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Section 1

Overview on the Model System

1.1 General Remarks

The COSMO-Model is a nonhydrostatic limited-area atmospheric prediction model. It has
been designed for both operational numerical weather prediction (NWP) and various scien-
tific applications on the meso-β and meso-γ scale. The COSMO-Model is based on the prim-
itive thermo-hydrodynamical equations describing compressible flow in a moist atmosphere.
The model equations are formulated in rotated geographical coordinates and a generalized
terrain following height coordinate. A variety of physical processes are taken into account by
parameterization schemes.

Besides the forecast model itself, a number of additional components such as data assimi-
lation, interpolation of boundary conditions from a driving host model, and postprocessing
utilities are required to run the model in NWP-mode, climate mode or for case studies. The
purpose of the Description of the Nonhydrostatic Regional COSMO-Model is to provide a
comprehensive documentation of all components of the system and to inform the user about
code access and how to install, compile, configure and run the model.

The basic version of the COSMO-Model (formerly known as Lokal Modell (LM)) has been
developed at the Deutscher Wetterdienst (DWD). The COSMO-Model and the triangular
mesh global gridpoint model ICON form – together with the corresponding data assimi-
lation schemes – the NWP-system at DWD. The subsequent developments related to the
COSMO-Model have been organized within COSMO, the Consortium for Small-Scale Mod-
eling. COSMO aims at the improvement, maintenance and operational application of a non-
hydrostatic limited-area modeling system, which is now consequently called the COSMO-
Model. The meteorological services participating to COSMO at present are listed in Table
1.1.

For more information about COSMO, we refer to the web-site at www.cosmo-model.org .

The COSMO-Model is available free of charge for scientific and educational purposes, es-
pecially for cooperational projects with COSMO members. However, all users are required
to sign an agreement with a COSMO national meteorological service and to respect cer-
tain conditions and restrictions on code usage. For questions concerning the request and the
agreement, please contact the chairman of the COSMO Steering Committee. In the case of
a planned operational or commercial use of the COSMO-Model package, special regulations
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2 1.1 General Remarks

Table 1.1: COSMO: Participating Meteorological Services

DWD Deutscher Wetterdienst,
Offenbach, Germany

MeteoSwiss Meteo-Schweiz,
Zürich, Switzerland

ITAF-ReMet Ufficio Generale Spazio Aero e Meteorologia,
Roma, Italy

HNMS Hellenic National Meteorological Service,
Athens, Greece

IMGW Institute of Meteorology and Water Management,
Warsaw, Poland

ARPA-SIMC Agenzia Regionale per la Protezione Ambientale del-
lÂť Emilia-Romagna Servizio Idro Meteo Clima
Bologna, Italy

ARPA-Piemonte Agenzia Regionale per la Protezione Ambientale,
Piemonte, Italy

CIRA Centro Italiano Ricerche Aerospaziali,
Italy

ZGeoBW Zentrum für Geoinformationswesen der Bundeswehr,
Euskirchen, Germany

NMA National Meteorological Administration,
Bukarest, Romania

RosHydroMet Hydrometeorological Centre of Russia,
Moscow, Russia

IMS Israel Meteorological Service,
Bet-Dagan, Israel

will apply.

The further development of the modeling system within COSMO is organized in Working
Groups which cover the main research and development activities: data assimilation, nu-
merical aspects, upper air physical aspects, soil and surface physics aspects, interpretation
and applications, verification and case studies, reference version and implementation and
predictability and ensemble methods. In 2005, the COSMO Steering Committee decided to
define Priority Projects with the goal to focus the scientific activities of the COSMO com-
munity on some few key issues and support the permanent improvement of the model. For
contacting the Working Group Coordinators or members of the Working Groups or Priority
Projects, please refer to the COSMO web-site.

The COSMO meteorological services are not equipped to provide extensive support to ex-
ternal users of the model. If technical problems occur with the installation of the model
system or with basic questions how to run the model, questions could be directed via email
to cosmo-support@cosmo-model.org. If further problems occur, please contact the members
of an appropriate Working Group. We try to assist you as well as possible.

The authors of this document recognize that typographical and other errors as well as dis-
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1.2 Basic Model Design and Features 3

crepancies in the code and deficiencies regarding the completeness may be present, and your
assistance in correcting them is appreciated. All comments and suggestions for improvement
or corrections of the documentation and the model code are welcome and may be directed
to the authors.

1.2 Basic Model Design and Features

The nonhydrostatic fully compressible COSMO-Model has been developed to meet high-
resolution regional forecast requirements of weather services and to provide a flexible tool
for various scientific applications on a broad range of spatial scales. When starting with
the development of the COSMO-Model, many NWP-models operated on hydrostatic scales
of motion with grid spacings down to about 10 km and thus lacked the spatial resolution
required to explicitly capture small-scale severe weather events. The COSMO-Model has
been designed for meso-β and meso-γ scales where nonhydrostatic effects begin to play an
essential role in the evolution of atmospheric flows.

By employing 1 to 3 km grid spacing for operational forecasts over a large domain, it is
expected that deep moist convection and the associated feedback mechanisms to the larger
scales of motion can be explicitly resolved. Meso-γ scale NWP-models thus have the princi-
ple potential to overcome the shortcomings resulting from the application of parameterized
convection in current coarse-grid hydrostatic models. In addition, the impact of topography
on the organization of penetrative convection by, e.g. channeling effects, is represented much
more realistically in high resolution nonhydrostatic forecast models.

In the beginning, the operational application of the model within COSMO were mainly on
the meso-β scale using a grid spacing of 7 km. The key issue was an accurate numerical
prediction of near-surface weather conditions, focusing on clouds, fog, frontal precipitation,
and orographically and thermally forced local wind systems. Since April 2007, a meso-γ scale
version is running operationally at DWD by employing a grid spacing of 2.8 km. Applications
with similar resolutions are now run by most COSMO partners. We expect that this will
allow for a direct simulation of severe weather events triggered by deep moist convection,
such as supercell thunderstorms, intense mesoscale convective complexes, prefrontal squall-
line storms and heavy snowfall from wintertime mesocyclones.

The requirements for the data assimilation system for the operational COSMO-Model are
mainly determined by the very high resolution of the model and by the task to employ it
also for nowcasting purposes in the future. Hence, detailed high-resolution analyses have to
be able to be produced frequently and quickly, and this requires a thorough use of asynoptic
and high-frequency observations such as aircraft data and remote sensing data. Since both
3-dimensional and 4-dimensional variational methods tend to be less appropriate for this
purpose, a scheme based on the observation nudging technique has been chosen for data
assimilation from the beginning of the development. But in March 2017 the nudging scheme
has been replaced by a new, more modern, ensemble-based method, called KENDA: Km-
scale ENsemble Data Assimilation. Note, that KENDA, unlike the nudging scheme, is not
available within the source code of the COSMO-Model.

Besides the operational application, the COSMO-Model provides a nonhydrostatic model-
ing framework for various scientific and technical purposes. Examples are applications of
the model to large-eddy simulations, cloud resolving simulations, studies on orographic flow
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4 1.2 Basic Model Design and Features

systems and storm dynamics, development and validation of large-scale parameterization
schemes by fine-scale modeling, and tests of computational strategies and numerical tech-
niques. For these types of studies, the model should be applicable to both real data cases
and artificial cases using idealized test data. Moreover, the model has been adapted by other
communities for applications in climate mode (CCLM) and / or running an online coupled
module for aerosols and reactive trace gases (ART).

Such a wide range of applications imposes a number of requirements for the physical, nu-
merical and technical design of the model. The main design requirements are:

(i) use of nonhydrostatic, compressible dynamical equations to avoid restrictions on the
spatial scales and the domain size, and application of an efficient numerical method of
solution;

(ii) provision of a comprehensive physics package to cover adequately the spatial scales
of application, and provision of high-resolution data sets for all external parameters
required by the parameterization schemes;

(iii) flexible choice of initial and boundary conditions to accommodate both real data cases
and idealized initial states, and use of a mesh-refinement technique to focus on regions
of interest and to handle multi-scale phenomena;

(iv) use of a high-resolution analysis method capable of assimilating high-frequency asyn-
optic data and remote sensing data;

(v) use of pure Fortran constructs to render the code portable among a variety of com-
puter systems, and application of the standard MPI-software for message passing on
distributed memory machines to accommodate broad classes of parallel computers.

The development of the COSMO-Model was organized along these basic guidelines. How-
ever, not all of the requirements are fully implemented, and development work and further
improvement is an ongoing task. The main features and characteristics of the present release
are summarized below.

COSMO-ICON Physics

In the last months, several physical packages have been unified with their counterpart in
ICON, to reduce the maintenance work for having two different versions of one parameteri-
zation. We refer to this developments as the COSMO-ICON Physics.

A major technical change to implement this unification was, to use the ICON data structure
for the variables in the physics. This structure does not reflect a horizontal field with two
dimensions, but collects the grid points in a vector (or a block). This is in contrast to the
COSMO-Model, which uses the (i,j)-structure for horizontal fields.

This blocked data structure is explained in more detail in Appendix A of Part II, the Physical
Parameterizations.

Not all options for the parameterizations have been ported to the blocked data structure.
More details are given below in the Physical Parameterizations.
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1.2 Basic Model Design and Features 5

Dynamics
- Model Equations – Nonhydrostatic, full compressible hydro-thermodynamical equations in
advection form. Subtraction of a hydrostatic base state at rest.

- Prognostic Variables – Horizontal and vertical Cartesian wind components, pressure per-
turbation, temperature, specific humidity, cloud water content. Optionally: cloud ice content,
turbulent kinetic energy, specific water content of rain, snow and graupel.

- Diagnostic Variables – Total air density, precipitation fluxes of rain and snow.

- Coordinate System – Generalized terrain-following height coordinate with rotated geograph-
ical coordinates and user defined grid stretching in the vertical. Options for (i) base-state
pressure based height coordinate, (ii) Gal-Chen height coordinate and (iii) exponential height
coordinate (SLEVE) according to Schär et al. (2002).

Numerics
- Grid Structure – Arakawa C-grid, Lorenz vertical grid staggering.

- Spatial Discretization – Second-order finite differences. For the two time-level scheme also
1st and 3rd to 6th order horizontal advection (default: 5th order). Option for explicit higher
order vertical advection.

- Time Integration – Two time-level 2nd and 3rd order Runge-Kutta split-explicit scheme after
Wicker and Skamarock (2002) and a TVD-variant (Total Variation Diminishing) of a 3rd order
Runge-Kutta split-explicit scheme. Option for a second-order leapfrog HE-VI (horizontally
explicit, vertically implicit) time-split integration scheme, including extensions proposed by
Skamarock and Klemp (1992). Option for a three time-level 3-d semi-implicit scheme (Thomas
et al. (2000)) based on the leapfrog scheme.

- Numerical Smoothing – 4th-order linear horizontal diffusion with option for a monotonic ver-
sion including an orographic limiter. Rayleigh damping in upper layers. 2-d divergence damping
and off-centering in the vertical in split time steps.

Initial and Boundary Conditions
- Initial Conditions – Interpolated initial data from various coarse-grid driving models (ICON
(and former GME), ECMWF, COSMO-Model) or from the continuous data assimilation stream
(see below). Option for user-specified idealized initial fields.

- Lateral Boundary Conditions – 1-way nesting by Davies-type lateral boundary formula-
tion. Data from several coarse-grid models can be processed (ICON (and former GME), IFS,
COSMO-Model). Option for periodic boundary conditions.

- Top Boundary Conditions – Options for rigid lid condition and Rayleigh damping layer.

- Initialization – Digital-filter initialization of unbalanced initial states (Lynch et al. (1997))
with options for adiabatic and diabatic initialization.

Physical Parameterizations
- Subgrid-Scale Turbulence – Prognostic turbulent kinetic energy closure at level 2.5 in-
cluding effects from subgrid-scale condensation and from thermal circulations. Option for a
diagnostic second order K-closure of hierarchy level 2 for vertical turbulent fluxes (not ported
to the blocked data structure). Option for calculation of horizontal turbulent diffusion in terrain
following coordinates (3D Turbulence; tested in artificial setups).

- Surface Layer Parameterization – A Surface layer scheme (based on turbulent kinetic
energy) including a laminar-turbulent roughness layer. Option for a stability-dependent drag-
law formulation of momentum, heat and moisture fluxes according to similarity theory This
option has not been ported to the blocked data structure. (Louis (1979)).
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6 1.2 Basic Model Design and Features

- Grid-Scale Clouds and Precipitation – Cloud water condensation and evaporation by sat-
uration adjustment. Precipitation formation by a bulk microphysics parameterization including
water vapour, cloud water, cloud ice, rain and snow with 3D transport for the precipitating
phases. Option for a new bulk scheme including graupel. Option for a simpler column equilib-
rium scheme.

- Subgrid-Scale Clouds – Subgrid-scale cloudiness is interpreted by an empirical function
depending on relative humidity and height. A corresponding cloud water content is also inter-
preted. Option for a statistical subgrid-scale cloud diagnostic for turbulence. This option has
not been ported to the blocked data structure.

- Moist Convection – Tiedtke (1989) mass-flux convection scheme with equilibrium closure
based on moisture convergence. Option for the current IFS Tiedtke-Bechtold convection scheme.

- Shallow Convection – Reduced Tiedtke scheme for shallow convection only.

- Radiation – δ two-stream radiation scheme after Ritter and Geleyn (1992) short and longwave
fluxes (employing eight spectral intervals); full cloud-radiation feedback.

- Soil Model – Multi-layer version of the former two-layer soil model after Jacobsen and Heise
(1982) based on the direct numerical solution of the heat conduction equation. Snow and
interception storage are included.

- Fresh-Water Lake Parameterization – Two-layer bulk model after Mironov (2008) to pre-
dict the vertical temperature structure and mixing conditions in fresh-water lakes of various
depths.

- Sea-Ice Scheme – Parameterization of thermodynamic processes (without rheology) after
Mironov and Ritter (2004). The scheme basically computes the energy balance at the iceâĂŹs
surface, using one layer of sea ice.

- Terrain and Surface Data – All external parameters of the model are available at various
resolutions for a pre-defined region covering Europe. For other regions or grid-spacings, the
external parameter file can be generated by a preprocessor program using high-resolution global
data sets.

Data Assimilation
- Former Method – Continuous four-dimensional data assimilation based on observation nudg-
ing (Schraff (1996), Schraff (1997)), with lateral spreading of upper-air observation increments
along horizontal surfaces. Explicit balancing by a hydrostatic temperature correction for sur-
face pressure updates, a geostrophic wind correction, and a hydrostatic upper-air pressure
correction.

- Actual Method – Ensemble data assimilation based on the LETKF (Local Ensemble Trans-
form Kalman Filter) (Schraff et al. (2016))

- Assimilated Atmospheric Observations – Radiosonde (wind, temperature, humidity), air-
craft (wind, temperature), wind profiler (wind), and surface-level data (SYNOP, SHIP, BUOY:
pressure, wind, humidity). Optionally RASS (temperature), radar VAD wind, and ground-based
GPS (integrated water vapour) data. Surface-level temperature is used for the soil moisture
analysis only.

- Radar derived rain rates – Assimilation of near surface rain rates based on latent heat
nudging (Stephan et al. (2008)). It locally adjusts the three-dimensional thermodynamical field
of the model in such a way that the modelled precipitation rates should resemble the observed
ones.

- Surface and Soil Fields – Additional two-dimensional intermittent analysis:
- Soil Moisture Analysis – Daily adjustment of soil moisture by a variational method
(Hess (2001)) in order to improve 2-m temperature forecasts; use of a Kalman-Filter-like
background weighting.
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1.3 Single Precision Version 7

- Sea Surface Temperature Analysis – Daily Cressman-type correction, and blending
with global analysis. Use of external sea ice cover analysis.

- Snow Depth Analysis – 6-hourly analysis by weighted averaging of snow depth obser-
vations, and use of snowfall data and predicted snow depth.

Code and Parallelization
- Code Structure – Modular code structure using standard Fortran constructs.

- Parallelization – The parallelization is done by horizontal domain decomposition using a
soft-coded gridline halo (2 lines for Leapfrog, 3 for the Runge-Kutta scheme). The Message
Passing Interface software (MPI) is used for message passing on distributed memory machines.

- Compilation of the Code – For all programs a Makefile is provided for the compilation which
is invoked by the Unix make command. Two files are belonging to the Makefile: ObjFiles is a
list of files that have to be compiled and ObjDependencies contains all file dependencies. In
addition it reads the file Fopts, which has to be adapted by the user to specify the compiler,
compiler options and necessary libraries to link.

- Portability – The model can be easily ported to various platforms; current applications are on
conventional scalar machines (UNIX workstations, LINUX and Windows-NT PCs), on vector
computers (NEC SX series) and MPP machines (CRAY, IBM, SGI and others).

- Model Geometry – 3-d, 2-d and 1-d model configurations. Metrical terms can be adjusted
to represent tangential Cartesian geometry with constant or zero Coriolis parameter.

1.3 Single Precision Version

From the beginning of the development, the COSMO-Model had been designed to be able
to run in both precisions: single and double precision. Therefore, the real variables are
all defined using a KIND-parameter, named wp (means: working precision) in the mod-
ule kind_parameters.f90 (earlier, this KIND-parameter was named ireals). Other KIND-
parameters are sp (for single precision) and dp (for double precision). Before compiling the
model, the user has to decide whether wp will be set to sp or to dp. This can be done with
the compiler pragma -DSINGLEPRECISION. If this pragma is set, single precision will be used,
otherwise double precision.

But in the first years of the COSMO-Model, only the double precision version was developed
and tested, nobody ever used or tried a single precision run.

But single precision programs run faster on computers, because of less memory traffic, there-
fore MeteoSwiss tested to run the COSMO-Model also in single precision. Which did not
work in the first instance. Some effort had to be put in adapting the model to work for single
precision.

The main changes are:

• Epsilons, which are used in comparisons or to make divisions safe, are adapted to
work in both precisions. Variables repsilon and rprecision have been introduced in
module data_constants.f90.

• New variables imp_single and imp_double are added to specify an appropriate MPI
data type.
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8 1.4 Organization of the Documentation

• To avoid automatic conversions by the compiler, all (!) real constants (as 2.0, 0.5,
etc.) are now written with the kind parameter as suffix: 2.0_wp, 0.5_wp, etc.). Further
developments should follow this rule!

• The pragma SINGLEPRECISION is now used to choose single precision for the COSMO-
Model during compilation. If it is not set, double precision is used.

It turned out, that the radiation cannot be run in single precision (at least the routines
coe_th, inv_th, coe_so, inv_so). Therefore it was decided to run the subroutine fesft
and all routines called below in double precision. The necessary variables are defined with
the KIND-parameter dp.

1.4 Organization of the Documentation

For the documentation of the model we follow closely the European Standards for Writing and
Documenting Exchangeable Fortran 90-Code. These standards provide a framework for the
use of Fortran-90 in European meteorological organizations and weather services and thereby
facilitate the exchange of code between these centres. According to these standards, the
model documentation is split into two categories: external documentation (outside the code)
and internal documentation (inside the code). The model provides extensive documentation
within the codes of the subroutines. This is in form of procedure headers, section comments
and other comments. The external documentation is split into seven parts, which are listed
in Table 1.2.

Table 1.2: COSMO Documentation: A Description of the Nonhydrostatic Regional COSMO-
Model

Part I: Dynamics and Numerics
Part II: Physical Parameterization
Part III: Data Assimilation
Part IV: Special Components and Implementation Details
Part V: Preprocessing: Initial and Boundary Data for the

COSMO-Model
Part VI: Model Output and Data Formats for I/O
Part VII: User’s Guide

Parts I - III form the scientific documentation, which provides information about the theo-
retical and numerical formulation of the model, the parameterization of physical processes
and the four-dimensional data assimilation. The scientific documentation is independent of
(i.e. does not refer to) the code itself. Part IV will describe the particular implementation
of the methods and algorithms as presented in Parts I - III, including information on the
basic code design and on the strategy for parallelization using the MPI library for message
passing on distributed memory machines (not available yet). The generation of initial and
boundary conditions from coarse grid driving models is described in Part V. This part is a
description of the interpolation procedures and algorithms used (not yet complete) as well
as a User’s Guide for the interpolation program INT2LM. In Part VI we give a description
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1.4 Organization of the Documentation 9

of the data formats, which can be used in the COSMO-Model, and describe the output
from the model and from data assimilation. Finally, the User’s Guide of the COSMO-Model
provides information on code access and how to install, compile, configure and run the
model. The User’s Guide contains also a detailed description of various control parameters
in the model input file (in NAMELIST format) which allow for a flexible model set-up for
various applications. All parts of the documentation are available at the COSMO web-site
(http://www.cosmo-model.org/content/model/documentation/core/default.htm).
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Section 2

Introduction
to the Data Assimilation
for the COSMO-Model

In the context of numerical weather prediction, the requirements for any data assimilation
system are closely related to the purpose and main characteristics of the model for which
that system is to provide the initial conditions. As for the operational configurations of the
COSMO-Model (which is also denoted briefly just as "COSMO"), the model is characterized
by its very high resolution on a limited domain, and its main purpose is to deliver accurate
short-range and even more time-critical very short-range forecasts.

Hence, detailed high-resolution analyses have to be able to be produced frequently and
efficiently. This requires a thorough use of asynoptic and high-frequency observations such
as aircraft data and remote sensing data. Note that the synoptic scales are largely determined
by the lateral boundary conditions provided by the steering model, and the main task of the
assimilation scheme is to analyze the meso-scales.

By design, 3-dimensional analysis methods such as optimum interpolation (OI) or 3-dimen-
sional variational analysis (3DVAR) tend to be less appropriate for this purpose. They do
not allow to account for the exact observation time of asynoptic data, and they make it
necessary to neglect most of the high-frequent data unless the analysis scheme is applied
very frequently. This, however, would increase the computational costs and could result
in problems at asynoptic analysis times when the data density may become very low and
inhomogeneous. Moreover, the geostrophic approximation, usually a key ingredient of such
schemes as used e.g. for the global model GME of DWD, is of limited validity in the meso
scale. Therefore, 4-dimensional methods offer potential advantages since they include the
model dynamics in the assimilation process directly. As variational methods allow to compare
observations with the model state in observation space, they appear, in principle, best suited
for the use of many types of remote sensing data, at least as long as these data are not
directly linked to physical bifurcation processes such as convection. Yet, the 4-dimensional
variational (4DVAR) method has been too expensive in the past for operational application
of COSMO considering the small amount of time available to produce the analyses and
forecasts.

a) Observation Nudging

Section 2: Introduction to the Data Assimilation for the COSMO-Model Part III – Data Assimilation 6.00



11

Therefore, a scheme based on the observation nudging technique has been developed
to define the atmospheric fields. It is based on an experimental nudging assimilation
scheme which had been developed for the former hydrostatic model DM and its Swiss
version SM (Schraff (1996); Schraff (1997)) and which compared favorably with the
at that time operational Optimum Interpolation analysis of DM in a number of test
cases. The scheme for COSMO has then been adapted to the nonhydrostatic modelling
framework, refined and extended in various aspects, and runs on distributed memory
machines using domain decomposition. It is presented in Section 3.

b) Latent Heat Nudging
Radar-derived precipitation rates can be assimilated by an extra Latent Heat Nudg-
ing scheme. It computes additional temperature and humidity increments at each
model column independently from each other. It is tuned and should be used only for
convection-permitting model configurations (with horizontal mesh widths of ≤ 3 km).
The observation input is gridded precipitation rates read in the form of extra Grib
files. Further Grib files can be read optionally, containing a blacklist, and radar beam
height maps utilised for bright band detection.
A comprehensive and detailed scientific description as part of this documentation is
still lacking. However, the main aspects of the scheme are described in Stephan et al.
(2008).

c) Analysis of surface and soil fields
Since the data assimilation by nudging-types schemes takes place during the forward
integration of the model, also the unobserved variables including those at the surface
and in the soil are modified and, in principle, adapted. In addition to that, a set of
2-dimensional intermittent schemes for explicit analysis of some of the surface and
soil fields can also be applied in a full data assimilation cycle for the COSMO model.
Namely, this set comprises of three analysis schemes:

– a variational soil moisture analysis that uses daytime 2-m temperature observa-
tions to derive optimized soil moisture fields; this is described in Section 4;

– an analysis of the depth of the snow cover, see Section 5;
– a sea surface temperature (SST) analysis including an analysis of sea ice cover,

see Section 6.

Some other surface and soil fields are specified as external parameters, and are either
constant in time or updated once per day at 0UTC . They are addressed in COSMO
Documentation Part II on Physical Parameterization.
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Section 3

Analysis of Atmospheric Fields:
Nudging-Based Data Assimilation

3.1 Concept and Basic Ideas

Nudging or Newtonian relaxation consists of relaxing the model’s prognostic variables to-
wards prescribed values within a predetermined time window. Detailed descriptions of the
technique can be found e.g. Anthes (1974), Davies and Turner (1977), and Stauffer and
Seaman (1990). In the present scheme, nudging is performed towards direct observations,
which is more appropriate for asynoptic data (Stauffer and Bao (1993)) and high-resolution
applications than nudging towards 3-dimensional analyses (Stauffer and Seaman (1994)). A
relaxation term is introduced into the model equations, and the tendency for the prognostic
variable ψ(x, t) is given by

∂

∂t
ψ(x, t) = F (ψ,ψ x, t) + Gψ ·

∑
k(obs)

Wk(x, t) · [ψobsk − ψ(xk, t)] (3.1)

F denotes the model dynamics and physical parameterizations, ψobsk the value of the kth ob-
servation influencing the grid point x at time t , xk the observation location, Gψ a constant
called nudging coefficient (currently set to 12 · 10−4s−1 for surface pressure and 6 · 10−4s−1

for the other assimilated quantities), and Wk an observation-dependent weight. This weight
always takes values between 0 and 1 (except for surface pressure, cf. Section 3.5.1, Eq. (3.36))
and is explained further below. The difference (in the square bracket) between observed and
model value is called observation increment, and the complete additional so-called nudging
term determines the analysis increment which is defined as the change explicitly imposed on
the model value by the nudging. Neglecting the dynamics and physics and assuming a single
observation with a constant weight Wk equal to 1, the model value at the observation loca-
tion relaxes exponentially towards the observed value with an e-folding decay rate of 1/Gψ
corresponding to about half an hour. Thus, the so-called nudging equation (3.1) describes a
continuous adaptation of the model values towards the observed values during the forward
integration of the model (cf. Figure 3.1).

