sl denotes all source terms or possible other transport terms like diffusion
or sedimentation. Semi-Lagrangian advection splits the advection problem into two parts:
firstly the determination from which space point a particle starts, i.e. the calculation of the
backward trajectory. Secondly the determination of the tracer value in this point, usually by
interpolation.

The backward trajectory is calculated with 2nd order accuracy... Baldauf and Schulz (2004).
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The interpolation takes place in the transformed space which has a Cartesian grid structure.
To construct the tri-cubic interpolation a polynomial p(x, y, z) is searched with the property
p(i, j, k) = qi,j,k, where i, j, k = −2, −1, 0, 1, and qi,j,k is the value at the appropriate
grid point. This problem can be reduced to the estimation of polynomials Pk(x) of only one
variable x with the property

Pi(j) =
{

1 : i = j

0 : i 6= j
, i, j = −2,−1, 0, 1, (7.120)

which is fulfilled by

P−2(x) = 1
6 (x+ 1) x (x− 1), (7.121)

P−1(x) = −1
2 (x+ 2) x (x− 1), (7.122)

P0(x) = 1
2 (x+ 2) (x+ 1) (x− 1), (7.123)

P1(x) = −1
6 (x+ 2) (x+ 1) x. (7.124)

The polynomial p can then be constructed by

p(x, y, z) =
1∑

i,j,k=−2
Pi(x) Pj(y) Pk(z) qi,j,k, (7.125)

where x, y, z are the interpolation weights. The sum (7.120) runs over the neighboring 64
grid points of the backward trajectory starting point. These are much more points than are
needed to construct a polynomial of only 3. order in 3 dimensions; for this task only 20 grid
points would be necessary. But the high symmetry of equation (7.120) allows a quick way for
calculating the sum. Therefore this SL variant is quite efficient. The tri-cubic interpolation
generates quite good transport properties. Another advantage of this SL method is, that
it calculates the interpolation in three dimensions in one step, therefore no splitting error
occurs. However the lack of the conservation property can generate artefacts, if the flow
deformation is very strong.

A further disadvantage is, that the method can produce negative undershoots for a positive
definite field. A simple clipping of these negative values also can strongly violate the mass
conservation and should be avoided. But for positive definite variables, a clipping of negative
values is necessary. At least global conservation can be achieved by a simple multiplicative
filling technique Rood (1987).

7.3.2 Bott-advection and related schemes

The advection equation for a scalar (e.g. a moisture specific mass) ql

∂ql
∂t

+ ~v∇ql = Sl (7.126)

can be reformulated with the aid of the continuity equation to

∂ρl
∂t

+∇(ρl~v) = ρSl. (7.127)
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with ρl := ρql. Again the lower index l denotes the kind of the tracer (e.g. water vapor l = v,
cloud water l = c, ...) and Sl denotes all source terms or possible other transport terms like
diffusion or sedimentation.

For the occurring divergence one can use the ’strong conservation form’ (eq. (2.120))

∇(ρ~v) = 1
r2 cosφ

1
√
g

[
∂

∂λ
(r√gρu) + ∂

∂φ
(r cosφ√gρv) + ∂

∂ζ

(
r2 cosφ√gρζ̇

)]
= 1
√
g

[ 1
r cosφ

∂

∂λ
(√gρu) + 1

r cosφ
∂

∂φ
(cosφ √gρv) + ∂

∂ζ

(√
gρζ̇

)]
(7.128)

with √g = −∂z/∂ζ. Again the ’shallow atmosphere’ approximation has been used, i.e. r is
assumed constant.

If one-dimensional appropriate discretizations of the flux derivatives are available, then a
numerical integration scheme can be constructed via an operator splitting. First calculate
the densities

ρnl = ρn · qnl (7.129)
(here upper indices denote time levels). Integrate them and also the density itself (i.e. with
q0 ≡ 1) by operator splitting

ρ′l = ρnl + ∆t Âx(∆t)ρnl , (7.130)
ρ′′l = ρ′l + ∆t Ây(∆t)ρ′l, (7.131)
ρ′′′l = ρ′′l + ∆t Âz(∆t)ρ′′l , (7.132)

where the numerical operators Âx, Ây, and Âz are discretizations of the 3 terms occurring
in eq. (7.128). Afterwards calculate the specific mass

q′′′l = ρ′′′l
ρ′′′

. (7.133)

Finally the other source terms can again be taken into account by operator splitting e.g. by

qn+1
l = q′′′l + ∆t S′′′l (7.134)

(the microphysics contains also some implicit schemes, therefore this is only an example).