In practical applications, the nudging term should and usually does remain smaller than the
largest term of the dynamics. This situation is related to the basic idea of the method that the
model fields are to be relaxed towards the observed values without significantly disturbing

Section 3: Analysis of Atmospheric Fields: Nudging-Based Data Assimilation Part III – Data Assimilation 6.00



3.1 Concept and Basic Ideas 13

σ
ψ

T−6 T

◆
◆

◆
◆

◆ ◆
◆

◆

◆

◆
◆◆: Observations

Nudging

Forecast

time

m
od

el
 s

ta
te

Figure 3.1: Conceptual illustration of the effect of nudging.

the dynamic balance of the model. The coupling between the innovations of the mass and
the wind field is primarily imposed implicitly by the model dynamics. If the assimilation
process is successful the model fields will be close to dynamic balance at the beginning of the
forecast. Without requiring an initialization step, spin-up effects are reduced in comparison
to 3-dimensional analysis methods where the coupling between mass and wind innovations
usually relies on explicit diagnostic relationships such as the geostrophic approximation.

The factors Wk determine the relative weights given to the different observations at a spe-
cific grid point. For a single observation, this weight (wk) comprises of the quality (and
representativeness) of the observation (εk) and of weights which depend on the horizontal
(wxy) or vertical (wz) distance respectively temporal (wt) difference between the observation
and the target grid point,

wk = wt · wxy · wz · εk (3.2)

If an increasing number of observations influence the grid point the total nudging weight
should be limited to prevent the nudging term from becoming dominant over the dynamics.
This is achieved by complementing the individual weight wk with a relative weight for
multiple observations:

Wk = wk∑
j wj

· wk (3.3)

This simple approach is designed to improve the gradients of the analyzed fields (Benjamin
and Seaman (1985)) and has therefore been widely used in nudging schemes. Due to the
squaring of the weights, the fit to an isolated observation e.g. over the ocean is less impaired
in its near environs by the simultaneous assimilation of a remote group of coastal data. In
rather data dense areas, equation 3.3 automatically reduces moderately the effective scale of
the horizontal spreading (for which the explicit functions will be described in section 3.7).
This improves e.g. the analysis of small-scale cyclones by assimilation of surface pressure
data from a rather data-dense network. Note however, that the weighting for multiple obser-
vations according to equation 3.3 has the undesirable property that with increasing number
of observations, the total sum of the weights from all observations together tends to decrease
instead of (slightly) increase. For instance, if there is one observation with individual weight
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wk = 1 , then adding an increasing number of further observations with wk = 0.1 will
effectuate the total sum of the weights to reduce from 1 towards 0.1 (!) .

Therefore, an alternative relative weighting for multiple observations,

Wk = wk + 1∑
j wj + 1 · wk (3.4)

is also implemented which is not so scale selective as equation 3.3, but neither has its unde-
sired property mentioned. In the above example, the total sum of the weights would increase
from 1 towards 1.1 , and for an increasing number of observations with wk = 1 , the sum of
the weights would converge towards a value of 2 which provides an absolute upper limit.

Note furthermore, that the approach adopted here (both using equation 3.3 or 3.4) only
accounts for the data density at the target grid points and neglects the relative positions
between the observations themselves in contrary to optimum interpolation. In order to take
the relative positions into account as well, the data density at the observation locations would
have to be determined at first and included in the quality factors εk (Lorenc et al. (1991))
at a considerable computational cost.

Besides the simplicity of the concept, the fact that the method can be implemented relatively
easily, and the essential advantages of the nudging method outlined in the introduction, po-
tential difficulties and disadvantages of the method should also be mentioned. Firstly, in con-
trast to optimum interpolation (OI) and 3- or 4-dimensional variational (3DVAR, 4DVAR)
methods, there is no mathematical formalism to determine a theoretically optimal solution
to the analysis problem. Therefore, there are several free parameters, and theoretical consid-
erations can only provide rough estimations for their optimal specification. More appropriate
values have to be found by means of relatively expensive tuning experiments. Note that on
the other hand, OI, 3DVAR, and 4DVAR schemes are known to be very sensitive to the (cor-
rect) specification of the model error covariances. Results from tuning experiments suggest
that this sensitivity is reduced in the nudging scheme (at least for the relatively data-dense
area over Europe). This is likely due to the direct inclusion of the model dynamics in the
assimilation process which modifies the effective influence of the observations during the
assimilation period (Schraff (1996)).

The second and probably most important disadvantage in comparison to 3D- and 4DVAR is
related to the fact that, similarly to OI, observation increments have to be expressed in model
space rather than observation space. This means that for an observational information of
any kind, observation increments have to be derived always in terms of the prognostic model
variables in order to be used in the nudging. (This limitation can be relaxed to the extent
that the increments can be expressed in terms of variables each of which can be mapped
to one model variable by a function for which strict monotony is a necessary condition and
linearity a sufficient condition.) That limitation does not apply to variational schemes. In
order to assimilate e.g. radar reflectivity observations in a variational scheme, reflectivity
values can be derived from the model fields in order to compute observation increments of
reflectivity which can then be used directly for the analysis. For nudging, in contrast, it is
required to deduce increments of temperature, humidity, and/or wind, etc. from the observed
reflectivity (or from precipitation data). This operation has more degrees of freedom, requires
more assumptions with less confidence, and is therefore more prone to errors.

Thirdly, correlations of observation errors which typically may occur with remote sensing
data cannot be taken into account. Unless additional balancing steps are added, this also
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applies to most types of cross-correlations of model errors such as error correlations between
the wind and the mass field. It is noted however, that deploying the latter types of correlations
is advantageous only for those scales for which the diagnostic relationships (e.g. geostrophy)
that are usually used to specify these correlations are good approximations. In the framework
of nudging, the direct inclusion of the model dynamics in the assimilation process leads to
an implicit coupling between the resulting changes of the model fields. In general, this kind
of coupling is incomplete, but it includes all the scales present in the model. Depending on
the situation, this can be even advantageous, particularly in the meso-scales (as outlined
in the introduction) and data-rich areas. Furthermore, as indicated above, explicit coupling
between the increments of different model fields can partly be included by adding extra
balancing steps, and this is done in the current scheme.

In fact, three types of balancing are applied to the analysis increment fields before they are
added to the model fields. First, a hydrostatic upper-air temperature correction balances
the pressure analysis increments at the lowest model layer. Secondly, a geostrophic wind
correction balances the wind field with respect to the mass field increments as induced by
the surface pressure nudging including the temperature correction. This yields a (weak)
explicit coupling between the mass and wind field increments. Finally, an upper-air pressure
correction balances the total analysis increments of the mass field hydrostatically.

Equation (3.1) indicates that apart from the balancing steps, the scheme consists of two
main steps. After the observations have been made available to the scheme in an appropriate
form in the observation processing (Sections 3.3 and 3.4), the first step is to compute the
observation increments (Section 3.5). This is usually related to some sort of interpolation,
and is complemented by a quality control of the observations (Section 3.6). In the second
step, the weights are computed, and the increments provided with the weights are spread to
the target grid points for each observation (Section 3.7). These weighted increments are then
summed up to form the analysis increment fields. Before this is addressed in detail for the
different variables (Section 3.9), additional increments are derived in extra balancing steps
(Section 3.8). Prior to these detailed descriptions of the whole process from the observational
input up to the final analysis increments, the general discretized formulation of the nudging
equation is derived in the following Section 3.2.

3.2 Discretized Formulation

This section addresses the implementation of the nudging terms in the finite difference form
of the set of extended dynamic equations (3.1). In finite time differences, the nudging is
carried out as the last operation within a timestep except for the relaxation towards the
lateral boundary fields and for the saturation adjustment.

The finite difference form of Eqs. (3.1) read

ψn+1 − ψnold
∆τ = F (ψn) + Gψ ·

∑
k(obs)

Wk · [ψobsk − ψmxk ] (3.5)

Here, ψnold , ψn, and ψn+1 denote the values of the model variable ψ at some grid point at an
old, the current, respectively the next timestep. ψmxk is the model value at the observation
location at timestep m which has yet to be defined. ∆τ is the interval between time levels
nold and n + 1 , and the other variables are as in Eqs. (3.1). For a two-timelevel scheme
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such as the Runge Kutta time integration scheme, nold = n and ∆τ = ∆t where ∆t is
the length of the (advective) timestep. For the three-timelevel leap-frog time stepping, in
contrast, nold = n− 1 and ∆τ = 2 ·∆t .

The timestep m is chosen to be equal to n + 1 , following the argument that the distance
of the observation to the model value at the next rather than current timestep should be
decreased by the relaxation. This renders (3.5) a set of implicit equations for ψn+1

(xk) .

Each of the dynamic equations without nudging term can be written as

ψn+1
F − ψnold

∆τ = F (ψn) (3.6)

ψn+1
F denotes the value of ψ after the addition of dynamic and physical tendencies and prior

to the application of the nudging tendency within timestep n + 1 . For each of Eqs. (3.5),
replacing F (ψn) by (3.6) renders

ψn+1 = ψn+1
F + ∆τ Gψ ·

∑
k(obs)

Wk · [ψobsk − ψn+1
xk

] (3.7)

An explicit form for this implicit equation can only be derived in a strict way at the grid
point which coincides with the location of a single observation. This allows to omit

∑
and

subscript xk , and Eq. (3.7) can be written as

ψn+1 = ψn+1
F + ∆τ Gψ Wk

1 + ∆τ Gψ Wk
· [ψobsk − ψn+1

F ] (3.8)

This equation is then generalized to any (other) grid point x by taking into account that
it is the value of the model field at the observation location xk that should be used for
comparison to the observed value. Hence, the model value at xk is used to compute the
observation increment, and the generalized equation reads

ψn+1(x) = ψn+1
F (x) + ∆τ Gψ Wk

1 + ∆τ Gψ Wk
· [ψobsk − ψn+1

F (xk)] (3.9)

Finally, this is further generalized to multiple observations by reintroducing the summation∑
, i.e. Wk is replaced by

∑
Wk and Wk · [ψobsk −ψ

n+1
F (xk)] by

∑
(Wk · [ψobsk −ψ

n+1
F (xk)]) .

After replacing the weights Wk by the right side of Eq. (3.3) or (3.4), the general equation
used in this nudging scheme then reads

ψn+1(x) = ψn+1
F (x) + ∆τ Gψ µ

1 + ∆τ Gψ µ
·∆ψ (3.10)

where

∆ψ =
∑
k((w 2

k + cw wk) · [ψobsk − ψ
n+1
F (xk)])∑

k′(w 2
k′ + cw wk′)

(3.11)

µ =
∑
k(w 2

k + cw wk)∑
k′ wk′ + cw

(3.12)

where cw = 0 when using Eq. (3.3) and cw = 1 when using Eq. (3.4) .

∆ψ is a square weighted mean of observation increments. By analogy of Eq. (3.10) to Eq.
(3.9), ∆ψ can also be regarded as a net observation increment at the target grid point.
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Similarly, the weighted mean of nudging weights µ can be seen as a net nudging weight for
the net increment ∆ψ .

By definition, the analysis increments are the values that are added to the model fields by the
nudging within one timestep. They are given by the complete fractional term on the right
side of Eq. (3.10) (if the additional balancing steps are neglected). In order to determine
these analysis increments, the following 3 terms must be computed:

∑
k wk ,

∑
k w

2
k , and∑

k((w 2
k + cw wk) · [ψobsk − ψ

n+1
F (xk)]) .

Separate Computation of Preliminary Analysis Increments for Different Observation Types

It has already been pointed out that in order to maintain a reasonable balance of the model
fields, the size of the nudging term has to be limited rather stringently, and that therefore, an
additional weighting for multiple observations has to be introduced, here in the form of Eqs.
(3.3) or (3.4). However, this has the effect of reducing rather drastically the effective weight
and therefore the impact of e.g. a single radiosonde (profile) observation if a data-dense set of
other observations such as satellite, radar wind, or GPS IWV retrievals are added. One way
to address this could be to strongly reduce the quality weight εk (or almost equivalently the
nudging coefficient) for these additional observations, but this would make the assimilation
of these data inefficient also far away from the radiosonde observation.

Therefore, an option has been introduced to first compute the net increments (preliminary
analysis increments) for different (sets of) observation types independently and afterwards
combine these net increments and net weights to obtain the final analysis increments. In this
case, the radiosonde increment enters the final weighting for multiple observation (types)
only together with one other net increment (with similar weight) from the other observation
type even if there are many observations of that type. As a result, the final weight of the
radiosonde observation is far less reduced, but at the same time, the assimilation of the other
data can remain efficient further away from it.

In order to accomplish this, the net increments and corresponding net weights are first
computed independently for each set of observation types m by Eqs. (3.11) and (3.12)
(substituting ∆ψ , µ , cw , k , and k′ by ∆ψm , µm , cw(m) , km , and k′m respectively)
using only the observations ψobskm of the corresponding set of observation types. As Eq. (3.10)
takes the same form as Eq. (3.9), the net increment ∆ψm and net weight µm for each set of
observation types m can then be regarded and further treated as a simple single observation
with its individual weight. Therefore, in order to combine these increments and weights for
the computation of the final analysis increments, Eq. (3.3) or (3.4) for the relative weighting
of multiple observations can be re-applied:

ψn+1(x) = ψn+1
F (x) + ∆τ Gψ µtot

1 + ∆τ Gψ µtot
·∆ψtot (3.13)

where

∆ψtot =
∑
m((µ 2

m + cw(tot) µm) ·∆ψm)∑
m′(µ 2

m′ + cw(tot) µm′)
(3.14)

µtot =
∑
m(µ 2

m + cw(tot) µm)∑
m′ µm′ + cw(tot)

(3.15)

Note that cw(m) can be chosen to take different values (0 or 1) for different observation
types m . For instance, cw(1) = 0 could be set for conventional in-situ data (being set 1 of
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observation types) and cw(2) = 1 for (a dense set of) satellite retrievals. In such a case, µ1
would be less than 1 even close to the observation locations, whereas µ2 would be typically
about 1.5 . In order not to give too much weight to the observation type 2 purely due to
the different choice of cw(2) , the quality weights (in practice: the nudging coefficients) for
observation type 2 should be reduced by about a factor of 2 . In order to prevent the nudging
term from becoming too large, a similar adaptation should also be made for all nudging
coefficients if cw(m) = 1 is chosen for all observation types.

For cw(tot) , a value of 0 seems less appropriate. This is firstly because the weights µm will
not usually vary as strongly as the observation density itself, which renders the advantage of
applying Eq. (3.3) less relevant. Secondly, the total weight for all observation types together
would result to be smaller than the (largest of the) weights for the single (sets of) observation
types, and this is not desirable. Therefore cw(tot) = 1 is recommended.

3.3 General Observation Processing

In this documentation, the term ’observation processing’ is used for the process of making the
observations available to the nudging-type scheme in an appropriate form within the model
code. The first step is to read the observation reports from files – either NetCDF observation
input files (see COSMO Documentation Part VII – User’s Guide) or a single AOF file (Anal-
ysis Observation File – a separate documentation is available from christoph.schraff@dwd.de
). GPS data can also be read from a separate ASCII file in COST-716 format. Apart from
the reading, the observation processing also includes assigning the observations temporally
and spatially to the model space, exploiting quality flags and other attributes, putting differ-
ent TEMP (or PILOT) radiosonde parts together in single complete profiles, applying bias
corrections, and performing gross error and redundancy checks. These issues are addressed
in the current Section 3.3 , and additional processing steps specific to aircraft observations
are presented in Section 3.4 .

Except for some minor aspects mentioned in the following section, the observation processing,
however, does not include any issues for which the observed values have to be related to
the time-dependent model values, as is the case e.g. for the computation of observation
increments or for performing the threshold quality control. While the latter types of issues
have to be redone at each timestep in principle (or at least frequently, cf. Section 3.9), the
observation processing is performed only once for each observation at the timestep when the
observation is read from the files.

3.3.1 Temporal Aspects

As a consequence of the previous remarks, the feature characteristic to the observation
processing is that it deals with computations and tests that are basically independent from
time and from the time-dependent model fields. Yet, there are a few exceptions to this,
where model values are used to complement missing pieces of information for some of the
observational reports:

• for PILOT and SATOB data, model pressure is used to assign reported height to
pressure levels;
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• aircraft data are set passive if their pressure level (reported or derived from flight level
using the ICAO standard atmosphere) is less than 3 hPa (about 25m) above the model
surface pressure level - this is done with the intention to exclude data that are too
close to the ground;
• for surface-level reports without pressure observation, model pressure at observation
height is used to assign the report in the vertical for the pressure-level dependent
blacklist and temperature gross error checks;
• model layer thickness is used to define minimum vertical correlation scales for aircraft
data (cf. Section 3.4.4).

While the time dependency is very weak for the two last items, it can have an influence for
the first two ones. It is due to this that the results may depend on when and how often data
are read from the AOF resp. the NetCDF observation input files. (Another reason is the
fact that the construction of piecewise profiles from aircraft data (Section 3.4.2) is repeated
whenever new observations from the same aircraft are read.)

In the current (operational) implementation, data are read hourly (except for the GPS
data which are read all at once at the beginning, provided that they are not read from a
NetCDF observation input file but from a special ASCII flle according to COST-716 format
specifications). In the case of the AOF file, reading in hourly batches requires that the
observations are sorted in the file according to observation time.

The temporal weighting (see Section 3.7.6) as used in the operational setups implies that
radiosonde data must be available 3 hours prior to and up to 1 hour after the observation
time. As a result, the data from -1 to +4 hours relative to the initial model time must be
provided at the first time step. Later on, data are always read 3 to 4 hours ahead of the
observation time. Hence within the observation processing, the temporal misfit of the model
values to the observation time is up to 4 hours. This applies to all types of data, if read
from an AOF file, but is less for other types of data, if they are read from NetCDF files and
shorter temporal weighting functions are used.

Data which are too old from the beginning or have become too old during the course of
the model integration are removed. The same applies to reports, for which a quality flag
indicates that reported date or time is suspicious.

3.3.2 Observation Types Used

Operationally (e.g. at DWD), the following data are used:

• radiosonde observations:
- upper-air wind (for observation report types TEMP and PILOT) temperature
(TEMP only): all mandatory-level data up to 10 hPa all significant-level temper-
ature data up to 100 hPa and all significant-level wind data up to 200 hPa

- upper-air humidity (TEMP only): all mandatory-level and significant-level data
up to 300 hPa

- surface-level wind, temperature, and humidity: used separately in the same way
as SYNOP data (see below)

- geopotential (TEMP only): used only to derive 1 single pressure observation in-
crement at the height of the lowest model level (see Section 3.5.1)
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• aircraft observations (of report type AIREP, AMDAR, or ACARS):
- all wind and temperature data (except for data less than about 50m above the
ground, cf. Section 3.3.3)

• wind profiler observations: upper-air wind , used at all levels

• surface-level observations (of type SYNOP, SHIP, DRIBU (drifting buoys), or TEMP):
- station pressure (or with lower priority: pressure reported at an alternative level
as derived by extrapolation): used from most stations (for restrictions, see Section
3.3.3)

- 10-m wind: used only from selected stations (see Section 3.3.3)
- 2-m humidity: used from most stations (see Section 3.3.3)

2-m temperature observations are not used operationally. Nudging of these data has been
shown to have potentially adverse effects on the stability of the planetary boundary layer
(Stauffer et al. (1991)). In pre-operational tests, it has also tended to degrade the low-
tropospheric thermal structure in COSMO. Note, however, that daytime 2-m temperature
data are used in the soil moisture analysis, where they have the potential to modify the
surface fluxes and to improve the prediction of 2-m temperature throughout the forecast
period (Section 4).

Nevertheless, the nudging scheme itself has an option to use 2-m temperature observations.
Altogether, the following types of data can be used optionally in the nudging scheme:

• 2-m temperature from SYNOP or TEMP reports
• upper-air wind from Doppler radar VAD (Velocity Azimuth Display) reports
• upper-air virtual temperature from RASS (Radio Acoustic Sounding Systems) or SO-
DAR (Sonic Detection and Ranging) systems
• integrated water vapour (IWV) derived from ground-based GPS total zenith delay
• Scatterometer 10-m wind data (of type ASCAT and OSCAT) over water areas –

Unlike other observation types, the scatterometer data have to be pre-processed
by a separate program. This reads 10-m wind products from KNMI (for the AS-
CAT wind product, CMOD5.5 is currently used to retrieve the wind vectors valid
at 10m above the sea surface from the microwave radiance data), performs abi-
guity removal, thinning (for ASCAT gridded data: from a resolution of 12.5 or
25 km down to 50 km ; no thinning of OSCAT data with 50 km resolution), and
quality control. Winds with velocities < 3.5m/s or > 25m/s are less reliable and
therefore discarded.

• SATOB data: upper-air single-level atmospheric motion vector (AMV) horizontal wind
data derived from sequences of satellite images – note that the use of these data is not
(well) tested

Additional data are read and processed or derived only in order to be written to a file for
verification purposes without any influence on the data assimilation. These are the following:

• from SYNOP (incl. SHIP, and partly from TEMP) :
– 3-hour pressure tendency
– precipitation, aggregated over different periods
– (horizontal) visibility
– total cloud cover
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– cloud base height of lowest cloud
– low cloud cover, derived from observed cloud, visibility, and weather information
– mid-level or high cloud cover, derived from observed cloud information
– general cloud group and individual cloud layer groups (which include cloud base

height, cloud amount, and cloud type)
– code for present weather
– maximum and minimum 2-m temperature during past 12 hrs
– maximum wind speed of gusts over 1-hour or 6-hour periods
– total snow depth
– state of ground

• from aircraft :
– degree of turbulence
– maximum derived vertical gust

• from wind profiler and radar VAD reports :
– vertical wind speed
– standard deviation of the horizontal wind

• from wind profiler and RASS reports : signal to noise ratio

Furthermore, precipitation rate derived from radar reflectivity is assimilated by means of
latent heat nudging scheme. This is used operationally (only) in the convection-permitting
configuration(s) of COSMO, but it is not described in this chapter.

An experimental version of COSMO (based on version V4_18) exists which allows to use
additionally AMSU-A and / or SEVIRI satellite radiances from polar orbiting satellites
respectively Meteosat. Since indirect observations such as radiances cannot be used directly
with the nudging technique, retrievals of temperature and humidity profiles are first derived
here by a 1DVAR approach and then used in the nudging in a similar way as conventional
profile data.

3.3.3 Spatial Aspects, Assignment of Reports

For a high-resolution model such as COSMO which is usually run with a mesh width of
∆x = 7 km or less it is not considered necessary to interpolate the model values horizontally
to the exact observation location. A horizontal shift of 1 to 2 grid lengths of that size
appears to be acceptable, all the more that grid point models cannot correctly represent
wave lengths of 2 ∆x or less. Instead, it is considered more important that the vertical
representativeness of the model values used for comparison with the observations is good.
For the computation of surface-level observation increments, large differences between station
height and corresponding model orography can lead to large extrapolation errors (e.g. for
pressure) or representativeness errors. The occurrence of the latter is particularly obvious for
humidity observations from mountain stations which lie above a low-level inversion and which
would be compared to a model-derived value below the inversion, or vice versa. Similarly,
problems must be expected at the use of sounding data within the planetary boundary layer,
if the model orography deviates strongly from the height of the observing station.

As a consequence, the observation location is assigned horizontally to an appropriate model
grid point. Upper-air reports not related to a surface station such as single-level aircraft
reports are assigned to the nearest grid point. For the other reports, a distinction is made
between sea observations and land observations. Reports are considered sea reports here,
either if all of the four model grid points surrounding the station location are sea grid points,
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or if at least one of these four points is a sea point and the reporting station is labelled a
sea station like a drifting buoy or a ship issuing surface-level or radiosonde reports. The sea
reports are assigned to the nearest sea grid point. Reports from sea stations are rejected if all
of the four neighbouring grid points are land points. The rejection, however, is not applied
to the upper-air part of ship radiosonde reports if one of the four land points has a water
fraction greater than 1% .

Land reports are assigned to the nearest land grid point only if the (geometrical) distance
to it is less than half of the latitudinal mesh width ∆y in the horizontal and less than 40m
in the vertical. Otherwise, the land point with the minimum effective vertical distance ∆ze
to the station height is selected out of a group of grid points. Specifying this group to be
the four surrounding grid points, as is often done in verification packages, would render a
maximum horizontal assignment error of

√
2 ∆y . This promotes the choice adopted here,

that the group consists of all the grid points within a horizontal search radius of
√

2 ∆y
from the observation location. By doing so, the number of candidate points is increased from
4 to up to 9 near the equator of the rotated model grid and to even more points far away
from it. Thus, the chance to find an appropriate grid point with a small vertical distance to
the observing station is enhanced without increasing the maximum assignment error.

Instead of geometrical distances |∆z| , scaled distances ∆ze = fD · |∆z| are used here as
’vertical distances’. The reason is that for deriving surface pressure increments (see Section
3.5.1), vertical extrapolation errors tend to be much smaller for negative height differences
∆z = zmo−zobs between model grid point and observing station than for positive differences.
The reason is that for negative differences, the extrapolation of full (observation) values can
be replaced by an interpolation of full values followed by an extrapolation of increments.
While fD is always set to 1 for positive differences, it attains different values for negative
differences. For surface pressure, it is set to 0.25 (e.g. for deriving quality weights, cf. Section
3.5.1). For surface-level wind, temperature, and humidity, it is set to 1 because there is no
difference between upward and downward extrapolation in this case (cf. Section 3.5.2). For
the horizontal grid point assignment search, it is set to 0.5 as a compromise.

Operationally, surface pressure observations are rejected if the corresponding scaled distance
exceeds 150m (corresponding to geometric differences of more than -600m or +150m),
because the extrapolation errors are considered to be too large then. The rejection limit for
2-m humidity is 150m, and for 10-m wind, it is set to 100m . In addition, 10-m wind data
are currently not used from stations above 100m above sea level (which should be regarded
as a temporary, very rough criterion to select only stations over flat terrain). If reduced
pressure, e.g. at mean sea level, is reported instead of station pressure, the vertical extent of
the reduction is added to the scaled extrapolation distance, if the reduced level lies between
the observation station and the model orography. If the reduced level lies either below or
above both the station height and the model orography, then the maximum of the (scaled)
extrapolation distance between reduced level and either station height or model orography
is used as final extrapolation distance.

In general, SYNOP reports or surface-level data from radiosondes are rejected if station
altitude is missing or flagged to be suspicious. And any type of report is fully neglected if
longitude or latitude is attributed to be probably bad.

Furthermore, observations located within 5 grid rows from the lateral boundaries of the
COSMO domain (or located even outside of the COSMO domain or outside of an optional
user-defined area) are rejected. Also, observations from further inside of the domain are never
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assigned to a grid point of these 5 rows. The reason is as follows. Within the lateral boundary
zone, the model fields are also relaxed towards boundary fields. If the latter disagree with
an observation assigned to that zone and if that observation was being nudged, the model
would tend to attain a value between the observed and the boundary value without further
approaching either of them after a while. At each model timestep, then there would be, say,
a negative observation increment and hence a negative analysis increment, and a positive
boundary relaxation increment. While this is not a problem within the boundary zone itself,
the negative increments would accumulate in time in the inner-domain part of the area of
influence of the observation (by lateral spreading, see Section 3.7) without being compensated
by positive boundary relaxation increments.

3.3.4 Other Aspects

Each observational report consists of a report header containing information on the report
as a whole and of a report body containing the individual observed values and properties
related to them. The report header is evaluated first, and most of the Sections 3.3.1 to 3.3.3
are part of this evaluation. It is complemented by the following steps:

• A station identifier is read for each report. Aircraft identifiers starting with ’***’,
’XXX’, ’???’, ’///’, or ’ ’ are considered bad, and reports with such station identifiers
are neglected.
• Blacklisted ship reports are also neglected, if read from an AOF file. If the observations
are read from NetCDF files, blacklisting in done within the observation processing, see
below.
• If the observations are read from NetCDF observation input files, a flag word is de-
termined in the form of a bit pattern which indicates all the reasons why a complete
report has been set passive or rejected.
• A station characteristics indicator is compiled which is not used outside the observa-
tion processing. It contains various information such as an instrument specification,
flags indicating whether and why a report is set passive (i.e. rejected), and a station
correction indicator. The latter is used in the redundancy checking (Section 3.3.7).

• If the observations are read from NetCDF observation input files, data category, inter-
national data sub-category, originating centre, originating sub-centre (mainly used for
GPS data), and update sequence number (correction indicator) are also read.

Then, the report body is evaluated. This includes

• selecting and rejecting data according to Sections 3.3.2 and 3.3.3;
• rejecting upper-air observation levels if pressure at TEMP reports or both pressure
and height at other report types is missing or flagged to be probably bad;
• providing pressure at upper-air observation levels at which only height is reported;
this is done by using the ICAO standard atmosphere for aircraft reports (for which
reported ’height’ is in fact flight level instead of geometrical height) respectively the
current model profile for PILOT reports (cf. Section 3.3.1);
• rejecting non-surface-level data if they are below the model orography or the station
height, or rejecting aircraft data if they are within about 25m (3 hPa pressure) of the
model orography;
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• rejecting data flagged by the data provider to be probably bad or to have large errors
(e.g. based on the roll angle flag for aircraft wind data, low precision of aircraft or
RASS temperature, aircraft mixing ratio quality flag, low signal to noise ratio for wind
profiler and RASS data, large standard deviation of radar VAD wind speed, etc.);
• rejecting data from blacklisted stations or stations which are missing on whitelists –
the exact processing is described in COSMO Documentation Part VII: User’s Guide;
• doing consistency checks, e.g. rejecting humidity if the reported relative humidity de-
viates from that derived from dewpoint or mixing ratio by more than 4% ;
• rejecting zero winds from drifting buoys or scatterometers (because they are considered
suspect), rejected radar VAD wind data with wind speed less than 3m/s;
• providing observation errors as derived from rmse tables and sometimes enhanced to
account for extrapolation errors; these errors are derived for active observations only,
but currently they are not used thereafter except as active data indicators;
• sorting upper-air observation levels, checking for multiple surface levels and rejecting
levels below the (selected) surface level;
• converting reported wind direction and speed into rotated wind components;
• converting observed humidity into model-compatible (relative) humidity (see below);
• applying bias corrections to humidity-related observations.
• deriving low cloud cover from observed cloud, visibility, and weather information, and
mid-level and high cloud from observed cloud information;

This is complemented by performing bias correction (Section 3.3.5), gross error and con-
sistency checks (Section 3.3.6), redundancy checks (Section 3.3.7, putting together TEMP
parts A – D into complete profiles (Section 3.3.8), and additional processing steps specific
to aircraft reports (Section 3.4). Furthermore, a considerable amount of diagnostic output
and statistics on the observations processed and rejected is produced (see also COSMO
Documentation Part VII: User’s Guide).

Converting Observed Humidity into Model-Compatible Humidity

If a model version without prognostic cloud ice is deployed, then, with regard to water
in the atmosphere, the model can only distinguish between water vapour and liquid wa-
ter in the dynamic equations. Hence, saturation vapour pressure is always computed over
water. In reality, however, ice cloud could and often would form at lower values of vapour
pressure, i.e. observed saturation pressure is measured over ice below freezing (assuming
equilibrium). Nudging towards a saturated (i.e. ’cloudy’) observation (over ice) would then
lead to subsaturation (i.e. dissolution of cloud) in the model if vapour pressure was used for
the computation of the observation increment without modification. Therefore, observed rel-
ative humidity over ice is compared to model relative humidity over water. Equivalently, the
observed vapour pressure eob can be multiplied with an ’ice-to-water’ correction to render
model compatibility, i.e.

e
corr

ob
= e

ob
·
e
water

sat
(T < T0)

eice
sat

(T < T0)
, esat(T ) = 610.78[Pa] · e

b T−T0
T−TR (3.16)

where ecorrob is the corrected value of vapour pressure, T the observed temperature (in [K]),
T0 = 273.16[K] , and bwater = 17.27 , bice = 21.87 , TwaterR = 35.86[K] , and T iceR = 7.66[K]
according to the Magnus formulae.
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In cloudless cases of supersaturation over ice where supercooled water clouds may be about
to form or have just dissipated this may result in a ’bias’ of cloudiness, and the corrected
’observed’ values of relative humidity may exceed 100% . Then, this bias is reduced by cutting
these values down to 100% .

3.3.5 Bias Corrections for Humidity

For most types of radiosondes, observed humidity is known to have a dry bias near saturation
in general. Hence, saturation is assumed for observed (and possibly ice-to-water adjusted)
relative humidity values greater than 96% irrespective of temperature.

This assumption, however, is not made for data which are read from AOF files and have
already been comprehensively bias-corrected before being written to the AOF. Such a bias
correction is optionally applied to the reported observation values of relative humidity (over
water) UobV 80 from Vaisala RS80 sondes in two steps (Leiterer et al. (2000)). The first step
called weather screen ground check correction,

U
corr,1
ob

= U
obV 80

+ 0.056 · U
obV 80

(3.17)

is applied at any temperature, whereas the temperature-dependent second step

U
corr,2
ob

= U
corr,1
ob

+
U
corr,1
ob

· (0.005·(T−T0)2 + 0.112·(T−T0) + 0.404)

100 · eice
sat
/ewater
sat

− (0.005·(T−T0)2 + 0.112·(T−T0) + 0.404)
(3.18)

is applied only if temperature T < T0 − 12[K] .

Bias Corrections for Vaisala RS92 Humidity Observations

Relative humidity measurements from Vaisala RS92 radiosondes, which are very widely used
in Europe, are well known to have a dry bias at daytime. (Miloshevich et al. (2009)) compared
such measurements with reference measurements from cryogenic frost point hygrometer pro-
files, microwave radiometer data, and calibrated surface-level data. They derived an empirical
bias correction in the form of polynomials for the nighttime plus an additional correction
for clear-sky conditions at daytime with a reference solar elevation angle αref = 62 deg .
The second terms corrects for the solar radiation error. The polynomials describe the mean
percentage bias (i.e. the relative relative humidity error rather than the absolute relative hu-
midity error) as a function of pressure down to 75 hPa at night and 100 hPa at day. Another
empirical function (see Fig. 10 in Miloshevich et al. (2009)) was derived to determine the
ratio of the solar radiation error correction at any solar elevation angle α to the correction
at αref .

In the COSMO model, 3 options are available: (0) no bias correction, (1) correction of
the solar radiation error only, (2) correction of the full bias. Operationally (at DWD), the
full bias correction is applied to humidity observations < 96 % , i.e. values which have not
already been bias corrected to saturation previously. There are different (coefficients for the)
polynomials for different given measured relative humidity values. Miloshevich et al. (2009)
derived many different polynomials for very low values of relative humidity which have
not all been implemented here. For simplicity, the nighttime polynomial for 12% observed
relative humidity is used for all observed relative humidities below 12% , and similarly, the
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solar radiation error polynomial for 5% humidity is used for all humidities below 5% . This
results in (typically positive) errors in (absolute) relative humidity of at most 0.8% .

The solar radiation error derived by Miloshevich et al. (2009) is valid only for clear-sky
conditions. Therefore, a cloud correction fcloud is computed which scales the clear-sky solar
radiation correction error. It is equal to the diffuse transmissivity TD of the clouds above
the observation level for which the correction is computed. TD = 1 − R − A , where R
is the cloud reflectivity and A the absorptivity. Compared to the cloud reflectivity, the
absorptivity is nearly one order of magnitude smaller (see Fig. 1 in A. (1989)) and is therefore
neglected here. This is justified by the fact, that there are very large uncertainties anyway
in the cloud estimation based on the radiosonde observations. The transmissivity at zero
solar zenith angle can be approximated by exp(−LWP/60) where LWP is the total liquid
water path in the vertical direction in [g/m2] . For other solar zenith angles φ , TD =
1−(R0 +(1−R0) ·(sin2(φ/2)) (where R0 is the cloud reflectivity at zero solar zenith angle),
so that for observation level j ,

f jcloud = TDj = exp

− j−1∑
j′=1

LWPj′ / 60

 · (cos2(φ/2)
)

(3.19)

where LWPj is the vertical liquid water path between observation levels j and j + 1 .
LWPj is approximated by

LWPj = qc · ρ j,j+1 ·∆z ≈ 1/2
(
q jc + q j+1

c

)
·∆p / g (3.20)

where qc is the liquid water content, ρ the air density, ∆p and ∆z the pressure resp.
height difference between observation levels j and j + 1 , and g the acceleration due to the
gravity. A given observation level is assumed to be cloudy and contain ’liquid’ water content,
if the observed vapour pressure exceeds the saturation vapour pressure. Below freezing, a
mixed phase region is assumed as in the Tiedtke convection parameterisation, i.e. the water
fraction fw for the mixed phase depends on the temperature T between T0 = 273.16K and
T m
min = 250.16K in the following way: fw = ((T − T m

min)/(T0 − T m
min))2 . For water clouds,

i.e. if the observed vapour pressure exceeds saturation above freezing temperature T0 , a
cloud liquid water content of 0.1 g/kg is assumed. The same value is used for convective or
lower tropospheric ice clouds, whereas for cirrus cloud, a value of 0.01 g/kg is reasonable.
Furthermore, it is assumed that the fraction of cirrus cloud relative to the total amount of
ice cloud equals 1 above the 300 hPa level, decreases linearly in pressure to zero at 700 hPa
and is 0 further below. It results that

qc = fw · 0.1 + (1− fw) ·
(

0.01 + 0.09 ·min
(

1,max
(

0, p− 300
400

)))
(3.21)

where qc is the cloud liquid water content in [g/kg], and p is the pressure in [hPa] .

3.3.6 Gross Error and Consistency Checks

Apart from trivial checks, the following gross error checks are done for individual observa-
tions, i.e. observations are rejected if the following conditions are met:
• pressure p > 1060hPa
• |pressure tendency| > 40 hPa / 3h
• wind speed > 150m/s , or wind speed > 90m/s for data below 700 hPa
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• temperature T <−90◦C , or T >60◦C ,
or T > 20◦C above 700 hPa ,
or T > 5◦C above 500 hPa ,
or T >−5◦C above 400 hPa

• dewpoint Td <−150◦C for upper-air data,
.

Td <−90◦C for surface-level data, or Td >40◦C for any type of data,
or reported (i.e. uncorrected) relative humidity U > 120 %

The following consistency checks which are performed after the redundancy checking relate
to multi-level data of 1 variable each, and they are based on the ECMWF pre-processing.

Superadiabatic Lapse Rate Check

This check examines whether observed multi-level temperature decreases at unrealistically
high rates with increasing height. Considering both significant and standard levels, temper-
ature is converted into potential temperature Θ . If

Θj1 < Θthr
j

.= Θj −Θsupcor (3.22)

then the layer from j upwards to j1 is designated to be superadiabatic. The superadiabatic
correction Θsupcor is given by Table 3.1 and allows that the dry adiabatic lapse rate may be
exceeded particularly at low levels.

The test defined by Eq. (3.22) is applied to any two adjacent temperature observation levels.
Θj+1 < Θthr

j denotes that the layer between level j and level j+1 is superadiabatic, and
further tests are performed to determine whether Θj or Θj+1 is in error. If the layer between
levels j−1 and j+1 is superadiabatic and the layer from j to j+2 is not superadiabatic,
then the observation Tj+1 is considered to be erroneous. In the opposite case, Tj is rejected,
and if no definite conclusion can be drawn then both Tj and Tj+1 are rejected.

Note that no inversion check is done to identify any unrealistic temperature increase with
height. Due to the occurrence of strong inversions particularly during winter, such a check
would have to deploy very large threshold values, and it would not result in additional
rejection of data compared to the quality control that is performed after the observation
processing (see Section 3.6).

Wind Speed Shear Check and Directional Shear Check

Both wind shear checks relate to pairs of adjacent standard levels m and are applied to
radiosonde data only. If either of these checks is not passed, then the wind observations at
the two standard levels and all the significant levels in between are rejected. The shear of

pressure > 1000 > 850 > 700 > 500 > 400 < 400
Θsupcor 4.5 3.5 2.5 1.5 1.0 0.5

Table 3.1: Superadiabatic correction Θsupcor in [K] as a function
of pressure (in [hPa]) at the lower boundary of the examined layer.
(From ECMWF Met. Bull. M1.4/3, 1990 .)
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|dm − dm+1| [degrees] > 30 > 40 > 50 > 60 > 70 > 80 > 90 fdlim
base level: 700 - 200 hPa 110 84 77 70 63 52 50 7.825
base level: ≥ 850 or ≤ 150 hPa 72 61 57 53 49 46 41 4.5625

Table 3.2: Limit values for the sum of wind speeds (fm + fm+1) in [m/s] for particular directional
shear |dm − dm+1| . For fd

lim , see text. (From ECMWF Met. Bull. M1.4/3, 1990 .)

wind speed f is considered to be in error if

|fm − fm+1| > 20.6 + 0.275 · (fm + fm+1) (3.23)

This means that for stronger winds, larger values for speed shear are accepted. For the
directional shear check, a maximum permitted sum of speeds (fm + fm+1) for a particular
directional shear |dm− dm+1| is given by Table 3.2. Note that for wind speeds less than the
limit fdlim (cf. Table 3.2, right column), failing the directional check always implies failing the
speed check, and the directional shear check can be omitted ( fdlim = (fc ·(1−0.275)−20.6) /2 ,
where fc is the maximum permitted sum of speeds for directional shear of 90 degrees).

3.3.7 Redundancy Checking

The redundancy checking is first applied to single-level reports, and this includes the surface-
level reports derived from radiosonde TEMP reports. The processing consists of three main
steps. Firstly, the conditions for redundancy are evaluated for each pair of reports. In case
of redundancy, it is then decided which out of the two reports is redundant. Finally, missing
data of the active report may be replaced by available data of the redundant report before
the latter is rejected.

The requirements for redundancy are met in case of generalized collocation of two reports,
which is specified to be true if
• the two reports are assigned to the same model grid point horizontally,
• the difference in observation time is ≤ 15min for aircraft reports resp. ≤ 9min for

other reports,
• the vertical distance is < 5 hPa for aircraft reports resp. ≤ 10m for other reports,
• their station identity is equal; this condition is dropped for GPS reports, since reports
from the same station and based on the same raw measurement may have different
station identities if processed by different centres,
• and their observation type is equal; this condition is dropped if one report is a TEMP
and the other one a PILOT radiosonde report; on the other hand for remote-sensing
profile reports (i.e. wind profiler, RASS, and radar VAD), also the code type has to be
equal in order to meet the conditions of generalized colocation.

A generalized collocation of two reports with different status (active or passive) is diagnosed
only after it has been checked that no generalized collocation exists with a report with equal
status. In case of generalized collocation of two reports, one report is selected to be redundant
as soon as in the given order, one of the following criteria is satisfied:
• the report has previously been set passive whilst the other report is active,
• for single-level reports only: the other report is of type SYNOP and the current report
is not,
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• for multi-level reports only: the other report is of type TEMP and the current report
is not,

• for multi-level aircraft reports only: the lowest observation level has a higher pressure
value in the other report then in the current one,

• for GPS reports only: a zenith total delay value exists for the other report in contrast
to the current report,

• for GPS reports only: the processing center of the other report is preferred over the
processing center of the current report (according to a preference list given by namelist
input),

• in contrast to the current report, the other report is a station correction (according to
a flag or update sequence indicator),

• for multi-level radiosonde reports only: the other report has more vertical levels than
the current one,

• for GPS reports only: the other report has a smaller (but finite) observation error of
total zenith delay,

• the other report has been read prior to the current report from the NetCDF resp. AOF
files.

Provided that both reports (i.e. the redundant and the other one) have been active or both
have been passive prior to the redundancy checking, then any missing value or observation
with passive observation status in the non-redundant report (hereafter called ’active’ report)
is replaced by the corresponding observation from the redundant report if that observation
has active observation status. As exceptions, pressure is never replaced in a single-level report
if the redundant report is a surface-level TEMP report, and missing or flagged data of GPS
reports are never replaced at all.

For multi-level reports, the process of replacing missing values of the active report by avail-
able observations from the redundant report is extended. Specifically, the active report is
complemented by the following observation levels or single observations from the redundant
report:

• complete observation levels (i.e. including all data from these levels), which are not
closer to the nearest observation levels of the active report than 25 hPa for radiosonde
reports resp. 5 hPa for aircraft reports,

• all observations with active status from mandatory levels which are more than 1 hPa
away from each observation level of the active report,

• other levels which are more than 1 hPa away from the nearest observation levels of the
active report – in this case, only those observations are included which have active
status in the redundant report and are missing or flagged passive both at the nearest
active level above and the nearest active level below, provided that the distance to
these levels is less than 25 hPa for radiosonde reports resp. 5 hPa for aircraft reports,

• single data from a level which is not more than 1 hPa away from an active observation
level; if there are several levels in the redundant report within this distance to the active
level, then the most distant of these levels is selected, and if this level is mandatory then
the resulting level is assigned to the mandatory-level pressure; data from the selected
level of the redundant report replace the original active values if the latter are missing
or their quality flag indicates inferior quality.
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Furthermore, if the original active report contains two quasi-collocated levels within ≤ 1 hPa ,
then the upper level is removed. By applying the whole redundancy-checking algorithm for
each multi-level report to itself at first (in which case the criteria for redundancy are always
satisfied), quasi-collocated observation levels are eliminated very simply without loosing rele-
vant data. Also, quasi-collocated levels are not created by the complementation of the active
report with levels from the redundant report.

Surface levels in multi-level reports are handled in a separate way. If the active report lacks
a surface level, the surface level from the redundant report is added. Any levels below the
surface level are discarded. The surface level is never complemented with observations from
non-surface levels. Furthermore, it is not used to limit the complementation of the active
report with (upper-air) levels or observations from the redundant report. As a result, an
upper-air level may exist within ≤ 1 hPa above the surface level.

It is finally noted that the rather extensive manner of complementing active multi-level
reports with observations levels and data from redundant reports may be important partic-
ularly in cases when a TEMP report containing only temperature and humidity data and a
PILOT report have been derived and disseminated from one and the same radiosonde ascent.

3.3.8 Putting TEMP or PILOT parts A, B, C, D into a single profile

TEMP and PILOT radiosonde profiles are often available in the form of 4 different reports,
which are also called ’parts’ in this context. Parts A and B are for mandatory-level respec-
tively significant-level data from the surface up to 100 hPa , and parts C and D for the
corresponding data thereabove. For the data assimilation (and verification), these part have
to be put together into a single multi-level report containing the complete profile. This is
accomplished by re-running the redundancy check algorithm for radiosonde reports with a
revised setting: In the first condition mentioned in Section 3.3.7 for the extended complete-
mentation of the active multi-level report with observation levels from the redundant report,
the limit of ≥ 25 hPa is simply replaced by a limit of > 1 hPa . (Note that this makes the
2nd and 3rd of the four conditions obsolete.)

3.4 Observation Processing of Aircraft Data

A feature common to all of the subsequent processing steps for aircraft data is that they
relate only to sets of reports with the same station (i.e. aircraft) identity. Hence, the reports
are grouped according to their station identity prior to these steps. Note that on distributed
memory machines, this requires the collection of such sets at the same node. And if the
processing steps are to be worked in parallel for the different sets, communication steps will
be required where each node sends different data to various other nodes and at the same
time receives different data from other nodes.

3.4.1 Flight Track Checking

The flight track checking is a model-independent quality control step. Given a complete set
of reports with the same aircraft identity, the reports are sorted in a unique way according
to their probable chronological order. This is done by sorting them according to time at first.
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Groups of ’simultaneous’ reports, i.e. reports assigned to same observation time (reported
in units of minutes), are then sorted vertically such that the vertical distance to the report
prior to the group minus the distance to the subsequent report will increase from one to the
next report in this group. Finally, simultaneous and vertically collocated reports are sorted
horizontally in an analogous fashion.

Next, the flight phases are determined according to the following criteria. Within a phase
to be labeled descent phase, interspersed ascents e.g. related to waiting loops before landing
must be smaller than 50 hPa . Consequently, ascents of at least 50 hPa are considered ascent
phases. Conversely, interspersed descents must be smaller than 10 hPa within an ascent
phase, and descents of at least 10 hPa are considered descent phases. Level flight phases are
defined to be whenever there are pairs of subsequent reports above 350 hPa which are at
most 3 hPa apart from each other, and they include other reports above 350 hPa between
such pairs of reports.

The subsequent checks are performed only if the aircraft identifier is unique, i.e. does not
begin with ***, XXX, ???, ///, or BBX.

The first check is about exaggerated horizontal collocation of the reports which may be caused
by instrument or transmission errors. All the reports from an aircraft are rejected if more than
50% of them have the same horizontal coordinates and at least 3 of the collocated reports
are more than 12 minutes apart from each other. The latter condition helps to avoid the
rejection of aircrafts (e.g. from Lufthansa) which issue identical coordinates for the frequent
reports in the first 2 or 3 minutes after take-off (up to about 800 hPa). Exaggerated vertical
collocation is diagnosed if at least 50% or 75% of the reports have an identical pressure
value greater than 500 hPa respectively 350 hPa . These cases also impose the rejection on
all reports. No limitation to the vertical collocation is done for reports above 350 hPa to
avoid the rejection of flight tracks dominated by the level flight phase.

The actual flight track check is based on an idea following the ECMWF pre-processing
(Met. Bull. M1.4/3) to derive a confidence by comparing the reported horizontal position
with estimates extrapolated from previous positions. In the present scheme, however, the
estimates are computed from previous reports not only with respect to the chronological
order, but also to the reverse order. The two resulting confidences are then combined to
make the final decision. In this sense, the flight track check is performed both in forward
and backward direction. This significantly improves the reliability to reject the erroneous
reports and at the same time reduces the probability to reject correct reports due to previous
erroneous reports. Furthermore, the scheme is complemented by an analogous, independent
vertical check, and an iterative check for missing sign at the reported longitude. The latter
is introduced to diagnose more reliably this error, which is relatively frequent with reports
that should be located at a longitude between 0 and -1 degrees.

The details are as follows. Given the current position and time c , the positions and times
of previous reports with good confidence c1, c2, c3 , the previous positions and time with
any confidence p1, p2 , then for each of the combinations (c2, c1), (c3, c2), (c3, c1), (p2, p1),
an estimate ei for the current position is computed by temporal linear extrapolation from
the pair of predictors. (If the predictors have the same report time (in minutes), then the
time differences used for the extrapolation are increased by 1 minute). From the distances
dhi and dvi of each estimate to the current location, horizontal and vertical ’single-estimate’
confidences fhi resp. fvi are computed:

fhi = max (90− 40 · dhi /dhref i , 0) (3.24)
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fvi = max (90− 30 · dvi /dvref i , 0) (3.25)

where the reference distances (in units of km resp. hPa) defining the tolerance are given by

dhref i = 30 + 5 · cxi + 12.5 · (dtmi + 1) + dhmi (3.26)
dvref i = 50 + 25 · cxi + 50 · (dtmi + 1) (3.27)

dhmi and dtmi are the horizontal and temporal distances (in units of km resp. minutes)
between the estimate and the more recent of the two predictors. The temporal term allows
for a tolerance increasing at a speed of about 550 km/h in the horizontal and 50 hPa per
minute in the vertical. cxi is equal to max (dtmi/dtmmi , 3/(dtmmi + 1)) where dtmmi denotes
the temporal distance between the two predictors (if dtmmi is zero then cxi is equal to
max (dtmi + 1 , 3)). This term tends to enhance the tolerance if the extrapolation is not well
conditioned in the sense that the reported temporal distance between the two predictors
is very small in itself or at least small compared to the distance to the current report. The
constant term is important for small reference distances, and it is further enhanced by 50 hPa
at ascent phases to allow for a 150 hPa decrease within (less than) one minute.

Next, the final horizontal and vertical confidences F h resp. F v are defined as a weighted
mean of the ’single-estimate’ confidences. The weights wi are smaller than 1 only if the
extrapolation is not well conditioned or if it extends over a very long period:

wi = min ( 1 , 60/(2dtmi + dtmmi) , 2/(1 + cxi ) ) (3.28)

If the minimum of the two resulting confidences is decreased by the contribution of the
’single-estimate’ confidence deduced from the two possibly erroneous predictors (p2, p1) then
the weight w4 given to that ’single-estimate’ confidence is set to zero, and the confidences
F are recomputed. This reduces the probability of rejecting correct reports due to position
estimation from erroneous reports. In an analogous way, a set of confidences is also computed
for the backward trajectory, and horizontal ’reversed-sign’ confidences for the forward and
for the backward trajectory are computed by reversing the sign for every reported positive
longitude value.

To further reduce the probability of rejecting correct reports, iterative checks for missing
sign at the reported longitude are performed first. Reports that are set passive in previous
iterations are not used in the subsequent iterations, and this may alter the confidences derived
for the other reports. Specifically, reports are set passive if their confidence is < 50 % in
the first iteration and < 65 % in subsequent iterations and their ’reversed-sign’ confidence
> 80 % , until no active report meets these conditions.

Finally, a non-iterative check for other location errors is done separately in the horizontal
and the vertical. Provided that both the forward and the backward confidence are available,
a report is set passive if one of the two confidences Flow is < 60 % and the other confidence
is < 85 + (60 − Flow)/10 % , or if both confidences are < 65 % . If only one confidence is
available (e.g. for the first two resp. the last two reports of the flight), the limit is set to a
confidence of 60% .

3.4.2 Construction of Piecewise Vertical Profiles

During the ascent and descent flight phases, the sequences of single-level reports from indi-
vidual flights often have a high vertical resolution, at least over western and central Europe.
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Figure 3.2: Conceptual illustration on constructing piecewise vertical profiles.