In the standard ’Bott2’ scheme (and the related ’Bott4’, ’PPM’ and ’vanLeer’) this sequence
Âx - Ây - Âz is used in every odd time step, whereas in every even time step the reverse
sequence Âz - Ây - Âx is used. This is a sort of a simplified Strang-splitting. Sometimes this
can lead to 2∆t oscillations.

The drawback of this direction splitting is that it can lead to instabilities by a complete
emptying of a grid box in one direction step, which cannot cured again by the following
steps. This problem can be reduced to a certain degree if one uses the true Strang-splitting
version Âz(∆t/2) - Ây(∆t/2) - Âx(∆t) - Ây(∆t/2) - Âz(∆t/2). (denoted as ’Bott2_Strang’
(and appropriately ’Bott4_Strang’, ... for the other schemes) This form is about 60% more
time consuming than ’Bott2’. However it can increase the order of the time integration up to
two, and, perhaps more important, it halves the time step for the z and y direction, which
helps to reduce instabilities due to the direction splitting.

The use of the above flux form guarantees mass conservation of the appropriate tracer vari-
able (at least for Courant numbers less than 1). The additional transport of the density itself
delivers ’mass-consistency’ in the sense that a constant field ql = const. remains constant if
the wind divergence vanishes (however, this slightly perturbs the exact mass-conservation).
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The Bott flux-derivative calculation

To discretize a one-dimensional advection equation in flux form

∂ρl
∂t

+ ∂cρl
∂x

= 0 (7.135)

Bott (1989a) used an idea going back to Tremback et al. (1987). In a finite volume dis-
cretization fluxes Fnj+1/2 and Fnj−1/2 occur at the boundaries of the grid box j. They can be
assumed as averages over a time interval ∆t

F
n
j+1/2 = 1

∆t

∫ tn+∆t

tn
Fj+1/2 dt. (7.136)

For a purely advective flux F = cρl (where c = √gu in the zonal direction, c = cosφ √gv
in the meridional direction, and c = √gζ̇ in the vertical direction) and if one assumes for
the moment that c would be constant, one can transform this time integral with the aid of
x′ = x− ct in a space integral. Due to ρl(x, t) = ρl(x− ct) it follows:

∫ tn+∆t

tn
cρl(x, t′)dt′ = −

∫ xj+1/2−c∆t

xj+1/2

ρl(x′, t)dx′ = −
∫ xj+1/2

xj+1/2−c∆t
ρl(x′, t)dx′. (7.137)

This spatial integral can be computed by approximating the integrand by an interpolation
polynomial through the neighboring grid points.

Additionally the discretization has to be positive definite. This can be achieved if the fluxes
are limited in a manner that

∆t
∆x(Fnj+1/2 − F

n
j−1/2) ≤ φnj (7.138)

is fulfilled. This guarantees φn+1
j ≥ 0, i.e. a grid box mostly must be emptied.

Details of the interpolation formulas and the flux limitations are given in Bott (1989a) and
Bott (1989b).

This scheme is only stable for Courant numbers less than 1. Skamarock (2006) proposed a
general methodology to extend the stability range of one-dimensional finite volume schemes
to arbitrary Courant numbers by shifting the contributions of whole grid cells (the ’integer’
fluxes) between the starting point and the target grid cell. The remaining ’fractional’ flux
then is treated by the Bott scheme. However, this method destroys the conservation of the
multi-dimensional advection scheme if one of the Courant numbers is greater than one.

The most recommended version of this whole scheme may be called by
y_scalar_advect=’BOTT2_Strang’.

The deformation correction extension

One disadvantage of the original Bott (1989a) scheme (and of many other finite-volume for-
mulations) is the fact that a constant density field does not remain constant in divergence-free
but deformational flow fields, if the ’mass-consistency’-fixer described above is not applied.
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To circumvent this problem Bott (2010) proposes to add a ’deformational correction’ term
in every direction step in equations (7.130)-(7.132) leading to

ρ′l = ρnl −∆t f
+
x (ρnl )− f−x (ρnl )

∆x + ∆t ρnl
∂u

∂x
, (7.139)

ρ′′l = ρ′l −∆t
f+
y (ρ′l )− f−y (ρ′l )

∆y + ∆t ρnl
∂v

∂y
, (7.140)

ρn+1
l = ρ′′l −∆t f

+
z (ρ′′l )− f−z (ρ′′l )

∆z + ∆t ρnl
∂w

∂z
−∆t ρnl ∇ · v. (7.141)

fx, fy, and fz are the numerical fluxes given by Bott (1989a) on the ’left (’-’) and ’right’
(’+’) side of every 1D grid cell. The resulting scheme is still mass-conserving and Bott (2010)
describes a procedure to keep not only the fluxes but also the additional deformational
correction terms positive definite. Beyond this, one can easily show that an initial constant
density field remains constant, if the added and subtracted divergence terms are compatible
with the flux formulation.