In many cases, it is about 10 to 20 hPa in the lower troposphere. Due to the vertical spread-
ing of the single-level increments by applying the vertical weight function, a model grid
point can be influenced by many observations from one aircraft, and this results in a verti-
cal smoothing of the observational information. Therefore, most of the single-level reports
are grouped into piecewise vertical profiles as part of the observation processing in order to
take better advantage of the high vertical resolution. The extent of the resulting multi-level
reports is limited such that the temporal and horizontal position errors introduced are not
considered significant. The profiles are then assimilated in a way analogous to the nudging
of radiosonde profiles.

The practical implementation is as follows (cf. Figure 3.2). Given the collection of all active
reports from the same aircraft, the report with the highest pressure value is selected as base
report. If there are several reports at the same pressure, the report temporally or horizontally
closest to the next report further above will be selected. The observation time and horizontal
location of this base report is assigned to the whole multi-level report in construction. Within
a temporal radius of 15 minutes and a selectable horizontal radius (set to 20 km in the current
operational implementation), at least 3 further reports with strictly decreasing pressure are
added, until no reports can be found within the given time interval and horizontal area and
within 55 hPa of the previously added report. If no more than 2 reports meet the criteria to
be added to the base report the latter will be assimilated as a single-level report. Then the
whole process is repeated without all the previous base reports and reports already used for
the multi-level report until no report is left.

With the horizontal tolerance radius being set to 20 km , the vertical extent of the lowest
multi-level report close to the ground is typically about 100 hPa for the descent phase and
150 hPa for the steeper ascent phase, but it can reach more than 400 hPa if the aircraft
reverses its direction during the ascent. Further above, there are often 1, 2, or even more
shorter multi-level reports. As a result, most aircraft data are assimilated as part of a multi-
level report below 700 hPa and as original single-level report above 400 hPa . Note that the
scheme allows to assimilate all aircraft data as single-level reports by setting the tolerance
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radius to zero. However, the assimilation as piecewise vertical profiles is computationally far
more efficient due to the inherent limitation of the vertical spreading.

3.4.3 Thinning of Aircraft Reports

In order to reduce both the computational costs and the variation of the data density related
to quasi-collocated data, sequences of vertically quasi-collocated single-level reports from the
same aircraft are thinned horizontally. Specifically, all reports within less than ± 5 hPa and
at most 4 minutes from a previous active report are set passive. This mainly applies to data
from aircrafts which issue very frequent reports even at flight level. Assuming a regular time
interval between these reports, the resulting interval between the active reports after thinning
is between 5 and 9 minutes. For a maximum flight speed of 1000 km/h , this corresponds to
a horizontal distance of at most 150 km which is of the order of the 2-folding decay length
of the horizontal correlation functions used to spread the observational temperature or wind
information in the mid-troposphere and further above. Thus, the data coverage remains very
good, and the number of assimilated single-level aircraft reports is reduced by about 10% .

3.4.4 Reduction of the Vertical Correlation Scale

As already noted, a data source with high vertical resolution should be exploited without
much smoothing to allow to correct e.g. the position of inversions. Therefore, sequences of
aircraft reports which are at least 5 hPa apart from each other are not thinned. However, the
variation of the effective data density (as well as the computational costs) can be reduced by
decreasing the pre-defined vertical correlation scale sp by a factor wc for active single-level
or multi-level reports which are close to each other. Such a factor

wc = 1 −
[
1−min

(
sredp
sp

, 1
)]
· e
−
[(∆rt

st

)2
+
(∆rr

sr

)2]
(3.29)

is computed for each pair of reports. ∆r denotes the distance between the two reports,
sr the 2-folding decay length of the horizontal correlation function, and st half the period
of the decreasing part of the temporal nudging weight function. The exponential term is a
measure for the horizontal and temporal overlap between the areas of influence of the two
reports. If this overlap is small, the factor wc will approach 1, and if the overlap is large,
the correlation scale will tend towards the minimum of sp and sredp .

sredp as given by

sredp = max (∆rp , ∆mp)
2 p

√
ln2

(3.30)

is a reduced correlation scale such that the 2-folding decay height of the related vertical
correlation function is equal to the maximum of half the vertical distance between the 2
reports and half the model layer thickness ∆mp (in pressure units) at the reports (cf. Figure
3.3). The inclusion of the latter term prevents the correlation scale from becoming smaller
than the grid scale even if the vertical distance between the reports is very small. p denotes
the average of the two reported pressure values.

The reduction factors finally applied to sp for the upward and downward spreading of a
specific report are equal to the minimum of all the factors wc derived from pairs which
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Figure 3.3: Schematic illustration of reducing the vertical
correlation scales. The solid black graphs denote the pre-
defined vertical correlation or weight functions wz as given
by the equation included in the figure (cf. Section 3.7.1),
whereas the colored dotted graphs show the corresponding
functions with the adaptively reduced scales (in pink for the
upper resp. lower observation, in red for the observation in
between).

consist of this report and another report further above resp. below. Thus, the correlation
function used for spreading an observation increment upwards may differ significantly from
the function used for spreading it downwards, and it may also vary from report to report.
Note again, that this procedure is not only applied to the active single-level reports, but also
to the piecewise profiles derived from the same flight.

Related to the reduction of the vertical correlation scale, there is also a reduction (in terms
of height or pressure) of the vertical cut-off radius by a factor of (0.1+0.9·wc) . The constant
part which provides a lower limit to the cut-off radius in terms of the original cut-off radius
helps to prevent the influence of the observations from becoming smaller than the model
layer thickness (e.g. if the original cut-off radius is smaller than sp ).

3.5 Observation Increments and Quality Weights

In order to infer corrections to the model fields from observation information, the obser-
vations have to be compared to the model state. This comparison is expressed in terms of
observation increments, i.e. differences between a value representing the observation and a
value representing the model. Either of these two values may be the result of a kind of inter-
polation, extrapolation, and possibly non-linear function of other values. This section does
not only address the derivation of these increments but also the specification of their quality
in terms of weights. As the observation increments form the basis for the model corrections,
and e.g. determine the direction (sign) in which the model is corrected, attention is given to
fair accuracy in the computation of these increments.

Prior to this computation, two lists are produced of all the multi-level resp. single-level reports
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which contain observations that are being used for nudging or being quality controlled at the
actual model timestep. If the selected temporal weighting is linear interpolation (see Section
3.7.6), then no more than two reports per station are used, i.e. the latest report in the past
and the earliest report in the future with respect to the actual model time. In this case, the
list of active reports is replaced by a list of active stations, and for each station, there is one
or two active reports.

Then, the observation increments are determined separately for the following type of data:
surface pressure data, other (local) surface-level data, multi-level data, and upper-air single-
level data. They are expressed in terms of pressure, rotated horizontal wind components,
temperature, and relative humidity (cf. Section 3.9). For surface-level data, there is also
an option for the use of specific humidity increments. From virtual temperature measured
by RASS profilers, virtual temperature increments are first computed and then converted
into temperature increments after vertical interpolation using model humidity. Thus, perfect
humidity is assumed here, and all the errors in (observed and model) virtual temperature
are projected onto errors in temperature.

Virtual temperature measured by RASS profilers is converted into temperature

3.5.1 Surface Pressure Increments

As surface pressure is not a prognostic model variable, observational information of station
pressure and geopotential has to be provided in terms of observation increments of pressure
at the lowest model level. In this and subsequent sections, these increments are often denoted
surface pressure increments, and no distinction is made between station pressure and reduced
surface pressure data. As extrapolation of full observed or model values to a target level
generally tends to be prone to significant errors, it is replaced by extrapolation of increments
in combination with interpolation of full values wherever possible.

With respect to single-level data, the situation is considered first where the observation
height zob , for which the observation is valid, exceeds the height zks of the lowest model
level ks . In this case, an interpolated model value pvi and hence an observation increment
(∆

ob
p
.= pob − pvi) can be computed at the observation height zob by interpolating the

logarithm of the model pressure linearly in height from the two nearest model levels (ka , kb)
above and below zob , i.e.

ln pvi = ln pkb + (ln pka − ln pkb) ·
zob − zkb
zka − zkb

(3.31)

In a second step, the increment has to be transfered from the observation height down to
the target level by means of a height correction. Such a correction is necessary provided that
the final observation increment at the lowest model level is to yield the increment ∆

ob
p at

zob , and that these increments are in hydrostatic balance. Hence, the correction is derived
from the hydrostatic equation. Assuming that the simulated virtual temperature is correct
between the target level and the observation level, it follows that δz ln p is identical for the
model profile and the ’observed’ profile (δz denoting the variation with respect to a height
interval). Thus,

ln pvi − ln pks = ln pob − ln pvob (3.32)

where ln pvob denotes the observed value extrapolated to the lowest model level. This can
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be rearranged to ln (pvob/pks) = ln (pob/pvi) or

∆p .= pvob − pks = pob
pvi
· pks − pks ·

pvi
pvi

= pks
pvi
· (pob − pvi)

.= pks
pvi
·∆

ob
p (3.33)

so that the height correction fz is given by

fz
.= ∆p

∆
ob
p

= pks
pvi

(3.34)

In the other case, where the observation level lies below the lowest model level, an extrapola-
tion of full values cannot be avoided. Thus, the observed value is extrapolated to the lowest
model level ks . With respect to the temperature profile used for this, it is assumed that
the model (virtual) temperature at level ks is correct, and that temperature increases with
the logarithm of pressure at the same constant rate β as in the model base state. Then, the
relationship used in Part I to derive the base state pressure can be applied, so that

pvob = pob · e

Tvks
β ·

(
1−

√
1− 2β g·(zob−zks )

R T 2
vks

)
(3.35)

Radiosonde TEMP reports provide the only upper-air data source for geopotential (as a
function of pressure) that is used by the nudging scheme. Assuming hydrostatic balance
for the total increments (see Sections 3.1 and 3.8.4) and given a profile of temperature
increments, there is no degree of freedom for pressure increments except at one level. Hence,
the geopotential TEMP data are used to derive only one single pressure increment at the
lowest model level.

If there are geopotential observations above and below that level (which implies that the
observing station releasing the sonde lies below that level), then the logarithm of the re-
ported pressure is interpolated linearly in height to the height of the lowest model level.
Thus, the increment at the target level is obtained directly by a simple interpolation. If the
observed profile is very incomplete and there are only observations below the target level, an
extrapolation analogous to that for single-level data has be performed. Finally, if there are
only observations above the target level (which is the case if the observing station lies above
that level), then the increment is computed at the lowest observation level by interpolation
of the nearest model values and then transfered to the lowest model level by means of the
height correction (3.34).

Quality Weights

Currently, the statistical error related to the observation (type) respectively the quotient of
this error to the model error is not taken into account. This is also true for any extrapolation
involved in the determination of the observed value. Hence, any station pressure or surface
pressure observation of type SYNOP, SHIP, BUOY, or TEMP is assigned the same quality
weight in the first place (as long as the observation is accepted by the observation processing
checks and passes the quality control). Yet, interpolation errors related to the determination
of the increments are roughly accounted for by a Gaussian in a scaled interpolation distance
(cf. Section 3.3.3). This scaled distance is defined to be the geometric distance between
observation level and the lowest model level scaled by a factor fD . This factor is equal to 1
except when it is set to 4 for the case that a full value has to be extrapolated, i.e. that the
single-level observation lies below the lowest model level. The Gaussian radius zc is set to
400m .
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An additional weight factor is included for observations from those (SYNOP) reports which
also provide three-hourly pressure tendency ∆tpob . The factor is 1 for tendencies up to
±3hPa3h and increases linearly to 1.5 for tendencies beyond ±25hPa3h . It has a positive impact
in cases of extreme mesoscale cyclones as it tends to increase the influence of the observations
near the cyclone center and in the area where the dynamic forcing is very strong. Note that
within the whole scheme, this is the only contribution to a weight that may cause the weight
to become larger than 1.

As a result, the total quality weight for surface pressure reads

ε = e
−
(
f
D
·(zob−zks )
zc

)2

·
[
1 + 0.5 ·min

(
1 , max

(
0 , |∆tpob| − 3hPa3h

22hPa3h

))]
(3.36)

3.5.2 Surface-Level Increments

10-m wind and 2-m humidity observations are compared directly to the corresponding screen-
level model values as diagnosed by the surface parameterization scheme. In principle, this also
applies to 2-m temperature except that the model-derived value is corrected according to a
lapse rate and the height difference between the observing station and the model orography.
The lapse rate that is used here is derived from the simulated temperature difference between
two model levels which are specified to be located about 150 hPa resp. 300 hPa above the
ground over low terrain. The observation increments valid for the screen level are then simply
assigned to the lowest model level (where they are needed) without any further correction.

(Note that this concept is applied in the current operational version. Yet, a different strat-
egy is adopted for an optional, more simple surface parameterization. With some simplifying
assumptions, the observed values can be extrapolated from the screen level to the height of
the lowest main model level (relative to the orography) by inverting the parameterization.
In this way, the increments are designed to be valid at the target model level. Hence, they
should be more realistic as long as the simulated boundary layer is realistic. However, the
extrapolation also involves a higher risk of larger errors if e.g. the stability of the simulated
boundary layer is significantly erroneous. Generally, it always tends to be less risky to ex-
trapolate increments (in the operational version by simple assignment) than full observed or
model values.)

Quality Weights

Operationally, the quality weights are set to 1 for all the active surface-level observation
increments. An optional weight for 2-m humidity data is given by a Gaussian in the corre-
sponding 2-m temperature observation increments. Its purpose is to reflect the potential of
adverse effects if only humidity is adjusted in the presence of large errors in the simulated
near-surface thermal structure.

3.5.3 Upper-Air Increments

The determination of observation increments for upper-air single-level data can be regarded
as a special case of that for multi-level data which is addressed here first. Observation in-
crements can either be computed at the pressure level of the observations by interpolation
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of model values or at the model levels by interpolation of observed values. The use of these
increments depends on the selected type of lateral spreading and other parameters.

Vertical Interpolation to Observation Levels

Increments at the observation levels are always required at the beginning for several reasons.
They are deployed for observation quality control (cf. Section 3.6), which should be done
prior to any further use of the observations. In addition, they may be needed to compute the
increments at model levels, namely for humidity or in the absence of significant-level data.

They are obtained by a simple linear interpolation in logarithm of pressure (denoted log-
pressure) of the pair of nearest model values above resp. below the observation level. For
quality control purposes only, the two lowest model values are linearly extrapolated in log-
pressure to observation levels which are located below the lowest model level. Analogous
extrapolations are performed for observation levels above the top model level.

Related to humidity, model values of generalized relative humidity based both on water
vapour and cloud water content are interpolated. This may allow the interpolated value to
indicate saturation even if the model is saturated only at one out of the two neighbouring
levels. A maximum of 100 % relative humidity is finally enforced for quality control and
after the interpolation to model levels is finished.

Vertical Interpolation to Model Levels

For the case of a complete TEMP radiosonde report with significant levels, the observed
atmospheric state between two adjacent reported observation levels is defined approximately
by an linear interpolation in log-pressure of the two observed values. Thus, for the purpose
of deriving observation increments, observation values can be interpolated to model levels by
such a simple linear interpolation. Yet, there is an alternative method subsequently called
vertical scale adjustment. It adjusts the value representing the observations to the same
vertical scale for which the model value is representative (Woodage (1985)). That scale is
given by the thickness of the model layer. To achieve the scale adjustment, a continuous
observation profile, which can be thought to exist by means of linear interpolation between
the (mandatory and) significant levels, is averaged over the layer thickness with respect to
log-pressure. In other words, the interpolated value ψvob is a logarithmically mass-weighted
sum of arithmetic means of adjacent observed values within the model layer, i.e.

ψvob =
ja−1∑
j=jb

[
1
2 (ψj+1 + ψj) ·

ln pj+1 − ln pj
ln pja − ln pjb

]
(3.37)

where additional ’observed values’ ψjb , ψja at the lower and upper model layer boundary
are always provided by linear interpolation. If a model layer at the top or base of the profile
is only partly covered by the continuous observation profile, then the scale adjustment is
replaced by linear interpolation for this layer. Note that if the model temperature equals the
scale-adjusted observed temperature, then the hydrostatic model pressure difference between
the model layer base and top height will be the same as for the observed profile (provided
that the model humidity is also correct). In this sense, the vertical scale adjustment method
is hydrostatically consistent.

With regard to moisture, relative humidity rather than specific humidity is interpolated.
During the interpolation process, any observed values of 100 % relative humidity are replaced
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by the corresponding available interpolated model values of generalized relative humidity
(including cloud water) whenever they are greater than 100 % . This should yield better
estimates of the true total moisture in the model layers and helps to prevent spurious drying
(e.g. if the top of a cloud is within a model layer). Finally, a maximum of 100 % is enforced
both on the interpolated values representing the observations and on the model values for
the purpose of determining the observation increments.

In the absence of significant-level data, care has to be taken with the interpolation of observed
values. For perfect observations and model fields, which should imply near-zero increments,
and assuming that the true profile deviates significantly from the linearized profile between
adjacent standard observation levels, interpolation of full observation values can yield large
erroneous observation increments at the model levels in between. Nudging by using these
increments tends to linearize the model profiles between the observation levels. This is not the
case, if the observation increments at the model levels are obtained by direct interpolation of
the observation increments available at the observation levels. Therefore, without modifying
the interpolation methods in other respects, interpolation of full observation values is replaced
by interpolation of increments if one of the following criteria is met. Either the report is an
aircraft report, or there is a big gap (larger than 200 hPa in the troposphere, or 80 hPa
above the 220-hPa level) between two arbitrary adjacent observation levels, or there are no
significant-level data at all, or there is a big gap (larger than 300 hPa , or larger than 150 hPa
below the 650-hPa level) between two adjacent significant levels. Note that the criteria are
applied to each variable (wind, temperature, humidity) separately, and that in particular the
last criterion may be met for one variable while it is not for another one.

Use of Multi-Level Increments in the Present Model Set-Up

Here, the selection of observation increments to be conveyed to the further processing steps is
addressed with a view to the operational version. At first, the vertical interpolation method
of observations to model levels has to be specified. At the horizontal location of a multi-level
report, the target model grid points (see Section 3.1) coincide with the model levels. Hence,
increments are required and considered only at the model levels there. As has already been
pointed out, the vertical scale adjustment is hydrostatically consistent. This allows to control
the upper-air hydrostatic pressure (and equivalently the geopotential on isobaric surfaces)
by nudging of temperature at all levels in combination with nudging of pressure at the lowest
model level. With respect to the balancing between wind and mass fields, the vertical scale
adjustment appears to be beneficial not only for temperature, but also for wind, and it is
therefore used for both variables. For humidity, however, different considerations apply. In
view of the ability to introduce sharp humidity gradients and thin cloud layers into the
model, vertical smoothing should be kept to a minimum. As the vertical scale adjustment
includes averaging, linear interpolation is deployed for relative humidity.

The increments being defined, their selection depends on the specified type of lateral spread-
ing. Where it is along the model levels, i.e. in the stratosphere, only increments at model
levels are required. An exception is at the top and base of incomplete profiles, where one
observation-level increment is also used (for the vertical spreading). For purely horizontal
spreading as applied operationally within the troposphere, the final increment spread later-
ally to a target grid point is obtained by vertical interpolation of the available increments
at the observation location (cf. Section 3.7.2). Using temperature increments at model levels
only, this would introduce vertical smoothing in addition to that caused by the vertical scale
adjustment. This might be disadvantageous e.g. in the environs of temperature inversions.
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On the other hand, the use of observation-level increments could hamper the hydrostatic
consistency. Hence, these increments are specified to be used in addition to the model-level
increments from the ground up to 800 hPa only, i.e. to the area where most inversions occur.
This limitation keeps the possible hydrostatic inconsistencies small. For wind, which tends to
have weaker vertical (changes of) gradients, the upper limit is set to 850 hPa . For humidity,
finally, it is set to 700 hPa , and furthermore, model-level increments are even discarded below
900 hPa , since thin cloud layers tend to be captured better by observation-level information.

Quality Weights

In preparation of the vertical interpolation weight (Section 3.7.2), which can be seen as
a quality weight, an effective interpolation distance ∆zie is assigned to each observation
increment. It is computed from the two individual distances ∆za , ∆zb between the target
model (or observation) level, at which the increment is defined, and the nearest observation
(resp. model) level above resp. below. The relationship between these distances is the same
as that between a total resistance and two parallel resistances, i.e.

∆zie =
( 1

∆za
+ 1

∆zb

)−1
(3.38)

This means that the larger the individual distances and in particular the larger the minimum
of these two distances is, the larger the effective distance will get, and the smaller the quality
weight related to the observation increment will become. In the absence of significant-level
data, when increments instead of observations are interpolated to the model levels, the indi-
vidual distances themselves are equal to the geometric distances plus the effective distances
which have previously been determined at the observation levels using Eq. (3.38). For spread-
ing along isentropic surfaces, the geometric distances are replaced by potential temperature
differences, and above the approximate tropopause level (derived from the standard atmo-
sphere), these differences are scaled by a factor of 0.25 to allow for reasonably large quality
weights within the strongly stable stratosphere.

Upper-Air Single-Level Data

For upper-air single-level data, increments are provided only at the observation level pressure
by a simple linear interpolation in log-pressure of the two nearest model values above resp.
below. For observations within the lowest half model layer, an analogous extrapolation is
performed. Upper-air observations below the model surface pressure level are discarded.
With regard to moisture, generalized relative humidity including the cloud water content is
interpolated analogously to multi-level data.

3.5.4 Increments of Integrated Water Vapour

Integrated water vapour (IWV) can be derived from zenith total delay Dt as ’measured’
by ground-based Global Positioning System (GPS) stations. While IWV itself is reported
by some of these stations, it has to be computed from reported zenith total delay for other
stations. This is done by using an algorithm described by Bevis et al. (1994),

Qob = Dv

Rv ·(ks + kl/Tm) , Dv = Dt −
2.2765 · p

1− ε (3.39)

where Qob is the IWV given in [kg/m2] (∼= [mm]) and Dt in [mm], Dv is the zenith wet
delay (i.e. the path delay due to the atmospheric moisture), p the pressure at the GPS station
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in [hPa], Tm = 70.2 + 0.72 · T , T the temperature at the GPS station in [K], Rv the gas
constant for water vapour, ks = 2.21·10−4 , kl = 3.739 , ε = 2.66·10−3 cos (2φ)−2.8·10−7z ,
and φ and z the GPS station latitude resp. height. Pressure p and temperature T are
interpolated or extrapolated from the model values of the assimilation run to the height of
the GPS station.

Provided that the model is run without prognostic cloud ice, an ’ice-to-water’ correction
is then applied to Qob similarly to the correction done for direct (point-wise) humidity
observations in the observation processing (see Section 3.3.4). The corrected value is given
by

Q
corr

ob
= Q

ob
·
Q
water

mo

Qicemo
(3.40)

where Q
water

mo
is the IWV value corresponding to the model specific humidity profile (over

water). The water-to-ice adjusted value Q
ice

mo
is determined by

Q
ice

mo =
∑

ρ·∆z · qv(U ·e
ice

sat
) (3.41)

where the sum goes over the model layers, ρ is the (moist) air density, and ∆z the thickness
of the model layer (resp. its fraction above the GPS station; if the station lies below the model
orography then ∆z for the lowest model layer is set equal to the layer thickness plus the
height difference between orography and station). Specific humidity qv is converted here
from a vapour pressure value that is equal to the model relative humidity U (over water)
multiplied by saturation vapour pressure eice

sat
that is determined over ice below freezing and

over water otherwise.

It is noted that (in contrast to the ice-to-water correction for point-wise humidity data as
given by Eq. (3.16)) the correction for IWV as above is not based on saturation vapour
pressure alone, but also takes the vertical model profile of relative humidity into account.
This is advantageous provided that the vertical structure of simulated relative humidity has
smaller errors than a profile of constant relative humidity. For instance, assuming a perfect
model state, a perfect IWV observation, and no moisture at all in the layers below freezing,
this will result in a zero ice-to-water correction and hence a zero observation increment as
wanted.

Finally, the bias correction (Eqs. (3.17), (3.18)) is added optionally. The threshold quality
control (Section 3.6.1) is then applied to the resulting IWV ’observation’. Observed IWV of
less than 2 kg/m2 is neglected as in such cases, relatively small observation errors, and in
particular an underestimation of IWV, may have strong adverse effects on isolated thin wet
layers e.g. related to low stratus.

Use of IWV data

As IWV is not a model variable, the IWV observation Q
(corr)
ob has to to be converted into

3-dimensional humidity. In other words, the vertically integrated observational information
has to be distributed in the vertical. This is done by defining a profile of specific humidity
’observations’ qvob by a simple scaling of a guess for a profile of specific humidity qvgs , i.e.

qv ob = qv gs ·
Q

(corr)
ob

Qgs
(3.42)
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where the first guess is given by the model values (i.e. qvgs = qvmo , Qgs = Qmo ). If some of
the resulting specific humidity values exceed saturation with respect to the model tempera-
ture, they are reduced to the saturation specific humidity. The resulting qv profile and IWV
are then used as a new guess for a second application of Eq. (3.42), and so on. The process
stops after 20 iterations or when the IWV corresponding to qvob deviates by less than 0.1 %
from Qob .

Quality Weights

Very thin or very cold model layers can contribute only little to IWV even if they are satu-
rated. This means that observed IWV gives little indication of the true (relative) humidity
in such layers. Consequently, they should not be influenced by IWV information as strongly
as thick and warm layers. Quality weights ε proportional to saturation specific humidity
qvsat and layer thickness ∆z are therefore introduced at each model level k such that

ε
k

=
∆z

k
· qvsat k

max
k′

(
∆z

k′ · qvsat k′
) ≤ 1 (3.43)

3.6 Quality Control

Whereas the preliminary quality checks for observations done within the observation pro-
cessing (Sections 3.3 and 3.4) are independent from the model, the quality control procedures
presented here make use of the model fields by comparing the observations to them. Since
the model fields vary in time and each observation is used for relaxation during a certain
period, the result of such a comparison may vary in time. Hence, each observation is quality
controlled several times. Specifically, it is done at the beginning of the relaxation period of
the individual observation, and it is also done for all reports once every 12 minutes. As a
result, an observation may pass the quality control at some times and be used in some parts
of the relaxation period while it may fail at other times and be discarded correspondingly in
other parts of that period.

At a given time, the individual observations are first checked independently from each other.
Then, using the result of these tests, some of the observations are subject to further checks
which relate to several observations at one time.

3.6.1 Quality Control of Individual Observations

In this check, the deviation of each observation from the model fields is individually compared
to a certain threshold value ψthr . If the deviation given by the corresponding observation
increment exceeds the threshold, i.e.∣∣∣ψobsk − ψn+1

F (xk, t)
∣∣∣ > ψthr (3.44)

then the observation ψobsk is considered bad and set passive (i.e. rejected). This concept
assumes that the model fields can be regarded as a fair estimate of the truth. The increment
used in Eq. (3.44) is always defined at the observation level, except for surface pressure data,
where it is approximated by the increment computed at the lowest model level. Related to
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pressure 1000 850 700 500 400 300 250 200 150 100 70 50

TEMP v 11.5 11.5 12.5 15.0 17.5 18.5 17.5 17.5 17.0 16.5 16.0 16.0
aircraft v 10.0 10.0 12.0 14.0 16.0 16.0 16.0 16.0 16.0 16.0
TEMP T 12 10 7 4 4 5 5 6 7 8 8 9
aircraft T 12 10 7 5 5 6 6 7 8 9

Table 3.3: Operational quality control thresholds for upper-air observations at 50 hPa and below.
Pressure levels are in [hPa], wind v in [m/s], temperature T in [K].

wind, the absolute value or speed of the horizontal wind vector increment is checked against
a scalar threshold.

It is noted that for frequent observations, this type of check is appropriate only for sudden
occurrences of rather large errors. It will usually fail to detect a gradual increase of bias
errors from one observation to the next e.g. due to an instrument drift. This is because the
increment in Eq. (3.44) remains limited then, unless other observations or strong dynamical
or physical forcing prevents the model from adjusting to the gradually increasing error.

As the observations are compared to model values instead of true values, the quality control
thresholds should not only take into account the expected observation errors, but also the
uncertainty about the model values. The thresholds for upper-air wind and temperature
are height-dependent and given by Table 3.3 for TEMP radiosonde and aircraft data. The
thresholds for PILOT winds are 90% of those used for TEMP winds. Zero wind (speed) from
aircraft is also rejected if the increment exceeds 5m/s . As can be seen in Table 3.3, the wind
thresholds are largest around the upper-tropospheric jet level. In contrast, the temperature
thresholds are large in the low troposphere to allow for modelling errors in cases of strong
low-level inversions. Optionally, the thresholds given in Table 3.3 can be multiplied with any
constant factor and complemented by non-zero height-independent constant values.

For relative humidity U , the basic threshold is given as function of observation error σo and
model background error σb , which are prescribed as follows:

Uthr (1,3) = min
[(
σ 2
o + σ 2

b

)1/2
, 2 σb

]
· cflag (1,3) (3.45)

where σo = 10 % ( 15% for To < 233K , 20% for Uo < 20 % ) , σb = 10 % ( 15% south of
30N ), and the constant cflag (3) = 3.1 ( cflag (1) = 1.8 for flag 1 as used in the multi-level
check, see Section 3.6.4). This formulation is the same as in the global 3DVAR analysis of
DWD and leads to a threshold of 44 % in conditions prevailing in the low and mid-level
troposphere over Europe.

However, in strongly stable situations and in particular at inversions, model errors are known
to be increased often. The assumed background error σb is therefore enhanced by 2 terms
selectively for those humidity observations at which the observed lapse rate β to the next
humidity observation further above or below is β > βcrit = −0.0065K/m :

σb → σb · (1 + fstable + finvers) (3.46)
fstable = 1/4 · (1− min(β, 0) / βcrit) · (1 + cs) , cs = ∆βT/(1 + ∆βT )
finvers = 1/5 · max( ∆T , 0 ) · (1 + ci) , ci = min( 2 , β / 0.05 )
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∆T = Tk − Tk−1 , where Tk and Tk−1 are the temperature observations at the humidity
observation level k respectively at the next level k−1 further below. ∆βT = T βk − Tk−1 ,
where T βk is Tk extrapolated to level k−1 with the lapse rate βcrit . Both terms fstable and
finvers increase with increasing stability and with increasing thickness of the stable layer
(given by the two successive humidity observation levels). Finally, an upper limit of 70 %
is imposed. As an alternative to this stability-dependent threshold used operationally, the
threshold for relative humidity can also be prescribed by a simple constant.

For the surface-level observations, the threshold values are 12m/s for SYNOP wind, 6m/s
for DRIBU wind, 12K for 2-m temperature, and 70 % for 2-m relative humidity. For near-
surface pressure, the basic threshold is 4.5 hPa for DRIBU reports and 5 hPa for the other
reports except for those SYNOP reports which also issue observed 3-hourly pressure ten-
dency. In this case, it is given by

pthrs = 4 [hPa] + 0.6 ∂ps
∂t

∣∣∣∣
kobs

[hPa3h ] (3.47)

The inclusion of pressure tendency reflects to some extent the increased variance of errors in
areas of large pressure gradients. In particular, this applies to cases of explosively developing
small-scale cyclones, where e.g. moderate phase errors in the model fields produce large
pressure errors, and it is reasonable that the resulting thresholds can exceed 15 hPa .

For GPS-derived IWV data, the threshold is set to 0.15 · Qsat , where Qsat is the IWV
corresponding to the model temperature profile and assuming saturation. With this choice,
the threshold is expressed in terms of a relative rather than absolute quantity, in analogy to
direct (point-wise) humidity data.

In general, the threshold values specified above are valid at the observation time only. As
already mentioned, quality control is performed at other times too, e.g. at the beginning
of the nudging time window for each observation, when the model state at the observation
time is not available. Hence, the observation has to be compared to the model state of a
different time, and this state is not as good an estimate for the truth at the observation time.
Therefore, the thresholds are linearly enhanced by a factor f∆t for each hour of difference
∆th between model and observation time. In the operational setting, where the equations
3.45 and 3.46 are applied, f∆t = 20 % for surface pressure, f∆t = 10 % for wind and
temperature, and f q∆t = 3.4 % for relative humidity. The rationale behind the small value
for humidity is that due to the small-scale variability and large uncertainty of the humidity,
the threshold is already large at observation time und should not be strongly increased off
the observation time. If, however, equations 3.45 and 3.46 are not used (this is an option
that has been used operationally in the past), f∆t = 20 % for all variables. As a general
exception (i.e. independently from the scheme used for the humidity threshold), the pressure
thresholds which include observed tendency are kept constant since they already account for
time dependency. E.g. for small tendencies, the pressure field can be regarded as nearly steady
and is likely to contain only moderate gradients, so that even the model state away from the
observation time should provide a good estimate of the truth. Hence, a small threshold of
little more than 4 hPa is justified then.

If a temperature observation fails to pass the threshold quality control, then at least either
the relative humidity or specific humidity value from the corresponding humidity observation
has to be assumed erroneous too. Therefore, humidity is generally rejected in such a case.
Furthermore, if aircraft wind or temperature fails the threshold check the whole single-level
aircraft report is rejected.
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3.6.2 Spatial Consistency Checks

An additional quality control step is performed by checking the horizontal consistency for
vertically integrated quantities, namely surface pressure (representing the vertically inte-
grated air mass above the surface) and vertically integrated water vapour (IWV). It is based
on the idea to find an improved estimate of the truth by correcting the model value with the
help of observation increments in the vicinity. These increments do not have to be valid at
exactly the same time as the observation that is quality controlled. However it is important
to mention that past or future observations from the same station as the checked observation
are not used to compute the improved estimate of the truth at that station location. Thus
this check does not consider the temporal consistency of a sequence of observations from a
particular station. If the temporal consistency were also taken into account then bad data
e.g. from a drifting buoy would be even more difficult to detect in cases where the observed
values drift away from the truth slowly and gradually.

Surface Pressure

For this additional check, the individual threshold quality control presented above is refined
at first such that each surface pressure observation is assigned to one of four classes labelled
’good’, ’probably good’, ’probably bad’, respectively ’bad’. The three threshold values used
to distinguish between the four classes are given by 0.7 · pthrs , pthrs , and 1.5 · pthrs , where
pthrs is the original threshold value specified above e.g. by Eq. (3.47). ’Good’ observations
are let pass the quality control automatically, whilst all the other observations are subject
to the consistency check.

At the location xk of each of these observations k , a weighted sum ∆p sccsk
of spread obser-

vation increments from all the neighbouring except ’bad’ observations j is computed, i.e.
(with superscript ’scc’ denoting ’spatial consistency check’)

∆p sccsk
=

∑
j 6={k,bad}

w
2
kj ·

(
psj − ps(xj , t)

)

max

 ∑
j 6={k,bad}

w
2
kj , 1

 (3.48)

This means that (only) the ’bad’ observations are not used for trying to improve the estimate
of the truth. Apart from two exceptions related to temporal aspects, the weights wkj are
computed in exactly the same manner as for the spreading of pressure increments in the
context of computing the analysis increments (see Section 3.7). Firstly, the correlation scale
s (see Section 3.7.3) is held constant at 85 km (instead of varying between 70 km at obser-
vation time and up to 100 km at other times, cf. Section 3.7.5). Secondly, the asymmetric
temporal weight function (see Figure 3.8) used for the relaxation is replaced here for quality
control by a symmetric linear function covering a time window of ± 2 hrs . Thus, simulta-
neous observations obtain a temporal weight of wt = 1 , whilst observations from one hour
before or later get a weight of wt = 1/2 (i.e. a relative weight of wt = 1/4 after squaring
wkj in Eq. (3.48)).

The weighted sum ∆p sccsk
is used as a correction or bias to the model value to provide a

better estimate of the truth. The threshold quality control for individual observations can
then be repeated with the new estimate and a modified threshold value, i.e.∣∣∣ psk − (

ps(xk, t) + ∆p sccsk

)∣∣∣ > pthrsccs (3.49)
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On the one hand, the threshold is reduced depending on the sum of weights used to compute
the correction ∆p sccsk

. This sum reflects the additional content of information in the new
estimate. If it is small, the reduction of the threshold should be small, and vice versa. On the
other hand, a large correction or bias |∆p sccsk

| tends to indicate increased uncertainty about
the estimate. Therefore, the threshold is enhanced by a fraction of the bias and finally reads

pthrsccs =
(

1 − 0.2 ·min
(

1/2

∑
j
w

2
kj , 1

))
· pthrs + 0.5 ·∆p sccs (3.50)

where pthrs is the time-dependent threshold used in the check for individual observations
(Section 3.6.1). It follows that the smallest threshold values of about 3.2 hPa will occur in
data-dense areas with small pressure tendency and small increments at the neighbouring
stations.

Integrated Water Vapour

The check for integrated water vapour is very similar to the one for surface pressure. Its
purpose is to detect a general offset in a radiosonde humidity sounding, or an error in a
ground-based GPS zenith path delay measurement. As a first step, observation increments of
IWV are derived from radiosonde humidity profiles and (optionally) also from ground-based
GPS zenith path delay data. At the location of each IWV ’observation’ Qk , an ’analysis
increment’ ∆Qscck is then computed using only the neighbouring observations Qj 6=k :

∆Qscck =
∑
j 6=k w 2

kj ·
Qsat(xk,t)
Qsat(xj ,t) · (Qj − Q(xj , t) )

max
(∑

j 6=k w 2
kj , 1

) (3.51)

Here, Qsat(xk, t) is the IWV derived from the model temperature profile at the observation
location assuming saturation. The Qsat term scales the observation increment, mainly in
order to account for differences in orographic height. This is important since the main con-
tribution to IWV comes from the humidity at low levels. Such a term has been neglected
in the pressure check. The weight wkj consists of a horizontal weight (equal to that used
for the nudging of radiosonde humidity data at 850 hPa respectively for GPS data), and of
a temporal weight (given by a linear function of time within ± 2h respectively ± 1h from
the observation time).

The spatial consistency check of IWV is again a revised first guess check, in which the model
background is corrected by the above ’analysis increment’ in order to obtain a better estimate
of truth. The complete humidity profile of the sounding k (or the GPS IWV ’observation’
k ) is rejected if

| Qk − (Q(xk, t) + ∆Qscck ) | > Qthrscck (3.52)

This check corresponds to a first guess check of IWV if there are no neighbouring observations
influencing the observation location xk . This usually applies approximately if GPS data are
not used. The basic threshold Qthrk depends on temperature and is set to (in [mm] ; for the
definition of f q∆t , ∆th , see Section 3.6.1):

Qthrk =
(

1 + 0.15 ·Qsat(xk, t)
)
· f q∆t∆th (3.53)

In the presence of many neighbouring IWV observations, however, the check addresses the
spatial consistency between them. The more observations are used for the ’analysis incre-
ment’, the more accurate the estimate of truth, and the smaller the threshold Qthrscck should
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be set. On the other hand, the larger the ’analysis increment’ and hence the disagreement
between model and observations, the more uncertain the estimate of truth, and the larger
the threshold should be. Therefore, the following correction is applied to Qthrk :

Qthrscck =
(

1 − 0.2 ·min
(
0.2 ·

∑
j
w

2
kj , 1

))
·Qthrk + ∆Q scc

k (3.54)

3.6.3 Check of Surface Pressure against Lateral Boundary Fields

It is already pointed out in section 3.6.1 that during active nudging, the threshold quality
control using the model fields as a proxy for the truth often fails to detect a gradual increase
of errors from one observation to the next which may occur e.g. due to an instrument drift.
This is because the model fields themselves are affected by the increasing errors as a result of
being drawn continuously towards the erroneous observations. This process prevails until the
dynamics and physics forcing counteracts the erroneous nudging tendencies to a sufficient
degree so that the difference between model field and observations become larger than the
quality control threshold. Once an observation has been rejected, the errors in the model
fields decrase because of the lacking nudging tendendy, and subsequent erroneous data from
that station are usually also rejected.

Such a behaviour has been found about once a year on average in the operational COSMO-
EU configuration of DWD. Its model domain includes fairly large areas over sea, and each
event was caused by a sequence of erroneous surface pressure observations from a single
drifting buoy. Since there were no other observations nearby the respective faulty buoy, the
spatial consistency check was also not successful enough in detecting these observation errors,
even though this was the check that eventually detected the errors first. As a result, surface
pressure analysis errors amounted to one or even several tens of hPa . At the same time,
operational global analysis systems such as the 3-dimensional variational (3DVAR) scheme
of DWD for the global model GME were found to be largely unaffected by this problem. The
main reason is that in these systems, which do not deploy observation nudging, the model
is not continuously drawn towards the observations. In the free forecast of 3 hours or more
from one analysis time to the next, the model dynamics and physics have then enough time
to let the model fields evolve away from the observation at the next analysis time, if the
observation error is large enough. Moreover, the weight of an observation in the analysis is
already reduced by a variational quality control even if the deviation of the observed value
from the model first guess field is still somewhat below the limit of the threshold quality
control (called first guess check in this context).

It follows that if the fields which provide the lateral boundary conditions for the COSMO
run (hereafter called ’LBC fields’) are derived from an NWP system using variational data
assimilation, they are typically less affected by this type of erroneous observations. As a
result, the LBC fields should be a better proxy for the truth than the COSMO fields in this
situation.

Therefore, and exclusively for (all) surface pressure data, an additional quality control step
is performed, where the model field is replaced by the LBC field both in the individual
threshold quality control and the spatial consistency check. By default, the constant part of
the thresholds for the original checks is enhanced by a factor of 1.4 . For DRIBU reports,
this implies a threshold of 6.3 hPa instead of 4.5 hPa at observation time.

This additional quality check tends to tide the COSMO initial conditions somewhat to the
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solution of the steering (global) model. However, it is noted that the COSMO model, even
with data assimilation, still has the freedom to develop its own, very different solution com-
pared to the global one. The restriction is, that with the additional check, it can do this
only by itself (because of different dynamics, physics, resolution, etc.) or by assimilation of
observations other than surface pressure. Only where surface pressure data would impose
large changes to the analysis, this check tides the COSMO initial conditions closer to the
global ones. The increased thresholds in the LBC checks leave some room for the possibility
that (particularly for cases of small-scale cyclones with strong pressure tendencies), COSMO
can continue to use correct surface pressure data where the global system is likely to reject
them.

3.6.4 Multi-level Check and Hydrostatic Thickness Check

The checks presented here relate to multi-level reports only.

Multi-level Check

The so-called multi-level check is applied to each variable (horizontal wind, temperature,
humidity, and height) separately. It relies on the following consideration. If a certain amount
or fraction of observations has been rejected by the gross error checks or the individual
threshold quality control then it is fairly probable that a general problem, e.g. related to
the measuring instrument, exists and affects all data of that type. Consequently, the whole
profile or at least a part of it is rejected when certain criteria are met.

The rules are as follows. All data (always with respect to one variable) are rejected if at least
50 % out of totally at least 3 observations have failed in any of the previous checks (in the
threshold quality control, but also the observation processing (except for the blacklisting).
For radiosondes, furthermore, the same happens if all or 4 subsequent mandatory-level data
have failed previously. And if at least 50 % of all data within 3 subsequent mandatory levels
have not passed the checks, then all data within this height range are rejected.

If the stability-dependent humidity quality control thresholds are used (operational setting,
see Section 3.6.1) then the following check is added (for wind, temperature, humidity, and
height):

• Analysis layers are defined equal to the standard layers except below 700 hPa , where
the thickness of the analysis layers is reduced to 50 hPa and below 800 hPa to 25 hPa .

• Criterion: If 4 or all consecutive standard layers contain observations with flag ≥
1 , then these standard layers are set to ’rejected’. Each analysis layer within those
rejected standard layers is set to ’rejected’ if it contains observations with flag ≥ 1 .
All observations within these rejected analysis layers are rejected.

For wind, temperature, and height, flag ≥ 1 is equivalent to being rejected in the quality
check for individual observations, i.e. the thresholds given in Section 3.6.1 are deployed,
and there is no distinction between flag set to 1 or to 3 in contrary to humidity. Finally
note that rejection of temperature data always implies rejection of corresponding humidity
observations.

Hydrostatic Height and Thickness Check
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p 1000 850 700 500 400 300 250 200 150 100 70 50 30 20 10
σz 4.3 4.4 5.2 8.4 9.8 10.7 11.8 13.2 15.2 18.1 19.5 22.5 25 32 40

Table 3.4: Standard deviation σz of radiosonde height error in [m] on standard pressure levels (p
in [hPa]). (From ECMWF Met. Bull. M1.5/2, 2000 .)

This check is designed to identify large biases of multi-level temperature data relative to
the model fields over considerably large vertical extents. In that sense, it can be regarded
as a hydrostatic quality control of indirect observational information on geopotential and
thickness. It is applied only to reports which extend over at least 50 hPa .

In order to anticipate the hydrostatic effect of the assimilation of a multi-level temperature
observation profile on model geopotential, the profile is extended vertically. Apart from
the fact, that only the increments at model levels are used here, it is done in the same
way as for the spreading (cf. Section 3.7.1) later on. Specifically, the increment at the base
is spread downwards as far as to the cut-off height and is assigned vertical weights. The
analogous procedure is applied at the top. Using the exact model-consistent formulation
of the hydrostatic equation, the profile of temperature increments is then converted into
a profile of pressure increments. If a pressure increment at the lowest model level derived
from reported geopotential data is available, it is also accounted for. Next, the pressure
increments are converted into a profile of height increments using the standard formulation
of the hydrostatic approximation. Finally, a profile of height increments at the temperature
observation levels is obtained by linear interpolation in log-pressure.

For long temperature profiles, which are defined not to be enclosed by any three consecutive
standard pressure levels (cf. Table 3.4), a hydrostatic threshold quality control of height is
done first. This means that the individual height increments are compared against thresholds
using Eq. (3.44) as in Section 3.6.1 . The thresholds z thr are given by

z thr =
√
σ 2
zb

+ σ 2
z ·
√
Li ·f∆t = σz ·

√
3Li ·f∆t = σz ·

√
3Li · (1+ 0.2·|t−tobs|) (3.55)

This makes use of the assumption that the error variance of the model fields σ 2
zb

is twice
as large as the observation error variance σ 2

z . σz depends on the pressure level of the
observation and is given by Table 3.4. f∆t denotes the time dependency and describes a
linear increase of 20 % for each hour of difference ∆h between model time t and observation
time tobs (in [hours]). Li={1,2} is a constant and takes two different values. Only if any height
’observation’ fails to pass the check with L1 = 10 , then the whole profile will be subject to
the thickness check subsequently. The lowest observation that does not pass the check with
the use of L2 = 20 is labelled ’probably bad’.

Within the vertical extent of long profiles, thickness is then checked for layers limited by
two standard pressure levels with exactly one standard pressure level in between. Two ex-
ceptions are made in the lower troposphere so that the lowest four intervals are given by
[1000 , 700], [850 , 700], [700 , 500], and [500 , 300] hPa . Additionally, the layer between the
lowest temperature observation level and the nearest but one standard level further above is
also checked (this standard level is set to 700 hPa whenever the lowest observation level is
below 850 hPa). The same applies to an analogous layer at the top of the profile. To compute
thickness increments between standard levels, height increments are interpolated linearly in
log-pressure from the observation levels. The thresholds are specified analogous to Eq. (3.55)
with σz replaced by σ∆z . Thickness error variance σ∆z can be expressed as a function of
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pm 1000 850 700 500 400 300 250 200 150 100 70 50 30

C
zm,zm+1 .716 .733 .573 .851 .814 .935 .919 .895 .861 .929 .951 .878 .881

C
zm,zm+2 .276 .183 .268 .480 .601 .738 .678 .597 .649 .782 .710 .598 .426

C
zm,zm+3 .029 .055 .077 .288 .364 .458 .361 .375 .460 .480 .412 .192

Table 3.5: Height error correlation C zm,zm′ between standard pressure levels m and m′ of pressure
pm , pm′ (in [hPa]). (From ECMWF Met. Bull. M1.5/1, 3rd Ed., 1992 .)

height error variances σzu , σzl at the upper respectively lower limit of the layer and the
correlation C zu,zl between the two height errors, so that

∆z thr =
√

3Li · f∆t · σ∆z =
√

3Li · f∆t ·
√
σ 2
zu + σ 2

zl
− 2 σzu σzl C

zu,zl (3.56)

The height error correlations between standard pressure levels m are given in Table 3.5. The
correlation C zm,zj between a standard level m and an observation level j which is located
between standard levels m1 and m2 is obtained by linear interpolation in log-pressure of
correlations C zm,zm1 and C zm,zm2 . Analogously, correlations between observation levels can
be computed by interpolation of correlations of type C zm,zj . In Eq. (3.56), L1 = 10 is used,
yet height error variances σ 2

z above the 100-hPa pressure level are enhanced by a factor of
L2/L1 = 2 to allow for relatively larger stratospheric thickness thresholds. As a result of
the choice of all these parameters, the threshold for the mean temperature error within a
tropospheric layer of the order of 200 hPa varies around 3.5K .

If the ’observed’ thickness fails to pass this check in certain layers, then all temperature
observations are rejected between the base height of the lowest of these layers and the
top height of the uppermost failing layer. If a height observation further below has been
labelled ’probably bad’ in the height check, then the range of rejected observations is extended
downwards accordingly. The whole temperature profile at and above such a ’probably bad’
height observation is rejected, if there are no layers that fail in the thickness check. Short
temperature profiles, which do not meet the criterion for ’long’ profiles, are subject only to
one thickness check for the layer between the lowest and uppermost active observation.

Finally, it is noted that if any temperature observations have been rejected in the hydrostatic
height and thickness check the corresponding humidity (and height) observations are also
rejected. And since observed temperature and humidity interpolated to the model levels has
been computed previously in order to be used in this check, and since these interpolated
values depend on the results of quality control, they have to be re-computed for later use.
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3.7 Spreading of Observational Information

This section deals with the way in which the observational information contained in the
observation increments and in the quality measures assigned to these increments is spread
explicitly to the model grid points (hereafter often called target grid points).

The rationale behind the spreading is related to the fact that it is not sufficient to correct
the model only at the location of an observation (see Figure 3.4). If the model value is to be
corrected at that location, it must be assumed to have an error prior to the correction. The
smoothness of the meteorological fields then suggests that the corresponding model field is
likely to contain a similar error in the close vicinity. The confidence about this error will
generally decrease with increasing distance from the observation. Hence, the same correction
as at the observation location should be made in the vicinity, however it should be weighted
by the confidence which is described statistically by the correlation of the errors. In data
assimilation schemes, these correlations are often expressed by functions, and in the context of
nudging, these correlation functions or ’structure functions’ are often called weight functions.
The correlation functions largely determine the explicit spatial spreading of the observational
information to the target grid points.

The spatial spreading consists of two main steps. At first, incomplete profiles and single-level
increments are extended vertically with the outermost available observation increments and
provided with vertical weights wz . The second step is the lateral spreading which comprises
of the correct selection of the observation increments and vertical weights for each target
grid point and the evaluation of the lateral correlation functions.

With respect to time, it is inherent to the concept of relaxation or nudging, that corrections
should be made not only at the observation time but over a certain period of time. The
temporal weight function determines the explicit temporal spreading of the observational
forcing to the model time.

It should be noted that due to the relatively large uncertainty about the optimal way of
spreading and specification of weight functions, very high accuracy is generally not needed
in the subsequent computations. And it is mentioned that prior to the spreading, the reports
are sorted in a unique order (according to their location, time, and other properties) so as
to allow for reproducible results at different domain decompositions in distributed-memory
computer environments.
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Figure 3.4: Schematic illustration on lateral spreading.
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3.7.1 Vertical Spreading at the Observation Location

Upper-Air Data

The weight function deployed for the vertical spreading of upper-air wind is chosen to match
well the formulation that is proposed by Barwell and Lorenc Barwell and Lorenc (1985)
and used in the former analysis correction scheme of UKMO (Lorenc et al. (1991)). This
was a Gaussian in log-pressure differences between the observation increment level and the
target model levels. Since the vertical coordinate in COSMO is height instead of pressure,
this is approximated by a Gaussian in height differences assuming that the mean virtual
temperature between the two levels equals the virtual temperature at the uppermost resp.
lowermost increment level, T zobsv . The correlation function then reads

wz = e

−
(

[g/(RT zobsv )] ·∆z
ln pc

)2

(3.57)

where ∆z = z − zobs , and the correlation scale ln pc is equal to 1/
√

3 . The analysis of
single-level data benefits from a cut-off on this function outside a radius of influence centred
at the observation level. Thus, the vertical weights are set to zero beyond the upper resp.
lower cut-off height zcut given by

g

RT zobsv
·
∣∣∣zcut − zobs ∣∣∣ = czcut = 1/2 (3.58)

It follows that the value of the correlation function at the cut-off height is equal to e−3/4 .
It is reminded that both the correlation scale and the cut-off heights are adjusted for pairs
of aircraft reports which are (vertically) close to each other (see Section 3.4.4).

For upper-air temperature and humidity data, the same correlation function is used except
that the scale ln pc is set to 0.2 to make it similar to temperature correlations used in other
schemes. It confines the influence of these mass field data to a smaller area in the vertical, and
this supports the assimilation according to the geostrophic adjustment theory (see Section
3.8.1). By setting czcut = ln pc = 0.2 , a smaller fraction of the function is cut off.