To keep this scheme efficient also for Courant numbers larger than one, a local time-stepping
scheme has been developed Baldauf (2019). Here, in every grid cell, for which the 1D Courant-
number in direction j lies in the range 1 < Cj < 2 (larger Cj ≥ 2 are not allowed in the
Runge-Kutta dynamical core), two time steps with the half ∆t are performed. By a proper
bookkeeping of the in- and outgoing fluxes and of the deformational correction terms, this
local time-stepping is designed in a way that all the properties of the Bott (2010) scheme
are maintained: it is still mass conserving, constant tracer density remains constant and it
is positive definite.

Despite the ’keep the constant density’ property of this scheme, the Bott (2010) proposal is
not entirely mass-consistent in the stronger sense, i.e. that the scheme is consistent with the
continuity equation (for total mass). Experience shows, that this stronger form of mass-
consistency is necessary near the bottom boundary to produce realistic moisture fields.
Therefore, a certain form of mass-consistency is achieved by again a parallel solution of the
continuity equation with the same advection scheme. At the end of the advection process,
the specific mass ql is calculated with this artificially transported total mass density. As in
the scheme ’BOTT2_Strang’ described above, this slightly violates exact mass-conservation.

This scheme may be called by y_scalar_advect=’BOTTDC2’.

7.4 Damping mechanisms

7.4.1 Relaxation at the lateral boundaries

A general relaxation scheme for a field φ(r, t) in the vicinity of a boundary sounds

∂φ

∂t
= −µb(r) · (φ− φext(r, t)), (7.142)

where the (space dependent) relaxation coefficient is expressed by a relaxation time τ and a
spatial attenuation function fr:

µb(r) = 1
τ
· fr(

d

L
). (7.143)
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d is the distance from the boundary, L normalizes this distance.

It is convenient that the function fr should have the properties fr(0) = 1 and a monotonically
decrease for increasing d. Ideally it falls to 0 in d = L: fr(1) = 0; examples are

fr(x) = |1− x|α, α > 1, x ≤ 1 (7.144)
fr(x) = cos2 π

2x, x ≤ 1 (7.145)

whereas it is set fr(x) = 0 for x > 1. These functions also have the property dfr/dx = 0 at
x = 1.
Other choices are

fr(x) = e−αx, α > 0, x ≤ 1, (7.146)
fr(x) = 1− tanh(αx), α > 0, x ≤ 1. (7.147)

(Remark: these functions do not fulfill the property fr(1) = 0).

Different time discretisations are possible:

• in an explicit manner for a 2-timelevel scheme

φn+1 = φn −∆t µb(φn − φnext) (7.148)

• or in an implicit manner for a 2-timelevel scheme

φn+1 = φn −∆t µb(φn+1 − φnext) (7.149)

but which can be solved explicitly using

φn+1 = φn − αb(φn − φnext) (7.150)

with
αb = ∆t µb

1 + ∆t µb
(7.151)

• in an implicit manner for a 3-timelevel scheme

φn+1 = φn−1 − 2∆t µb(φn+1 − φnext) (7.152)

again this can be solved explicitly using

φn+1 = φn − αb(φn − φnext) (7.153)

with
αb = 2∆t µb

1 + 2∆t µb
(7.154)

According to Kallberg (1977), eq. (7.147) is used directly for αb.

The explicit scheme (for 2 timelevels) is stable for 0 ≤ ∆t µb ≤ 2. Additionally, if one wants
to avoid oscillating behaviour, one has to sharpen this to 0 ≤ ∆t µb ≤ 1, or alternatively
τ ≥ ∆t.
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In contrast to this the implicit variants are unconditionally stable. However, this is only
achieved by a simple reduction of the dimensionless relaxation coefficient to values less than
1. Therefore, in the future only the explicit variant is used.

In the explicit case the function (7.146) has shown to give the best results (rather comparable
to (7.144) or (7.147), whereas (7.145) seems to be a bad choice for lateral relaxation). α = 6
gives a satisfying attenuation towards inside of the domain. The relaxation time τ can be
prescribed as a multiple of the time step crltau * dt. Currently crltau = 1 is chosen; we
remark that in this case φn+1 = φnext holds at the boundary.

The external field φext(r, t), towards which the relaxation takes place, is given as the spatial
interpolation of the appropriate field in the driving model. Additionally it is the temporal
mean of the fields at time levels n and n+ 1.