Generally, it should be mentioned that the exact specification of the correlation functions
and its parameters is not (yet) based on the statistical errors of the COSMO model itself.
Although this could and possibly should have been done, the task to do this has never had
high enough priority in the past. The main reason for that is that the performance of the
nudging scheme is significantly less dependent on the precise shape of these functions than
3-dimensional analysis techniques such as Optimum Interpolation or 3DVAR.

It is finally noted that the vertical correlation functions are expressed as a Gaussian of
potential temperature differences if the observation increments are optionally spread laterally
along isentropic surfaces (see Section 3.7.2). Above the approximate tropopause level at
225 hPa , the Gaussian radius used elsewhere is enhanced by a factor of 4 to yield a relatively
smooth transition of the vertical weighting from the troposphere to the stratosphere.

Surface-Level Data

In the basic formulation for surface-level data, the same type of vertical correlation function
(i.e. Eq. (3.57), or a Gaussian of potential temperature differences for the optional spreading
along isentropic surfaces) is used as for upper-air data. For 10-m wind, the cut-off parameter
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czcut is also set to 1/2 , and the correlation scale is chosen such that the cut-off height zcut and
range of substantial direct influence is about 850m . For 2-m humidity, setting ln pc =

√
0.002

yields an e-folding decay height of about 300m . However, due to problems related to the
surface-layer parameterization and the limited representativeness of the data, the original
cut-off height of about 600m is reduced to the lowest model level in the current operational
version.

In addition to the basic weight as a function of height, an additional weight factor reflecting
the stability in the planetory boundary layer (PBL) can be introduced optionally. This ’PBL
weight’ consists of a Gaussian in the difference ∆ΘPBL between the potential temperature
at the target level and the minimum of the potential temperature at the observation level
and at the lowest model level. The inclusion of that minimum yields very small weights in
strongly stable cases when the ground is largely decoupled from the atmosphere and the
surface-level observations are of a very limited representativeness.

To avoid the formal spreading of increments to areas where the vertical weights are very
small, the cut-off height should also be adjusted. This is done in such a way that at the new
cut-off height zPBLcut , the total vertical weight wcutz takes the same value as the basic weight
(without PBL weight) at the original cut-off height. This makes sense particularly if that
value is small, i.e. if even smaller values can be neglected. The above relationship reads

w
cut

z = e

−
(

∆zPBLcut

zs

)2

· e
−

(
∆ΘPBLcut

ΘPBLs

)2

.= e

−
(
cscut
ln pc

)2

= e

−
(

∆zcut
zs

)2

(3.59)

where zs is the correlation scale equal to [(RT zobsv /g] · ln pc , and ΘPBL

s is the correlation
scale of the PBL weight. It follows that

(∆zcut)
2

=
(
∆zPBLcut

)2
+

(
zs

ΘPBL

s

)2
·
(
∆ΘPBL

cut

)2
(3.60)

This is an implicit equation for the new cut-off range ∆zPBLcut since ∆ΘPBL

cut also depends on
it. ∆zcut can be regarded here as an effective distance which is made up of the geometric
distance ∆zPBLcut and a kind of thermal distance. Equation (3.60) can be solved for ∆zPBLcut

approximately by computing this kind of effective distances ∆zeff (k) at every model level k ,
by finding the model levels kc and kc−1 for which ∆zeff (kc) ≤ ∆zcut ≤ ∆zeff (kc−1) , and
by interpolating linearly between these two levels so that the interpolated effective distance
is equal to ∆zcut . The geometric interpolation level is then set to the new cut-off height.

As already mentioned, this approach makes sense if the original basic weight at the original
cut-off height is small. That is the case for humidity for which this weight takes the value
e−(∆zcut/zs)2 = e−4 . For wind, however, it is e−3/4 , i.e. rather large, and therefore, the
above computation is done by setting ∆zcut = 2zs in Eq. (3.60). The final cut-off height is
then defined to be the minimum of the resulting ∆zPBLcut and the original ∆zcut . This means
that the cut-off height for 10-m wind data is reduced only in rather strongly stable cases for
which the final weight would become smaller than e−4 at the original cut-off height.

It is mentioned finally that for the optional spreading along isentropic surfaces, height z is
replaced by potential temperature Θ everywhere in Eqs. (3.59) and (3.60). Thus, Eq. (3.60)
can be solved analytically for the new cut-off range ∆Θcut :

∆ΘPBL

cut = ∆Θcut ·

1 +
(

Θs

ΘPBL

s

)2
−1/2

(3.61)
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3.7.2 Basic Types of Lateral Spreading

As mentioned in the introductory remarks of Section 3.7, the lateral spreading comprises
of two parts. The current section addresses the selection of the observation increments and
vertical weights for each target grid point, whereas the subsequent Sections 3.7.3 to 3.7.5
deal with the lateral correlation functions used to define the lateral weights.

In nudging-type schemes, the conventional way to spread or extrapolate the observation in-
crements laterally to (target) model grid points is along the model levels. For terrain-following
coordinates as deployed in COSMO, this can have adverse effects near steep orography, par-
ticularly in cases with low stratus stratus associated with an inversion (Schraff (1997)). For
instance, low-level radiosonde data increments can be spread along the sloping surfaces from
low terrain upwards across the inversion to high areas which are largely decoupled from the
observation location. Therefore, two other, more expensive types of lateral spreading are also
implemented in the COSMO scheme. This is spreading along purely horizontal surfaces, and
spreading along isentropic surfaces. In particular on isentropic surfaces, flow patterns are
spatially and temporally more coherent, and the isotropic correlation assumption (see Sec-
tion 3.7.3) is better founded (Benjamin (1989)). Both types of spreading significantly reduce
the adverse effects mentioned above.

In the operational setups of COSMO, upper-air data are spread along horizontal surfaces,
(partly) because isentropic spreading has turned out to be too expensive. In contrast, surface-
level data, i.e. the small pieces of vertical profiles of weighted increments just above the
ground as resulting from vertical spreading, are spread along the model levels. This confines
the direct influence of these data to close to the ground, and hampers the spreading of
observational information from elevated mountain surface stations to the free atmosphere
over valleys or basins such as the Swiss Plateau or Po Valley. Note that the uppermost few
model levels of the operational COSMO setups are horizontal, and spreading along model
levels is exactly horizontal there.

Whenever the lateral spreading is along model levels, the observation increments and vertical
weights are computed at the model levels. For each target grid point, the increment from the
same model level is then selected together with its vertical, temporal, and quality weight,
and spread to the target grid point by assigning a lateral weight (see Sections 3.7.3 to 3.7.5)
to it.

For spreading along horizontal surfaces, the observation increment for any given target grid
point is related to the increment at the same height at the horizontal observation location.
This means that for a single-level observation, the vertical weight is determined by applying
Eq. (3.57) to the vertical distance between the observation point and the target grid point.
For surface-level observations, this can be complemented by the corresponding stability-
dependent weight. The increment, the quality weight of the increment, and the temporal
weight are then assigned to the target grid point together with this vertical weight and with
a lateral weight.

For (incomplete) multi-level profiles of observation increments, the same procedure is applied
to the uppermost or lowermost increment if the target grid point lies above the top level
resp. below the base level of the profile. For any target grid point in between, the nearest
observation increments above and below are interpolated linearly in height to the target
height level. The vertical weight which can otherwise be regarded as an extrapolation weight
is replaced here by an interpolation weight. It is determined by applying Eq. (3.57) with
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the same Gaussian radius to a total effective interpolation distance ∆ztie . This distance is
computed from the two individual effective distances between the target level and the nearest
increment level above ∆zae resp. below ∆zbe in the same way as a total resistance from two
parallel resistances, i.e. 1/∆ztie = 1/∆zae + 1/∆zbe . Each of these two individual effective
distances is the sum of the corresponding geometric distance (in log-pressure units) plus an
effective quality distance assigned to the observation increment (cf. Section 3.5.3). Note that
an analogous Gaussian weight which is based only on the effective quality distance is also
applied for single-level data and for spreading along model levels. A lower limit of 0.2 for the
log-pressure Gaussian radius is used in the context of these effective distances. (This avoids
too strong a reduction of weights due to interpolation even if the Gaussian radius used for
the vertical weights is very small.)

Spreading along isentropic surfaces is basically analogous to horizontal spreading if the height
levels and vertical distances are replaced by model potential temperature surfaces and dis-
tances. However, a disadvantage to isentropic coordinates is that the vertical resolution
decreases as the atmospheric stability decreases. Hence in case of a near-neutral stratifica-
tion either at a radiosonde location or at a target grid point, a small error in the simulated
temperature could result in a large error in the height level zΘ at which the increment is
determined. Moreover, if the model atmosphere exhibits an (unconditional) instability at the
radiosonde location, zΘ may even be ambiguous because the same potential temperature
values may occur several times within the profile. To alleviate these problems, the following
strategy is adopted. Firstly, within the vertical interval of ambiguity, the model potential
temperature profile at the radiosonde location is replaced (for the purpose of finding zΘ

only) by a stable profile where potential temperature varies linearly in log-pressure between
the range of values that have been ambiguous in the original profile. Secondly, if the stabil-
ity at the target grid point is below a threshold (chosen such that a temperature error of
1K corresponds to a height error of about 500m for typical low-tropospheric conditions),
the observation increment for the target grid point is a weighted linear combination of two
increments computed by spreading along isentropic resp. horizontal surfaces. For neutral
or instable conditions, the spreading is performed exclusively horizontally. At high levels
(i.e. above about 220 hPa), the observation increments are also spread horizontally along
the model levels. In all these cases, however, the vertical weight function always remains a
Gaussian in potential temperature differences.

It is also mentioned that prior to the spreading, the temperature observation increments are
converted to potential temperature increments which are conserved quantities with adiabatic
flow along isentropes. This would preserve the shape of the isentropic surfaces if the (lateral)
weights did not vary.
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p 1000 850 700 500 400 300 250 200 150 100 50
sT , sq 58 66 75 83 83 83 83 91 100 100 100

Table 3.6: Correlation scales for temperature s
T

and humidity sq in [km] at the
observation time as a function of pressure p (in [hPa]).

3.7.3 Lateral Weights for Scalar Quantities

Basic Correlation Function

In the basic formulation, the lateral weighting for scalar quantities is assumed to be homoge-
neous and isotropic. The correlation function deployed is a simple second-order autoregressive
function of the distance ∆r between the observation location and the target grid point,

wxy = (1 + ∆r/s) · e−∆r/s (3.62)

For small separations (∆r/s) , wxy falls off a little faster with distance than a Gaussian, and
this tends to yield a better resolution of small-scale details. And its longer tail is of benefit
in data-sparse areas. Hence, this function has been widely used in nudging-type schemes.

The correlation scale s for upper-air data is a function of time and of pressure level. As
indicated in Table 3.6, the value for temperature and humidity valid at the observation
time increases from about 60 km in the boundary layer to 83 km in the middle to upper
troposphere and 100 km in the stratosphere. Hence at 500 hPa , wxy = 1/2 is at a distance
of about 135 km . Optionally, sq as used for radiosonde humidity (see Table 3.6) is scaled
by a factor of e.g. 45 % for the humidity profiles derived from GPS IWV data in order to
account for their high horizontal data density. Generally, all the correlation scales for upper-
air data are linearly enhanced with increasing difference between observation time and model
time by a maximum amount of 30 % . Since the temporal weight decreases with increasing
distance from the observation time (cf. Section 3.7.6), it follows that any observation enters
the assimilation with low weight affecting rather large scales. As the model time approaches
the observation time, the observation affects smaller scales with high weight. This strategy
which is also adopted by standard successive correction analysis schemes has the effect to
speed up convergence, and tends to compensate for deficiencies in the correlation functions.

Analogous to the vertical correlation functions, the lateral correlation functions are also cut
off at some distance. The cut-off radius which determines the horizontal radius of direct
influence of an observation is simply a fixed number of correlation scales, namely 2 ·s for
humidity and 3.5·s for the other quantities. As a result, it is also time-dependent for upper-air
observations (in terms of km ).

It is noted that the area of influence is determined for each observation in a step-wise way for
the sake of efficiency. At first, the minimum upper limit for the vertical range of influenced
model levels is established (both on the total and on the local domain in distributed-memory
applications). Then, depending on it, the minimum upper limits for the longitudinal and
latitudinal range of grid points are provided for the total report, for the individual variables
on all levels, and finally for the individual variables on the individual model levels prior to
the exact determination of the grid points that are within the area of influence.
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Non-Isotropic Correction

The problem of reduced representativeness that has been mentioned in Section 3.7.1 and
occurs particularly for spreading along the sloping model levels can also be addressed by
complementing (i.e. multiplying) the isotropic lateral weight with a non-isotropic correction
weight wni . In the present scheme, this weight is defined to be a Gaussian in potential
temperature differences between the target grid point x and a certain point xnik at the
horizontal location of the observing station k , i.e.

wni = e

−

(
Θ(x)−Θ(xnik )

Θnis

)2

(3.63)

In the vertical, point xnik is defined to lie on the surface which is used for the lateral spread-
ing to target point x . This means that xnik is on the same model level as x for spreading
along model levels resp. on the same height level as x for horizontal spreading. While pro-
viding potential temperature at xnik is simple for spreading along model levels, it requires
some vertical interpolation for horizontal spreading. In the latter case, a profile of potential
temperature is first computed at the observation location throughout the atmosphere at
vertically equidistant points. (The equidistance is measured in approximate pressure units.)
This allows to directly identify the appropriate levels used to interpolate potential temper-
ature to the height of xnik . The same strategy is adopted for isentropic spreading, except
that potential temperature is replaced by height e.g. in Eq. (3.63), and that point xnik lies
on the same isentropic surface as target grid point x .

Compared to spreading along model levels with isotropic weights, horizontal or isentropic
spreading alleviates the problem of reduced representativeness related e.g. to steep terrain
by a vertical modification and shift of the area of main influence of a single observation. In
contrast, the non-isotropic correction tends to alleviate it by restricting the area of main
influence in the horizontal. By using potential temperature instead of height differences in
Eq. (3.63), the restriction depends on the stability of the atmosphere. Hence, the spreading
of information across an inversion is diminished selectively. Reduced representativeness of
observations across air mass discontinuities over flat terrain can also be accounted for. How-
ever, it has been found to have a tendency to reduce too much the influence of radiosonde
data in the Alpine region (Schraff (1997)). This is why in the operational version, upper-
air data are spread horizontally without non-isotropic correction. However, for surface-level
humidity which is spread along the model levels, the correction is applied with a Gaussian
radius of Θni

s = 3K .

Use of the Tangent Cone Projection

Given the fact that Eq. (3.62) models the true, unknown error correlations only imprecisely,
the distances ∆r do not have to be computed very accurately. Since the area of influence of
each individual observation is rather limited, the latitude-longitude displacement (∆φ, ∆λ)
from the observation point (φ, λ) to any target grid point is small as long as the observation
is not located too far from the equator of the rotated latitude-longitude grid of COSMO.
If the model domain is large or far away from the equator, however, ∆λ can become large
near the pole. Projection from the centre of the earth onto a cone tangent to the earth at
latitude φ gives fairly simple, globally valid equations (Bell et al. (1996)). For ∆φ � 1
and φ = 0 , this projection is equivalent to the latitude-longitude projection.
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Figure 3.5: Geometry underlying the distance formulae.

The geometry relevant is portrayed in Figure 3.5. In the projection, circles of latitude become
arcs with radius d = a cosφ/ sinφ where a is the radius of the earth. The arc from (φ, λ)
to (φ, λ+∆λ) has a length of sinφ d·∆λ = a∆λ cosφ and subtends an angle 2α in the
projection. α is given by

α = 1/2 a cosφ ∆λ /d = 1/2 sinφ ∆λ (3.64)

and the length x in the projection from (φ, λ) to (φ, λ+∆λ) by

x = 2 sinα d = 2 sinα a cosφ/ sinφ (3.65)

(It follows that for φ near 0 , sin(sinφ) ∼= sinφ , and x = a cosφ ∆λ as in the latitude-
longitude projection.) The arc from (φ , λ+∆λ) to (φ+∆φ , λ+∆λ) has the length a·∆φ
on the sphere and a·tan(∆φ) on the projection which can be approximated by a·∆φ since
∆φ is small. I.e., the length y of the equivalent line in the projection is given by

y = a ∆φ (3.66)

Finally, applying the cosine rule to the triangle in the projection with sides x , y , and ∆r
defining the length from (φ, λ) to (φ+∆φ , λ+∆λ) yields

(∆r)2 = x2 + y2 − 2 x y sinα (3.67)

3.7.4 2-Dimensional Horizontal Wind Correlations

If the lateral weights used for the spreading of a single horizontal wind vector observation
(increment) were computed for each wind component separately by use of a one-dimensional
function then each wind vector of the resulting analysis increment field would have the same
direction (Figure 3.7 a ). This field would contain a strong divergent component. It is desir-
able, however, that the observational wind information mainly corrects the rotational compo-
nent of the model wind field. In optimum interpolation, rotational increments (approximated
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in Figure 3.7 b ) are obtained by deriving wind covariances from a streamfunction covariance.
This approach is also adopted here. A small modification to the non-divergent correlations
is sufficient to account for divergent structures seen in the observations (Daley (1985)).

Assuming homogeneity and isotropy, the simplest way to specify the correlations is in terms
of wind components along and perpendicular to the direction from the observation point
to the target grid point (Bell et al. (1996); see Figure 3.6). Assuming non-divergence, the
longitudinal wLL

xy and transverse wTT
xy correlation components can be expressed as a function

of the correlation for streamfunction wΨΨ
xy ,

wLL

xy = − 1
∆r

∂

∂∆r w
ΨΨ
xy (3.68)

wTT

xy = − ∂2

∂(∆r)2 wΨΨ
xy = wLL

xy + ∆r ∂

∂∆r w
LL

xy (3.69)

wLT

xy = wTL

xy = 0 (3.70)

From Eq. (3.69), it follows that wTT
xy can be expressed as a function of wLL

xy , and that∫∞
0 wTT

xy d(∆r) = 0 (as long as ∂∆rw
ΨΨ
xy is zero at ∆r = 0 and approaches zero for very large

∆r ). Hence, wLL
xy can be regarded as the basic wind correlation function, and the second

term on the right side of Eq. (3.69) can be seen as a non-divergent correction. Without this
correction, the two-dimensional correlation function would collapse into two separate one-
dimensional correlation functions for each wind component (at least on a longitude-latitude
projection).

In many assimilation schemes, in particular those based on optimum interpolation, the errors
are assumed to be geostrophic. This is adopted here in the sense that the (non-divergent)
wind errors as indicated by wind observations are assumed to be in geostrophic balance to
the geopotential errors. Consequently, the correlation function for streamfunction wΨΨ

xy must
have the same form as for geopotential resp. for surface pressure and temperature, and is
therefore given by Eq. (3.62). From Eqs. (3.68) to (3.70), it then follows that

wLL

xy = e
−∆r/s (3.71)

wTT

xy = e
−∆r/s − γn · (∆r/s) · e

−∆r/s (3.72)

A small modification has been made by introducing a multiplicative, so-called non-divergence
correction factor γn to the non-divergence correction, with (0 ≤ γn ≤ 1) (Lorenc et al.
(1991)). This allows to relax the non-divergence constraint if desired.

Tk

Lk

vk

T L
u

vv

observation  k

target grid point

Figure 3.6: Longitudinal and transverse wind velocity components.
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a) b) c)

Figure 3.7: Analysis increments of horizontal wind given a single observation increment of 10m/s at
grid point (153,188) in 500 hPa . a): non-divergence correction factor γn = 0 (divergent); b):
γn = 1 (non-divergent); c): γn = 0.5 (semi-divergent).

The correlation functions as given by Eqs. (3.70) to (3.72) relate the longitudinal and trans-
verse wind errors or increments at the target grid point (∆L, ∆T ) to the error resp. obser-
vation increment (∆Lk, ∆Tk) at the observation point. This relationship can be written in
vector form as[

∆L
∆T

]
=

[
wLL
xy wLT

xy

wTL
xy wTT

xy

]
·
[

∆Lk
∆Tk

]

= wLL

xy ·
[

∆Lk
∆Tk

]
− γn ·

∆r
s
· wLL

xy ·
[

0 0
0 1

]
·
[

∆Lk
∆Tk

]
(3.73)

In the COSMO model, horizontal wind is expressed as eastward component u and northward
component v . In order to use Eq. (3.73), it is necessary to transform these by a rotation of
coordinates to the longitudinal and transverse components. The transformation is given by[

∆L
∆T

]
=

[
cosϑ sinϑ
− sinϑ cosϑ

]
·
[

∆u
∆v

]
.= R(ϑ) ·

[
∆u
∆v

]
(3.74)

where R is the rotation matrix.

On the tangent cone projection, the rotation angle ϑ at the observation point (φ, λ) is equal
to α+β , where α is given by Eq. (3.64) and β is the angle between the line (φ, λ) to
(φ, λ+∆λ) and the line (φ, λ) to (φ+∆φ , λ+∆λ) . Triangular geometry (see Figure 3.5)
yields

cosβ = (x − y sinα) / ∆r ; sin β = y cosα / ∆r (3.75)

The rotation angle for the same kind of transformation at the target point (φ+∆φ , λ+∆λ) is
equal to β−α . Hence, the transformation from the longitudinal and transverse components
back to the model components at that point is given by R−1(β−α) = R(α−β) . Equation
(3.73) for the model wind components then reads[

∆u
∆v

]
= wLL

xy ·R(2α)·
[

∆uk
∆vk

]
− γn ·

∆r
s
·wLL

xy ·R(α−β)·
[

0 0
0 1

]
·R(α+β)·

[
∆uk
∆vk

]
(3.76)
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p 1000 850 700 500 400 300 250 200 150 100 50
s(u,v) 70 80 90 100 100 110 115 120 125 125 125
γn .42 .50 .50 .50 .50 .58 .62 .66 .70 .70 .70

Table 3.7: Correlation scale for wind s(u,v) in [km] and non-divergence factor γn

at observation time as a function of pressure p (in [hPa]).

Using Eqs. (3.71), (3.74), and (3.75), evaluation of Eq. (3.76) is straightforward and yields[
∆u
∆v

]
=

( [
2 cos2 α− 1 2 sinα cosα
−2 sinα cosα 2 cos2 α− 1

]

− γn
∆r ·s

[
(∆r2 + y2) cos2 α−∆r2 (y2 + ∆r2) sinα cosα− x y cosα
(y2 −∆r2) sinα cosα− x y cosα (∆r2 − y2) cos2 α

])

· e
−∆r/s

[
∆uk
∆vk

]
(3.77)

Note that even if the non-divergence correction γn is set to 1, the resulting correlations are
not in exact geostrophic balance. This is because the correlation scale s for temperature
varies with height, and the resulting error correlations for geopotential cannot be expressed
by Eq. (3.62) with an appropriate choice of s . Moreover, the resulting analysis increment
field is not even exactly non-divergent due to the squaring of weights in Eq. (3.3). However,
this is not a problem since the purpose of the present scheme is to analyze mainly the
meso-scales.

In the operational version, both the correlation scale s for wind and the non-divergence
factor γn increase with height and with distance to the observation time. The values valid
at observation time are given in Table 3.7. The vertical variation of the scale s is very
similar to that for temperature, but the magnitude of s is about 20 % larger. Nevertheless,
the correlation function for wind falls off faster due to the different shape of the longitudinal
correlations wLL

xy . The non-divergence factor which allows to specify the degree of divergence
varies between 0.42 and 0.77, with typical values of about 0.5 resulting in ’semi-divergent’
increments (Figure 3.7 c ) in the troposphere. The linear temporal variation is 30 % for s
and 10 % for γn .

3.7.5 Lateral Spreading of Surface Pressure

Basic Correlation Function

For the lateral spreading of station pressure or surface pressure data, the basic form of the
correlation function deployed is given by Eq. (3.62) like for the upper-air scalar quantities.
The correlation scale s at the observation time is set to 70 km . The scale is linearly enhanced
with increasing difference between observation time and model time by a maximum amount
of 43 % . The function is cut off at a radius of 3.5·s . There is also an option for reducing s
as a function of (increasing) density of surface pressure observations.

If the hydrostatic temperature correction for surface pressure nudging (Section 3.8.1) is ap-
plied, the pressure increments are projected on temperature increments between the ground
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and 400 hPa . The mean level of projection is at about 750 to 800 hPa , where the result-
ing geopotential to surface geopotential resp. pressure to surface pressure correlations take
values of about 0.5 (cf. Figure 3.10). At those levels, the horizontal correlation scale at the
observation time is also about 70 km for upper-air temperature data. This means, that the
information from pressure data and from temperature data are projected on approximately
the same horizontal scale.

The choice of such a rather small correlation scale for pressure data is also promoted by
the high data density in most of the operational COSMO domains. It allows to correct for
small scale errors, and in particular affects the analysis of mesoscale cyclones favourably.
The distinct enhancement of the correlation scale away from the observation time helps to
project the information from isolated observations to larger scales. This applies all the more
that the large value of the nudging coefficient for pressure data (cf. Section 3.7.6) tends
to shift the model adjustment forward in time to prior to the observation time of isolated
data (whereas in data-dense areas, the effective forcing is reduced and the main adjustment
remains at close to the observation time).

Orography-Dependent Correction

Since surface pressure is a vertically integrated quantity, it need not (and cannot) be spread
in the vertical in a hydrostatic atmosphere. However, an observation increment of surface
pressure (resp. of pressure at the lowest model level) relates to the mass of the atmospheric
column which in general differs in the horizontal, particularly over complex terrain. A surface
pressure change of 1 hPa does not produce the same geopotential change at 1000 hPa in a
valley as at 700 hPa on a high mountain. Using the basic lateral correlation function only,
the resulting pressure analysis increment fields exhibit orographic footprints on horizontal
or isobaric surfaces. In order to obtain smooth increment fields, an orography-dependent
correction in the form of an additional weight factor woro has to be applied as part of the
lateral spreading such that the same relationship is used as for the vertical extrapolation of
pressure increments to the upper (model) levels within a column. This relationship is given by
the hydrostatic equation and, depending on its application, by the hydrostatic temperature
correction (Section 3.8.1) .

Without temperature correction, the orography-dependent correction should be consistent
with the hydrostatic height correction that is used to convey pressure observation increments
from the observation level down to the lowest model level ks in Section 3.5.1 . Thus, it is
given by the quotient of the pressure at the target point and that at the observation point,

∆p ′
ks

∆p ′ obs
ks

∣∣∣∣∣
wxy=1

.= woro =
p
ks

p obs
ks

(3.78)

(It follows that ∆Φks
∼= ∆Φobs

ks
· Tks/T obsks

, i.e. the orography-dependent variation of geopo-
tential increments ∆Φks is approximately proportional to the temperature quotient.)

The operational COSMO setups, however, make use of the temperature correction. The
requirement of smooth pressure analysis increment fields on isobaric surfaces implies that
along the sloping surface, the reduction of the pressure increments with height is the same as
within a vertical column. Consequently, the orography-dependent correction is defined by the
pressure to surface pressure correlation function (Eq. (3.87)) as specified in the temperature
correction scheme. Assuming the basic lateral weight wxy being equal to one, this means
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that the increment ∆pks at the target pressure level pks is given by

∆pks
.= woro ·∆pobs

ks
= C

p,p

ηc ·∆p
obs
ks

(3.79)

where

C
p,p

ηc = η
2
c e

(1− η 3
c )/8

(3.80)

ηc = max
(
pks − ptop
pobsks − ptop

, 0
)

(3.81)

ptop denotes the pressure at the top of the temperature correction. Note, however, that these
equations are restricted to target grid points with pks ≤ pobsks , i.e. ηc ≤ 1 . For any other
grid point, the requirement of smoothness implies that the orography-corrected increment
at the target grid point has to be chosen such that when it is reduced up to the observation
level pobsks it takes the same value as the original observation increment. This means that
∆pobs

ks
= C p,p

η̂c
·∆pks , or

∆pks
.= woro ·∆pobs

ks
= 1

C
p,p
η̂c

·∆pobs
ks

, η̂c =
pobsks − ptop
pks − ptop

= 1
ηc

(3.82)

For these grid points (ηc > 1) , woro can be written as

woro = 1
η̂ 2
c

e
− (1− η̂ 3

c )/8
= η

2
c e

(1− η 3
c )/(8 η 3

c )
(3.83)

Combining Eqs. (3.80) and (3.83) leads to the final form for the orography-dependent cor-
rection weight,

woro = η
2
c · e

(1− η 3
c )/8

max (1, η 3
c )

(3.84)

This is valid for all target grid points, and ηc is defined by Eq. (3.81).

For the alternative temperature correction function which is expressed as a geopotential to
surface geopotential correlation and which is implemented as an option (see Section 3.8.1),
the orography-dependent correction weight can be derived in a similar way:

woro =
p
ks

pobs
ks

·
T obs
ks

T
ks

· ηc ·max (1, ηc) ·
(1 + ηc

2

) 1−ηc
|1−ηc| (3.85)

For ηc = 1 , this reduces to woro = T obs
ks
/T

ks
.

3.7.6 Temporal Spreading and Specification of the Nudging Coefficients

Basic Considerations

In some respects, the basic considerations for the specification of the temporal spreading
differ fundamentally from those for the spatial spreading. While spatial interpolation makes
it possible to compare observed and model values valid for the same location to derive the
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observation increments, the observed values have to be compared to the model values from
the current model time which in general disagrees with the observation time. In particular,
the model values at the observation time are not known before the assimilating model run
itself reaches the observation time. This compromises the argument to use error correlations
to define the temporal weight function and promotes the use of a shorter function for the
time dimension. Furthermore, it is inherent to the concept of relaxation that the effect of
the weighting is integrated in time. Hence, the relaxation concept does not agree with the
correlation concept with respect to the time dimension.

Thus, other considerations should apply for the specification of the temporal weight function.
In order to reduce the discrepancy between the observed and the model values to a reasonable
degree by means of nudging, it is necessary that the time integral of total temporal weight
function is of the same order of magnitude and preferably somewhat greater than the e-
folding decay time of the relaxation. Since this decay time is the inverse of the nudging
coefficient (for a single observation with weight wk = 1 ), the time scale of the temporal
weight function (i.e. the time integral over the function) should be approximately inversely
proportional to the nudging coefficient.

Previous arguments related to the mismatch of observation time and model time suggest
that a time scale as small as possible would be advantageous. This would also keep tempo-
ral smoothing effects small which may occur e.g. in the presence of fast-moving mesoscale
cyclones or fronts. However, a longer time window for the relaxation would help to filter
high-frequency inertia-gravity waves that could be excited by the nudging. Also, a very
short window would imply a high value for the nudging coefficient which could destroy the
dynamic balance during the assimilation.

To conclude, theoretical considerations can provide an rough estimate for the optimal time
scale of the temporal weight function and for appropriate values of the nudging coefficients.
A compromise between small and large values should yield the best results. The values that
are applied operationally have been (or will soon be) adjusted to some extent by means of
tuning experiments.

Nudging Coefficients

For wind, temperature, and humidity, the value of the nudging coefficient is set to 6·10−4 s−1 .
It is applied to radiosonde, aircraft, and surface-level synoptic data. That value corresponds
to an e-folding decay time of nearly half an hour for a single observation with a (spatial,
temporal, and quality) weight wk equal to 1 . Note, however, that the effective weight is
reduced and the decay time is enlarged in the case of multiple observations if Eq. (3.3) is
applied. If for instance four observations with the same value for the observation increment
are added in the vicinity so that their individual (spatial) weight wk is 0.25 at the location
of the original observation, then the total weight (related to the 5 observations together) will
be reduced from 1 to about 0.625 . This means that the resulting effective e-folding decay
time is almost doubled. This effect prevails particularly with the surface pressure nudging
where a target grid point is usually influenced by many observations from the relatively dense
European synoptic surface station network.

This promotes a larger value for the nudging coefficient for surface pressure. As a result of
tuning experiments, it is set to 12 · 10−4 s−1 .
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Figure 3.8: Temporal weight functions for single (i.e. non-
frequent) observations. The blue solid line applies to radiosonde
data, the red dotted line to other data.

Temporal Weighting

Given the relatively high data density over Europe and the nudging coefficients as above, the
effective e-folding decay time for the relaxation will be typically between about 30 and 50
minutes. Hence, the appropriate time scale for the temporal weight functions should be about
1 hour or slightly larger. The shape of the function should be continuous to avoid shocks
both when the forcing is turned on and increased and when it is decreased and turned off.
An asymmetric shape allows more than 50% of the model’s adjustment to the data to be
completed by the observation time.

As a result, the functions as shown in Figure 3.8 are designed for and applied to non-frequent
observations. A more symmetrical function with appreciable forcing after the observation
time would tend to hold back the model to fit ’old’ data with undesirable effects. While the
function valid for aircraft and surface-level data corresponds to a time scale of 1 hour, a
time scale of 2 hours is currently used for radiosondes. This will make sure that the model
draws closely to the radiosonde data, however, a scale of 2 hours is longer than what was
suggested by theory. Also, there is evidence that the corresponding nudging time window of
4 hours causes smoothing effects in cases of fast-moving mesoscale cyclones. However, tuning
experiments have shown degraded results, if the time scale was reduced (in particular for
temperature and humidity).

For hourly or even more frequent data from the same stationary observing platform, the
data are temporally linearly interpolated to the model time. The rationale for this is that
the meteorological evolution is usually close to linear within one hour. The observations can
then be regarded as a continuous stream of observational information, and an asymmetric
shape of the function is not meaningful in such a case. If a platform issues frequent multi-
level reports which cover different height ranges or have different quality, then the temporal
weighting can be a linear combination of the weights related to a single observation resp. to
temporal interpolation. In fact, this applies only to the report for which the total weight at
the target grid point excluding the temporal weight is larger than for the other report. The
combination depends on the fraction of these two total weights.

Wind profiler reports are usually available at intervals of 30 minutes or less. In these cases,
linear temporal interpolation is applied. If the interval is larger than 30 minutes, a temporal
weight function with a shape similar to the one shown in Figure 3.8 is applied, but it extends
only 30 minutes into the past and 12 minutes into the future. The resulting time scale of the
weight function is 21 minutes, then.
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3.8 Explicit Balancing of the Analysis Increment Fields

3.8.1 Hydrostatic Temperature Correction

Basic Idea

The application of the temperature correction addressed here is motivated by the linear
geostrophic adjustment theory (Okland (1970)). It assumes that inertia-gravity modes are
dispersed or dissipated leaving only the non-divergent modes as solution. The smaller the
horizontal scale and the larger the vertical scale of an initial perturbation which is not
in geostrophic equilibrium, the more the mass field tends to adjust to the non-divergent
component of the wind field. Vice versa, the smaller the vertical scale, the more the wind
tends to adjust to the mass field geostrophically.

With respect to the nudging of surface pressure, this has the following implications when
assuming that the increments are in hydrostatic equilibrium (by the application of the hy-
drostatic upper-air pressure correction as presented Section 3.8.4). Without any further cor-
rection, geopotential changes at the lowest model level due to the surface pressure nudging
would impose geopotential increments throughout the atmosphere up to the top of the model
(which is not physically meaningful anyway). Thus, the mass field perturbation would be
very extended in the vertical and therefore tend to adjust to the unperturbed wind field.
As a result, the mass field disturbance would propagate away in the form of inertia-gravity
waves similarly to surface waves on a pond generated by a stone thrown into the water, and
the observational information would get lost after the nudging period (cf. Figure 3.9 a ).

In the real atmosphere, changes in surface pressure are always related to changes in density
resp. (virtual) temperature somewhere above the ground. Hence, they are statistically cor-
related to temperature changes at a certain height range. For the planetary and synoptic
scales, this range lies mainly in the lower stratosphere, whereas for the mesoscale which is
more relevant in the context of data assimilation for COSMO, surface pressure is correlated
mainly to the temperature in the lower troposphere. Therefore, temperature is corrected so
as to satisfy the following conditions:

• The temperature correction approximates roughly the statistical surface pressure to
temperature correlation in the mesoscale.
(Without correction, temperature would be held constant at a given height, and a
pressure increase at the surface would result in a slight cooling of the atmosphere in a
way which is not consistent with the correlation.)

• The variation of the temperature correction is relatively small within the lowest about
1500m above the ground so as to limit the resulting changes of the stability within
the planetary boundary layer.

• The direct geopotential change due to the surface pressure nudging is zero above a
specified pressure level ptop . In the current operational implementation, this level is at
400 hPa .

This implies that the vertical extent of the mass field perturbation imposed by the surface
pressure nudging is reduced significantly. As a result, the wind field is far more compliant
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Figure 3.9: Difference fields of mean sea level pressure (isolines and shading: -1, -3, -5, -6 hPa) and of
horizontal wind about 500m above the ground (vectors) between a COSMO assimilation run and a
free forecast after 3 hours of integration, valid for 24 October 1999, 3UTC . For the assimilation run,
only 2 surface pressure observations from 1 station (indicated by the blue dot) at 1UTC and 2UTC are
used which deviate from the free forecast by about -6.1 hPa . a): Assimilation without temperature
correction and geostrophic wind correction; b): with temperature correction but without geostrophic
wind correction; c): with temperature correction as well as with geostrophic wind correction.

to adjust to the mass field perturbation, and the assimilation of surface pressure data is
strongly improved (Figure 3.9 b ).

Specification of the Correction Function

Following the ideas of Bell et al. (1996), the geopotential change at upper levels ∆Φ is
specified in terms of the geopotential change at the surface ∆Φs in order to define the
temperature correction. They used ∆Φk = 1

2 Bk (1 + Bk) ∆Φs at model level k for a
hybrid pressure-based vertical model coordinate pk = Ak + Bk ps . In COSMO, a similar
function is implemented as an option by replacing Bk by the quantity η defined as

η = p−ptop
pks−ptop

, p ≥ ptop (3.86)
η = 0 , p ≤ ptop

This function, however, is not a good approximation to the statistical correlation, and the
second condition is not satisfied at all. Hence, in the current scheme, another function is
applied operationally which relates the pressure change at upper levels ∆p to the pressure
change (i.e. to the pressure analysis increments) at the lowest model level ∆pks :

∆p .= C
p,pks ·∆p

ks
, C

p,pks = η
2
e
(1− η 3)/8

(3.87)

(The relation between geopotential changes at upper levels and the lowest level is given by
C Φ,Φks = C p,pks ·(p

ks
Tv)/(p Tvks ) using the hydrostatic formulation ∆p = −∆Φ·p/(RTv) .)

The resulting temperature correction is shown in Figure 3.10 for an initial model pressure of
1000 hPa at the lowest model level and for ptop set to 400 hPa . The 3 conditions are satisfied
reasonably well. For a pressure change of –1 hPa at the lowest level, the temperature is
increased by an almost constant value of slightly more than 0.5K within the lowest 170 hPa .
The upper-air to (near-)surface relations of the geopotential changes CΦ,Φks and of the
pressure changes C p,pks are also shown in Figure 3.10, and they give an indication of the
strong reduction of the vertical extent of the resulting mass field perturbation. At 700 hPa ,
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Figure 3.10: Vertical profiles related to the
temperature and geostrophic wind correc-
tions for near-surface pressure (i.e. pressure
at the lowest model level) of 1000 hPa .
Thin solid line: Correlation of the pressure
change aloft with the near-surface pressure
change as given by Eq. (3.87).
Thin dot-dash-dotted line: Analogous corre-
lation for the geopotential changes.
Thick dashed line: Temperature correction in
[-K/hPa] (i.e. in [K] for a near-surface pres-
sure decrease of 1 hPa).
Thick dash-dotted line: Geostrophic wind
correction, expressed as a fraction of the full
geostrophic wind with respect to the near-
surface geopotential change.

for instance, the resulting geopotential change is only 40% and the pressure change less than
30% of that at the surface.

Discretized Implementation

It has been found to be difficult here to find appropriate initial conditions for the top-down
integration of the hydrostatic equation that is exactly consistent with the model formulation.
Also, as will become clear from below, it is not possible to obtain zero pressure increments
above level ptop if relative humidity is to be preserved. Therefore, an quasi-iterative pro-
cedure is deployed, and a more simple form of the hydrostatic equation can be used to
determine a first estimate of the temperature increments:

p
k+1/2 − pk−1/2

z
k+1/2 − zk−1/2

= − g
R
· pk
Tvk

(3.88)

Tvk , pk , and p
k±1/2 denote the variable quantities virtual temperature and (hydrostatic)

pressure at main model levels k resp. pressure at half levels, whereas z
k±1/2 are the invariable

height values at the model’s half levels which are fixed in physical space. (The hydrostatic
pressure is derived by hydrostatic downward integration from the full model pressure at the
top model level.) After the addition of the increments due to the surface pressure nudging
including the temperature correction, the hydrostatic equation (3.88) reads

p
k+1/2 + ∆p

k+1/2 − pk−1/2 −∆p
k−1/2

z
k+1/2 − zk−1/2

= − g
R
· p

k
+ ∆p

k

Tvk + ∆Tvk
(3.89)

Subtracting Eq. (3.88) from Eq. (3.89) and solving for ∆Tvk (using again Eq. (3.88)) yields

∆Tvk =

(
z
k−1/2 − zk+1/2

)
g
R ·∆pk − Tvk ·

(
∆p

k+1/2 −∆p
k−1/2

)
p
k+1/2 − pk−1/2 + ∆p

k+1/2 −∆p
k−1/2

(3.90)

Given the virtual temperature increments, there is no exact solution to determine tempera-
ture increments if relative humidity is to be preserved. Therefore, a quasi-iterative procedure
is devised to split these increments into temperature and humidity increments:
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1. Temperature increments are computed from the virtual temperature increments as-
suming constant specific humidity. Thus,

∆T (1)
k

= T
k

Tvk
·∆Tvk (3.91)

where ∆T (1)
k

is the temperature correction after the first iteration.

2. Specific humidity increments are optionally computed from the temperature increments
assuming constant relative humidity. Note that this implies that the resulting virtual
temperature increments deviate from those given in Eq. (3.90). Therefore, there are
non-zero geopotential changes above ptop no matter which formulation of the hydro-
static equation is used.
(This step is omitted if specific humidity instead of relative humidity is to be preserved,
as is the case in the current operational set-up.)

3. A residual pressure increment at the top level of the temperature correction is computed
by bottom-up integration of the hydrostatic equation using the pressure increment at
the lowest model level and the upper-air temperature and specific humidity increments.
This computation should be as exact as possible (because the residual increment can
be regarded as a sort of observation increment). Therefore, the formulation of the
hydrostatic equation used here is exactly consistent with the model formulation. It is
presented in Section 3.8.4 on behalf of the hydrostatic upper-air pressure correction.

4. The upper-air residual pressure increment is converted into a residual pressure incre-
ment at the lowest model level. The exact way to do this would by top-down integration
of the hydrostatic equation using pressure increments only (i.e. without temperature
increments). However, as the demands for accuracy are more limited for this step
(which can be regarded as a sort of spatial spreading of an observation increment), it
is more convenient to apply a simple factor derived by approximating this integration
(cf. Section 3.7.5: spreading of surface pressure observation increments):

∆presidks =
pks
ptop
·∆presidtop (3.92)

5. The occurrence of a non-zero residual pressure increment means that the temperature
increments as above were able to equilibrate only a pressure increment of ∆pks−∆presidks
instead of ∆pks . Thus, the final temperature increment can be determined from the
first iteration increment by a simple scaling:

∆T
k

=
∆pks

∆pks −∆presidks

·∆T (1)
k

(3.93)

This is equivalent to restarting the whole computation process several times with the
initial ∆pks being replaced by ∆presidks

from the previous iteration.
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3.8.2 Geostrophic Wind Correction

Basic Idea

The inclusion of the model dynamics in the assimilation process yields some implicit balanc-
ing between the wind and mass field perturbations that are induced by the nudging. The
linear geostrophic adjustment theory (Okland (1970)) provides an estimation of the adjust-
ment process related to the balancing. Since this process does not result in a very good
assimilation of all types of observational information in general, it is advantageous to add a
somewhat limited explicit balancing by use of a diagnostic relationship.

An incremental wind field which is in geostrophic balance to mass field increments can be
determined easily. A fraction of this incremental geostrophic wind can then be added to
the model wind field as a geostrophic wind correction. In this sense, increments from the
nudging of both pressure and temperature observations can be balanced. In the current
version, however, increments from temperature data are not taken into account for this
correction. This is because the wind balancing such increments tends to have small-scale and
rather irregular structures, and it is very sensitive to temperature observation errors with a
non-zero bias. Also, spurious small-scale structures could result in areas where sloping terrain
restricts the horizontal spreading of low-level temperature increments.

Therefore, the geostrophic wind correction applied here balances only the mass field incre-
ments that result from to the nudging of the surface pressure observations including the
temperature correction. Thus, the top of the wind correction is at the same level ptop as
the top of the temperature correction, i.e. at 400 hPa . It tends to have the effect to further
improve the assimilation of the surface pressure data (Figure 3.9 c ).

Derivation of the Full Geostrophic Increments

The continuous formulation of the geostrophic equation in COSMO reads

f vg = 1
ρ a cosφ

(
∂p ′

∂λ
− 1
√
γ

∂p0

∂λ

∂p ′

∂ζ

)
(3.94)

−f ug = 1
ρ a

(
∂p ′

∂φ
− 1
√
γ

∂p0

∂φ

∂p ′

∂ζ

)

where ζ denotes the computational vertical coordinate ( ζk = k , where k is the number
of the kth main model level), and √γ the variation of reference pressure with ζ (i.e.√
γ = ∂p0 / ∂ζ ). Subsequently, the geostrophic wind increments in finite differences are

derived for the vg -component. The derivation for the ug -component is analogous.

Equation (3.94) implies that variations in the geostrophic wind vg can be due to variations in
pressure p ′ or density ρ . If variables with subscript ’F ’ denote values prior to the nudging
as in Section 3.2 and variables without subscript values after the nudging, the geostrophic
wind increment ∆ vg is given by

f ∆ vg = 1
ρ a cosφ

(
∂

∂λ

(
p ′ − p ′F

)
− 1
√
γ

∂p0

∂λ

∂

∂ζ

(
p ′ − p ′F

))

− 1
ρ a cosφ

(
∂p ′

∂λ
− 1
√
γ

∂p0

∂λ

∂p ′

∂ζ

)
1
ρ

(ρ− ρF ) (3.95)
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A scale analysis reveals that close to the ground, the second term with the density variation
is typically about two orders of magnitude smaller than the first term with the pressure
variation. However, near the top level of the correction, the difference in size between the
two terms is much reduced.

In finite differences, the geostrophic equation for the vg -component is evaluated at the u-grid
points of the Arakawa-C grid, since it results directly from the prognostic equation of the u-
wind component by neglection of some of the terms. Considering the incremental iterative
approach of the nudging and the limited validity of the geostrophic approximation for the
scales of interest, the geostrophic equation does not need to be solved exactly for the present
purpose. This allows to evaluate Eq. (3.94) at v-grid points instead of u-grid points. I.e.,
instead of applying the averaging operator over λ and φ to the left side, it is applied to the
right side of the equation. The finite difference formulation of the geostrophic equation then
reads

√
γ
φ · vg cosφ
cosφλ , φ

·

 f
√
γ
λ , φ

λ = 1
ρλ a cosφ

∂
λ
p ′ − 1

√
γ
ζ , λ

∂
λ
(p0) · ∂2ζp

′ λ

λ , φ

(3.96)

It is noted that in COSMO p ′ , ρ , p0 , and
√
γ are given at the centre of the grid boxes,

whereas the Coriolis parameter f is given at the corners. For the increments, it follows that

∆vg = I
√
γ
φ


 f
√
γ
λ,φ

λ

−1

·

 1
ρλ a

φ

∂
λ

(
p ′− p ′

F

)
−

∂
λ
p0

√
γ
ζ,λ
· ∂2ζ p

′− p ′
F

λ

λ , φ

− 1
(ρλ)2 a

φ

∂
λ
p ′ −

∂
λ
p0

√
γ
ζ , λ

∂2ζp
′ λ

 · ρ− ρ
F
λ

λ , φ
 (3.97)

where I = cosφλ , φ · (cosφ)−1 and a
φ

= a cosφ . Analogously

∆ug = − 1
√
γ
λ


 f
√
γ
λ,φ

φ

−1

·

 1
ρφ a

∂
φ

(
p ′− p ′

F

)
−

∂
φ
p0

√
γ
ζ,φ
· ∂2ζ p

′− p ′
F

φ

λ , φ

− 1
(ρφ)2 a

∂
φ
p ′ −

∂
φ
p0

√
γ
ζ , φ

∂2ζp
′ φ

 · ρ− ρ
F
φ

λ , φ
 (3.98)

(p ′− p ′
F

) and (ρ− ρ
F

) are the pressure resp. density analysis increments from the nudging
of the surface pressure data including the combined effect of the temperature correction
and the hydrostatic upper-air pressure correction (see Section 3.8.4). Note, however, that
the pressure and density increments used here are determined without accounting for latent
heat to sensible heat transfer in order to prevent unrealistic small-scale wind increments in
saturated regions. Yet, they optionally include a change in specific humidity to keep the
relative humidity constant.

Reduction of the Increments

For different reasons, only a fraction of the incremental geostrophic wind as computed above
is added to the model wind field (cf. Figure 3.10).
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Firstly, in order to account for the limited validity of geostrophy in the mesoscale, all
geostrophic increments are reduced by a general factor. Operationally, it decreases linearly
in pressure from 0.5 at 400 hPa to 0.3 at 1000 hPa . Such a general reduction is also moti-
vated by the fact that the assimilation process of the observational (pressure) information is
not ideal. Dynamic or other effects often tend to moderately counteract the nudging. This
reduces the rate at which the pressure increments are diminished, and the total geostrophic
wind increments integrated over few hours could become larger than the geostrophic wind
related to the initial pressure observation increments.

Secondly, in order to account for the limited validity of geostrophy in the planetary boundary
layer, another weight is applied which increases linearly in pressure from zero at the ground
to one at about 50 hPa above the ground.

Thirdly, in order to account for the limited validity of the geostrophic approximation at low
latitudes, another weight is applied for latitudes φ < 45 degrees which is set equal to sin(2φ) .
This function approximates the latitude dependency of the validity of the geostrophic ap-
proximation that is obtained by the NMC method for estimation of the climatological errors
(in the global model GME). This third weighting prevents the geostrophic wind increment
from growing to infinity as one approaches the equator.

Next, a general upper safety limit is imposed to the size of the increments in such a way that
the maximum increments can add up to 20m/s within an hour.

Finally, the geostrophic wind correction is set to zero in the lateral boundary relaxation zone
(at the outermost 10 grid rows of the model domain), because the horizontal gradients of the
pressure analysis increments are strongly influenced by the boundary relaxation. Towards
the inner part of the domain, the weight is gradually increased from zero to one within 4
grid points.

3.8.3 Geostrophic Near-Surface Pressure Increments

Basic Idea

The concept of adding (limited) explicit balancing between the wind and mass field analysis
increments by use of a diagnostic relationship can also be applied in the opposite direction
compared to the previous section. Here, a wind analysis increment field at the lowest model
level as obtained from the direct nudging of wind observations is used as input. The aim is to
compute a pressure increment field at the lowest model level which is in geostrophic balance
with the wind increment field.

This type of balancing is particularly appealing for the assimilation of 10-m wind observa-
tions. The correlation of the 10-m wind (forecast) errors with upper-air wind errors is often
rather limited, so that the scale of the vertical weight function should not be very large (see
Section 3.7.1). As a result, the perturbation induced by a direct nudging of 10-m wind data
is rather shallow, and for shallow imbalances, the wind field tends to adjust to the mass
field rather than vice versa (according to the geostrophic adjustment theory). Therefore, the
information on the wind field will not be retained well without explicit perturbation of the
mass field. The introduction of balanced mass field perturbations significantly enhances the
assimilation of 10-m wind data by nudging.

Two options have been implemented for the observation input used for the wind analysis
increment field:
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1. scatterometer 10-m wind data only
2. scatterometer and other 10-m wind observations, e.g. from land surface stations, ships,

and buoys.

The wind increments for this balancing step are computed using only the isotropic horizontal
weight function (see Section 3.7.4) without any non-isotropic corrections (see Section 3.7.3.
This ensures that the wind increment field is smooth even in the presence of steep orography.
A noisy wind field with large small-scale gradients would lead to a noisy ’balanced’ pressure
increment field and eventually result in gravity wave oscillations. Note that geostrophy is
not a good approximation for very small-scale flow features.

Derivation of a Poisson Equation for Geopotential Increments

There are different methods to compute pressure increments which are in geostrophic balance
with a prescribed wind (increment) field. Following Holton (1992), the relation of nondiver-
gent winds to the pressure field is given by the well-known general balance equation:

∇2
(

Φ + ~v · ~v
2

)
= −∇

[
~k × ~v(ζ + f)

]
(3.99)

where ζ denotes the vertical component of the vorticity, Φ the geopotential, ~k the unit vector
in vertical direction, ~v the horizontal wind vector, and f the coriolis parameter. 3.99 can
be written as:

∇2Φ = f · ζ − β · u + 2 · J(u, v) (3.100)

with the Jacobian

J(u, v) = ∂u

∂x
· ∂v
∂y
− ∂u

∂y
· ∂v
∂x

, β = ∂f

∂y
(3.101)

Equation 3.100 is valid for a nondivergent windfield. But even over the ocean surface, the
flow will not be completely free of divergence. One way to obtain a solution would be to
decompose the fow field into a nondivergent and a divergent part and discard the divergent
part. Since both decomposing the flow field and solving equation 3.100 is done by iterations,
much computation time would be consumed in order to yield a converged solution.