7.4.2 Horizontal Smagorinsky Diffusion

In very rare events the artificial 4th order hyperdiffusion is not strong enough to prevent the
model from a crash by horizontal shear instabilities. This shows that an additional, more
physically based diffusion mechanism in the horizontal is needed. The nonlinear diffusion pro-
posed by Smagorinsky (1963) is formally a purely horizontally acting (’harmonic’) diffusion.
In cartesian coordinates it reads

∂u

∂t
+ ~v · ∇u = . . .+Ksmag∆u, (7.155)

∂v

∂t
+ ~v · ∇v = . . .+Ksmag∆v, (7.156)

∂w

∂t
+ ~v · ∇w = . . .+ 0, (7.157)

with the diffusion coefficient:

Ksmag = l2s ·
√
T 2 + S2, (7.158)

T = ∂u

∂x
− ∂v

∂y
, (7.159)

S = ∂u

∂y
+ ∂v

∂x
. (7.160)

This means, that it contains both parts of the horizontal tension strain T and of the horizon-
tal shearing strain S (on the sphere additional metric correction terms must be considered
in T and S Smagorinsky (1993). However, those can be neglected for smaller scale model ap-
plications and with the main intention to prevent from model crashes by shear instabilities).

The length scale ls (a sort of a mixing length) can be determined by the following argument:
in any case a stability criterion

Ksmag ·∆t
( 1

∆x2 + 1
∆y2

)
≤ 1

2 (7.161)

must be fulfilled. One can simply set (motivated by ’numerical efficiency’)

l2s = c
1

∆x2 + 1
∆y2

(7.162)
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with a yet arbitrary ’Smagorinsky-constant’ c. Then from stability constraint it follows, that
the dimensionless diffusion coefficient

ksmag := c ·∆t ·
√
T 2 + S2 (7.163)

must fulfill
ksmag ≤

1
2 . (7.164)

For example for COSMO-DE with ∆x ≈ ∆y ≈ 2800 m and ∆t ≈ 25 s and for a shear of
∆u = 28 m/s per grid box this results in ksmag ≈ c ·∆t ·∆u/∆y ≈ c · 0.25.
To get the dimensional value Ksmag one has to multiply by 1

∆t ·
1

1
∆x2 + 1

∆y2
≈ 1.6 · 105 m2/s.

Smagorinsky (1963) proposes a value of about c ≈ 0.1. If one uses this diffusion only as
a mechanism to reduce shear instabilities without influencing to much the overall model
behaviour, a value of c ≈ 0.03 was found as appropriate for COSMO-DE simulations.

To discretize S and T by centered differences in a symmetric way, T is discretized to the
scalar position (i, j) whereas S is discretized to the position (i+1/2, j+1/2) (’uv’-position).
Afterwards they are firstly squared (to prevent from annihilation by negative values) and
secondly they are averaged to the u- and v-positions.

To avoid a ’double counting’, i.e. that small wavelengths are diffused too strong by both
Smagorinsky- and the 4th order (hyper)-diffusion, the hyperdiffusion coefficient is substracted
with a weight of 0.5.

There is only one namelist switch (l_diff_Smag) to enable or disable this horizontal Smagorin-
sky diffusion. The two above mentioned parameters are only internal parameters (with the
intention that only experienced users should modify them): the Smagorinsky constant c_smag
= 0.03 and the weighting to avoid double counting weight_K_4th = 0.5.

7.4.3 Targeted diffusion to avoid cold pools in narrow valleys

In rare cases, cold pools can develop in very narrow, steep valleys. One possible reason for
that is the 5th order advection operator, which has the tendency to overshoot peaks in the
field of a transported quantity. While this overshooting is often welcome and leads to an
overall accurate scheme, it can be dramatically amplified in the temperature field, when a
ramp like structure is recreated by steep orography.

To avoid such artificial cold pools (which can easily achieve negative temperatures of about
-100circC) a targeted diffusion is applied. A criterion of the form

T ′ijk < T ′ijk − 10K (7.165)

where T ′ijk := 1
4(T ′i+1,j,k + T ′i−1,j,k + T ′i,j+1,k + T ′i,j−1,k) is the average of the 4 neighbouring

grid points, is tested in the lowest 5 k-levels. If it is fulfilled, then a simple second order
diffusion is applied in just this grid point. The diffusion coefficient is 1/4 of the maximum
possible value (i.e. determined by stability).

By experience, the criterion is only seldomly fulfilled and only in very few grid points.
Therefore, the only computational effort is the test of the above criterion (this fills a list of
points, consequently the diffusion operation is applied only in these few points, too, and not
on whole fields). The computational amount is only about 0.05% of the whole model run.
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