Thus in the current implementation, the simplest approximation of the balance equation is
deployed by saving only the two largest terms. Equation 3.100 reduces then to the geostrophic
relationship, which attains the form of a Poisson equation given that geopotential is the
unknown quantity:

∇2Φ = f · ζ (3.102)

with ζ the relative vorticity:

ζ = rot ~vH = ∂v

∂x
− ∂u

∂y
(3.103)

Note that the wind increment field and vorticity are equal to zero at the lateral boundary of
the total model domain. Hence the balancing geopotential increment field is zero there too.

The approximation 3.102 states, that the wind field is in geostrophic balance rather than in
gradient wind balance. The neglection of terms in equation 3.100 results in an unbalanced

Section 3: Analysis of Atmospheric Fields: Nudging-Based Data Assimilation Part III – Data Assimilation 6.00



3.8 Explicit Balancing of the Analysis Increment Fields 75

inertial force. This can cause errors in computing the appropriate pressure field and can result
in some gravity wave oscillation as the flow attempts to adjust back to the gradient wind
balance. The errors are prevalent in regions where the flow is significantly curved. They result
in an underestimation of the pressure gradient in regions of strong cyclonic curvature and
an overestimation of the pressure gradient force in regions of strong anticyclonic curvature.
For most of the synoptic situations however, the errors are small (at synoptic and meso-α
scales). The right hand of equation 3.102 is known and can be computed at each grid point
from the incremental wind field using expression 3.103.

Solving the Poisson Equation

Assuming ∆x = ∆y = ∆s , equation 3.102 becomes:

Φi,j = 1
4 ·
[
Φi+1,j + Φi−1,j + Φi,j+1 + Φi,j−1 − ∆s2 · fi,j · ζi,j

]
(3.104)

The coriolis parameter fi,j is interpolated to the mass point of the grid. In fact in the current
version, the coriolis parameter is included in Φ so that:

Φ → Φ
f

(3.105)

Φn+1
i,j = 1

4 ·
[(

Φn+1
i−1,j + Φn+1

i,j−1

)
+
(
Φn
i+1,j + Φn

i,j+1

)
− ∆s2 · ζi,j

]
(3.106)

Thus the solution for the unknown Φ of equation 3.106 has to be multiplied with f in order
to recover the real geopotential Φ . Equation 3.106 can be solved for Φ by a single step
iteration procedure; i.e. in each iteration, Φi,j is updated successively at each grid point in
order of increasing indices i, j . Thus, to update Φi,j in iteration n+1 , the values of iteration
n+1 for Φ can be used at grid points (i−1,j), (i, j−1) , whereas for grid points (i+1,j),
(i, j+1) , the values of iteration n have to be used. In practice the speed of convergence of
the iteration can be significantly enhanced by two actions:

1. The iterative corrections of Φi,j are multiplied with a relaxation factor ω 6= 1 such that

∆Φn+1
i,j = Φn+1

i,j − Φn
i,j (3.107)

Φ∗n+1
i,j = Φn

i,j + ω ·∆Φn+1
i,j (3.108)

ω > 1 means overrelaxation, ω < 1 underrelaxation. Combining equations 3.107 and
3.108 leads to:

Φ∗n+1
i,j = (1− ω) · Φn

i,j + ω · Φn+1
i,j (3.109)

Substituting Φn+1
i,j on the right hand of 3.109 by expression 3.106 yields:

Φ∗n+1
i,j = (1− ω) · Φn

i,j + ω

4 ·
[ (

Φn+1
i,j−1 + Φn+1

i−1,j

)
+
(
Φn
i+1,j + Φn

i,j+1

)
− ∆s2 · ζi,j

]
(3.110)

In the next iteration, Φ∗n+1 is set to Φn . Equation 3.110 is the successive overrelaxation
(SOR) method applied to equation 3.106; ω > 1 will accelerate the convergence of the
iterations. The convergence of 3.110 benefits from the first two terms in the bracket,
since these Φ-values are already computed during the same sweep through the domain.
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2. Unfortunately it turns out that for large grids as used in typical operational configura-
tions of the COSMO model, the speed of convergence is still unsatisfying. The reason is
that the values communicate right next to their neighbours but information propagates
only very slowly over long distances in terms of number of grid points. As a result, the
SOR method which is suitable for small grids, is completely unsuitable for large fine
mesh grids due to slow convergence in this case.
Potentially, a way out of this could be to interpolate the problem from the large fine
mesh to an auxilliary coarse grid and solve the problem there. Generally this is not a
viable solution, because a coarse grid cannot capture the structure of a rough function
on the fine grid. In the current application however, the input function given by the
wind increment field is always rather smooth. This is because the scale of the isotropic
horizontal weight function used to derive that wind increment field is larger than 75 km
(and the effective scale of the weight function is not much reduced in areas with high
data density. Moreover, scatterometer wind data are available at or thinned to a mean
distance of about 50 km , and the data density of the in-situ observations is usually even
smaller). Consequently, a coarse grid with a mesh width of about 75 km will capture
most of the information of the wind increment field.
Based on these considerations, the following approach is adopted. First, the wind in-
crement field is interpolated to an auxilliary coarse grid, on which the Poisson equation
is solved using equation 3.110. Then the coarse-grid solution is interpolated back onto
the fine-mesh COSMO grid and used as a first guess for solving equation 3.110 on the
fine grid.
The coarse grid is defined by pre-specifying its number of grid points ncs in each
direction by

ncs − 1 = nint((ns − 1) · ds · β) (3.111)

where ns is the number of grid points and ds the mesh width in degrees of the original
fine mesh, and s stands for the longitudinal and latitudinal directions x resp. y . Lower
and upper limits on ncs are imposed by (ns − 1)/20 ≤ (ncs − 1) ≤ (ns − 1)/5 .
The parameter β determines the resolution of the coarse grid. Currently, β = 1.5 is
specified. This results in a mesh width of ∆sc ≈ a · 2π/360 / 1.5 ≈ 74 km , where a is
the earth radius. This is a suitable value given the scale of the horizontal correlation
function used to derive the wind increment field. The scale of this function may be
adapted to the mean distance of the surface-level wind observations which may change
in the future. In this case, β can easily be adapted to obtain a suitable mesh width
∆sc .

As the computation is executed on a rotated latitude-longitude grid, equation 3.110 is written
in spherical coordinates. At the same time, the restriction of ∆x = ∆y is dropped. The
Laplacian of Φ then reads:

∇2Φ = 1
(a · cosϕ)2 ·

∂2Φ
∂λ2 + 1

a2 · cosϕ ·
∂

∂ϕ

(
cosϕ · ∂Φ

∂ϕ

)
(3.112)

and the vorticity

ζ = 1
a · cosϕ ·

(
∂v

∂λ
− ∂

∂ϕ
(cosϕ · u)

)
(3.113)
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The discretized form is as follows (the subscript ’c’ for the coarse grid is dropped hereafter
for convenience):(

∇2Φ
)
i,j

= e1 · (Φi+1,j − 2 Φi,j + Φi−1,j) + e2 · (Φi,j+1 − Φi,j)

− e3 · (Φi,j − Φi,j−1) (3.114)

ζi,j = vi+1,j − vi−1,j
2 · a · cosϕj ·∆λ

− cosϕj+1 · ui,j+1 − cosϕj−1 · ui,j−1
cosϕj · 2 · a ·∆ϕ

(3.115)

and after rearranging the terms and recalling equation 3.110

Φn+1
i,j = (1− ω) · Φn

i,j + ω · e4 ·
[

e1 ·
(
Φn
i+1,j + Φn+1

i−1,j

)
+ e2 · Φn

i,j+1 + e3 · Φn+1
i,j−1 − ζi,j

]
(3.116)

with

e1 = 1
(a · cosϕj ·∆λ)2 , e2 =

cosϕj+1/2
a2 · cosϕj ·∆ϕ2 , e3 =

cosϕj−1/2
a2 · cosϕj ·∆ϕ2

e4 = (2 · e1 + e2 + e3)−1 (3.117)

The procedure to solve equation 3.116 is as follows:

1. Interpolate the components of the wind increments bi-linearly onto the coarse grid.

2. Solve equation 3.116 iteratively on the coarse grid (replacing ∆λ , ∆ϕ by ∆λc , ∆ϕc)
with Φ = 0 as initial value for the first iteration (out of a fixed number of 1640
iterations). In order to avoid a second decomposition of the model domain for parallel
processing, this is executed on a single processor. The calculation is not very expensive
since the iterations are linear operations and the coarse grid has typically 1 - 2 orders
of magnitude less grid points than the original one.

3. Interpolate (bi-linearly) the resulting Φ-field back onto the fine model grid.

4. Solve equation 3.116 iteratively on the fine grid using the interpolated Φ-field as initial
value for the first iteration. This is done in parallel mode and for a fixed value of 50
iterations. Since the domain is decomposed here, Φn+1

i−1,j and Φn+1
i,j−1 have to be replaced

by Φ n
i−1,j and Φ n

i,j−1 in order to ensure reproducibility independent from the domain
decomposition. Thus, the convergence cannot benefit from the Φ-values of the same
sweep. But this disadvantage is more than compensated by parallel processing.

5. Multiply the final result of Φ with the coriolis parameter f in order to recover the real
geopotential increment field.

Further Processing of the Geopotential Increments

Since the non-isotropic part of the lateral weights, which reflect mainly the orography, has
not been included in the intial wind analysis increments, the resulting geostrophic geopo-
tential increments should be regarded as being representative for the mean sea level. (More
precisely, they are representative for (a variable combination of) the height levels of the
wind observations, but this detail aspect is neglected here.) They have to be converted to
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pressure increments and then extrapolated to the model orography level. For the conversion
into pressure, the required mean temperature is set equal to the average of the model tem-
perature at the lowest model level and the temperature extrapolated to the mean sea level.
The temperature extrapolation uses a constant climatological lapse rate of 0.0065K/m . The
pressure increments valid at the mean sea level pressure are then extrapolated to the lowest
model level by applying the same correction factor that is used in the lateral spreading of the
surface pressure observation increments (see Section 3.7.5). Finally, the near-surface pressure
increments (i.e. increments at the lowest model level) are scaled by a constant factor less or
equal to one, which reflects the limited validity of the geostrophic approximation.

The final near-surface pressure increments derived in the current explicit balancing step are
then further balanced with respect to the mass field. This is done in the same way as for the
normal near-surface pressure analysis increments obtained by the nudging of surface pressure
observations. I.e. at first, a temperature correction is computed according to Section 3.8.1.
Then upper-air pressure increments balancing hydrostatically the near-surface pressure and
upper-air temperature increments are derived as described in the following Section 3.8.4.
However, the current near-surface pressure increments are of course excluded from the input
to the geostrophic wind correction.

3.8.4 Hydrostatic Upper-Air Pressure Correction

Basic Idea

By nudging the types of conventional observations as used currently, analysis increments
are computed for wind, temperature, and humidity at all model levels, and for pressure
at the lowest model level. Without any modification to pressure at upper levels, the total
value of the right side of the vertical momentum equation would be changed in general by
adding these increments to the model fields. In other words, the nudging terms would be
a direct source of vertical wind. Yet, the scales to be analyzed by the nudging of pressure,
wind, temperature, and humidity data are typically larger than 100 km in the horizontal
according to the lateral weight functions applied. On such scales, vertical wind velocities are
known to be relatively small, and they should not be significantly enhanced by the nudging.
Furthermore, from the set of observations used, and without vertical wind observations being
available for assimilation, there is usually no indication whether the vertical wind should be
increased or decreased.

Consequently, direct sources of vertical wind should be avoided, and the total analysis in-
crements should be balanced hydrostatically. This is achieved by a hydrostatic upper-air
pressure correction which is determined in the following way. From the pressure increments
at the lowest model level and the temperature and humidity increments at all levels, upper-
air pressure increments above the lowest level are computed by integrating the hydrostatic
equation from the lowest model level upwards. This correction is the only feature directly re-
lated to fact that the model is non-hydrostatic. It is stressed that although the total analysis
increments are balanced hydrostatically, this does not change the non-hydrostatic properties
of the full model fields.

It should be mentioned that these considerations may not apply if other types of observations
are used. For instance, observed significant small-scale precipitation exceeding the simulated
precipitation may indicate that condensation as well as updraft winds in a convective cell are
underestimated in the model. The so-called latent heat nudging aims to adjust the effects
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of the condensation which would be required to produce the observed precipitation rates.
In fact, it adjusts the latent heating and thus the model temperature (and optionally the
humidity in addition). In the present example, the temperature would be increased. Without
hydrostatic balancing, this would be a source of increased upward motion. In this case, such
an effect is desired since it would tend to support the underestimated convection processes.
Note that the horizontal scales considered here are far smaller than the ones discussed above.

Mathematical Formulation

The formulation of the hydrostatic equation that is deployed here must be exactly consistent
with the model formulation. Hence, it must be derived from the vertical momentum equation
by neglecting sub-grid scale processes and by setting the total derivative of vertical wind to
zero. In finite differences, the resulting equation is defined on model half level and reads

1
√
γ
δζ p

′ = T0
Tnp0

p ′
ζ

− T − T0
Tn

ζ

−
(
Rv
Rd
− 1

)
qv − ql − qf

ζ

(3.118)

where ζ denotes the computational vertical coordinate ( ζk = k , where k is the number
of the kth main model level), and √γ the variation of reference pressure with ζ (i.e.√
γ = ∂p0 / ∂ζ ) . ζ symbolizes the vertical averaging operator. With the use of this

operator, of the vertical differencing operator, and of the factor √γ at half levels as defined
for the discretized form of the model equations (see Documentation Part I on Dynamics and
Numerics), Eq. (3.118) takes the form
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where qvirt = (Rv/Rd − 1) · qv − ql − qf .

For increments instead of full model fields, it follows that
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Solving for ∆p ′
k

finally yields
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where ∆qvirt = (Rv/Rd − 1) ·∆qv −∆ql −∆qf . Since the analysis increments ∆T and
∆qvirt are known at all levels and ∆p ′

k+1 is known at the lowest model level, ∆p ′
k

can be
computed from the second but lowest level upwards.
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3.9 Determination of the Analysis Increments

This section describes the order of the various steps that are required to derive the final
analysis increments, and presents the nudging equations for the different variables that are
analyzed. Here, the analyzed variables are denoted to be those model variables, for which a
nudging term (or explicit balancing term) is added to the original dynamic model equation.
Currently, this set of variables consists of temperature, specific humidity, and the horizontal
wind components at all model levels, and pressure (deviation from the base state) at the
lowest model level. Pressure analysis increments further above are derived by means of the
hydrostatic upper-air pressure correction. For the remaining atmospheric model variables,
i.e. the vertical wind component, cloud water and ice contents, and turbulent kinetic energy,
no analysis increments are computed. Thus, apart from the fact that cloud water and ice
contents can be modified in the presence of condensation or evaporation within the nudging,
these variables are not influenced by the nudging except indirectly due their interaction with
the analyzed variables in the model dynamics and physics. This interaction causes some
transfer of observational information to these remaining variables, and it is in this sense that
the complete nudging process provides an analysis of all atmospheric model fields.

After the observation processing and the determination of all the observation increments
including the quality control, pressure analysis increments at the lowest model level are
computed first. The corresponding equation can be derived straightforwardly from Eq. (3.10)
by replacing ψ by ps :

∆A ps = 2∆t Gps µps
1 + 2∆t Gps µps

·
∑
k(w 2

k · [p obs
sk
− p n+1

sF
(xk)])∑

k′ w
2
k′

(3.122)

where ∆A denotes analysis increments, and µps = flbc ·
∑
k w

2
k /

∑
k′ wk′ . flbc is an addi-

tional weight which is equal to 1 in the inner model domain but reduces the nudging weight
near the lateral boundaries ( flbc = 1 − µb / µmaxb , where µb is the boundary relaxation
parameter as described in Part I of the COSMO documentation, and µmaxb is the maximum
value of µb given at the outermost grid row of the domain). flbc is used in the nudging
equations for all the analyzed variables in an analogous way. Before the pressure analysis
increments given by Eq. (3.122) are added to the model fields, the temperature increments
related to the hydrostatic temperature correction are computed (Section 3.8.1).

All the other increments are subsequently determined one model level after another from
the lowest level upwards. After the spreading of the upper-air and surface-level observation
increments and the computation of the sums of weights and weighted increments at the
grid points, the first step at each model level is the nudging of temperature. To derive the
nudging equation, the updating of temperature is considered a step-by-step process where
the first step is the temperature change imposed by the temperature correction, ∆psT . The
temperature Tc after this is given by

Tn+1
c = Tn+1

F
+ ∆psT (3.123)

The second step is a normal nudging step given by

Tn+1 = Tn+1
c + 2∆t GT ·

∑
k

Wk · [T obsk − Tn+1] (3.124)

in its implicit formulation. Combining these two steps by using Eq. (3.123) in Eq. (3.124)
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and solving for Tn+1 yields

Tn+1 = Tn+1
F

+ 2∆t GT µT
1+ 2∆tGTµT

·
∑
k(w 2

k ·[T obsk − Tn+1
F

])∑
k′ w

2
k′

+ 1
1+ 2∆tGTµT

·∆psT (3.125)

As an optional supplementary step related to temperature nudging, specific humidity can
be adjusted so that relative humidity is not directly affected by temperature nudging. This
adjustment of humidity may also be chosen to be confined to certain environs of convectively
precipitating grid points only. However, it is not applied at all to the current operational
version, firstly because preserving relative humidity may result in overestimation of convec-
tive precipitation, and secondly because preserving specific humidity tends to enhance –
and usually improve – the strong vertical gradient of relative humidity in cases where a
low-level inversion associated with low stratus is enhanced by nudging of temperature data.

The next step consists of the nudging of humidity observations. With respect to upper-air
data, at least, an adjustment of the simulated relative humidity to the observed relative
humidity is expected to offer a better representation of the initial cloudiness e.g. of low stra-
tus than an adjustment to the observed specific humidity. This implies that the observation
increments should be expressed as differences between observed and simulated relative hu-
midity. That can be done even though the model variable is specific humidity and Eq. (3.10)
indicates that the observation increments must usually be expressed in terms of the model
variables for the nudging. The ordinary form of the nudging equation for specific humidity
qv

.= q reads

qn+1 = qn+1
F

+ 2∆t Gq µq
1 + 2∆t Gq µq

·
[∑

k(w 2
k · [q obsk − q n+1

F
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2
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]
(3.126)

With W̃k
.= w 2

k /
∑
k′ w

2
k′ , the fractional term in the square brackets can be written as∑

k
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F
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Thus, the observation increments determined at the observation locations can be replaced
by increments between pseudo observations q pso

k defined at the target grid point and the
model value at that point. The pseudo observations are equal to that model value plus
the original observation increments. Specific humidity can be expressed as a function fq of
relative humidity U , temperature T , and pressure p , where

fq (U, T, p) = (Rd/Rv) (pvsw(T )/p) · U
1 − (1−Rd/Rv) (pvsw(T )/p) · U

.= a U

1 − b U
= q (3.128)

pvsw is the saturation vapour pressure over water, Rd and Rv are the gas constants for dry
air respectively water vapour. Hence, the pseudo observations of specific humidity can be
expressed as a function of model temperature and pressure and of relative humidity pseudo
observations U pso

k which are given by U pso
k = U n+1

F
(x) + ∆OUk where ∆OUk are the

relative humidity observation increments at the observation locations. Taking into account
that

∑
k W̃k = 1 , the right side of Eq. (3.127) can then be written as
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Since b is of the order of 0.01 or less, the error related to the approximation which is applied
to the denominator in Eq. (3.129) for convenience is typically of the order of 0.001 or less.
Note that Eq. (3.129) is exact for grid points which are influenced by only one observation
or by several observations with the same value for the observation increments. Plugging
Eqs. (3.128) and (3.129) into Eq. (3.126) yields the final form of the nudging equation for
humidity:

q
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As a result of the temperature and humidity change from the above steps, subsaturation in
the presence of cloud water and supersaturation can occur. Hence, a saturation adjustment
as described in Part II of the COSMO documentation is performed by means of evaporation
and condensation to finally render 100% relative humidity in areas with cloud water.

Next, pressure increments above the lowest model level are computed by means of the hydro-
static upper-air pressure correction (Section 3.8.4) and added to the model fields. This has
also an impact on saturation vapour pressure, however since it is very small, the saturation
adjustment is not performed here again (but it is redone after the boundary relaxation which
follows the nudging step).

At last, the analysis increments for horizontal wind are determined. Analogously to the tem-
perature correction, the inclusion of the geostrophic wind correction (∆ug , ∆vg) (Section
3.8.2) is regarded as part of a step-by-step process. Apart from the interpolation of the net
weights µ and the net observation increments from the center to the faces of the Arakawa C
grid boxes, the two nudging equations for the wind components take the same form as that
for temperature, i.e.

un+1 = un+1
F
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·
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It is noted that in fact, these computations for wind are done for all model levels only after
the previous steps for the nudging of the mass field variables have been completed for all
levels (provided that the geostrophic wind correction is computed and / or the program runs
in parallel mode).

Last but not least, it is mentioned that with the current use of observations and choice for
the temporal weight functions, the analysis increments usually change only slowly, gradually
and often almost linearly in time. Hence, it is not necessary to recompute these increments
at each timestep. Instead, as an approximation, they can be determined once for the mean
time of a period of several timesteps and be (re-)used at each timestep within the period.
These periods are regular except when the reading of new observations in the observation
processing (once per hour) makes an additional re-computation of the increments meaningful.
At timesteps, when the analysis increments are reused, all the computations as described
above can be omitted except for the simple addition of the analysis increments to the model
fields, the saturation adjustment, and the hydrostatic upper-air pressure correction (which
ensures an exact hydrostatic balance of the total analysis increments). In this way, a large
fraction of the computing time required for the nudging can be saved.
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Section 4

Variational Soil Moisture Analysis

4.1 Overview

As noted in section 3.3.2, 2–m temperature is not assimilated by nudging since it poten-
tially disturbes the stability in the boundary layer. Rather, 2–m temperature observations
are assimilated by the variational soil moisture analysis, as presented in the following. Soil
water content influences screen–level values for temperature and relative humidity during
clear–sky days. An inaccurate specification can result in forecast errors up to several degrees
centigrade. Since direct measurements of soil moisture contents are rarely available, an in-
direct determination is necessary. This is done by a variational method: The optimal soil
moisture contents minimize a cost functional that expresses the differences between model
derived and observed screen–level temperature and humidity1 (cf. Hess (2001), J.-F. (1991),
Callies et al. (1998), Rhodin et al. (1999), Bouyssel et al. (1999)).

Since, basically, the soil moisture fields are adapted so that the model screen–level forecasts
approximate the observed values, the retrieved soil moisture fields depend essentially on the
used forecast model, especially on the applied soil and boundary layer parameterizations.
Errors of the model forecasts are reflected in errors of the retrieved values. However, the
resulting forecasts are improved and the computed heat and moisture fluxes at the bottom
of the atmosphere model have a good chance to be improved as well.

Since the soil–atmosphere coupling is strongest with high radiative impact, observations
close to noon are assimilated. The diurnal variation of 2–m temperature and 2–m relative
humidity have to be provided by the physical parameterizations.

The soil moisture analysis is applied once per day in order to provide improved soil moisture
fields to be used by the forecast that starts at the following day. Because the soil–atmosphere
coupling is not always strong enough to derive sufficient information on the soil moisture
contents to compute them in a reliable way, a Kalman filter cycled analysis is applied that
incorporates a background state along with background error estimates. In case of low radia-
tive impact, the retrieved moisture fields remain close to the background. High impact, on
the other hand, results in improved moisture fields and reduced background error estimates.

1 Currently only 2–m temperature observations are assimilated; 2–m relative humidity observations can
be included in the analysis in a straight forward way as soon as the model forecast values are in comparative
quality.
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The variational Kalman–filter analysis scheme that is documented in this section requires
one additional forecast run for each analyzed soil moisture layer, but does not depend on
a specific soil model nor on a certain boundary layer model and is applicable for general
numerical models and technical environments.

4.2 Variational Analysis

The variational analysis scheme derives improved soil moisture contents by minimizing a cost
functional. The minimization problem is of high dimension in general; the moisture contents
of each horizontal grid column of every soil layer has to be retrieved. However, since the
screen–level values for temperature and relative humidity are mainly vertically coupled to
the soil moisture contents of the same grid column (at least in case of clear–sky conditions
with strong soil moisture–atmosphere coupling), a horizontal decoupling is assumed that
reduces the high–dimensional minimization problem to a large series (one for each horizontal
grid point) of low–dimensional (the number of analyzed soil layers) minimizations2. In this
way the computational requirements are essentially reduced.

In the following the formulation of the variational soil moisture analysis scheme is given for
an arbitrary horizontal grid point and for the assimilation of 2–m temperature observations
only.

Let η and ηb denote vectors of dimension nsoil containing the moisture contents of the
analyzed soil layers and their background states, respectively. The vectors T o and T (η)
of dimension nobs contain analyses (based on synoptic observations) and model forecasts,
respectively, of 2–m temperature for specified observation times. The cost functional J to
be minimized at each analysis step (i. e. daily) reads

J (η) = J o(η) + J b(η) (4.1)

with the observation term

J o(η) = 1
2
(
T o − T (η)

)T
R−1

(
T o − T (η)

)
(4.2)

and the background term

J b(η) = 1
2(η − ηb)T B−1 (η − ηb) , (4.3)

with ADP ≤ ηj ≤ PV , j=1, . . . , nsoil . The components of η (indicated with lower indices)
are limited by air dryness point (ADP ) and pore volume (PV ) of the actual soil type.

Matrix R ∈ IRnobs×nobs denotes the observation error covariance matrix and B ∈ IRnsoil×nsoil

the background error covariance matrix. Both matrices R and B are symmetric and positive
definite for physical reasons. Matrix R is assumed constant and diagonally dominant. At the
start of the cycled soil moisture analysis scheme matrix B is initialized with estimated error
variances and error covariances of the first guess soil moisture fields that are used as initial
background ηb . Further on, the background values ηb and the background error covariance
matrix B are provided within the cycled Kalman filter analysis scheme, see Section 4.2.2 .

2 Experiments have been carried out that confirm the assumption of horizontal decoupling for grid sizes
of 14 km and 7 km.
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Minimization of J results in the analyzed soil moistures ηa :

J (ηa) ≤ J (η) for all η 6= ηa . (4.4)

The minimization is performed under the assumption that the linearization given in Sec-
tion 4.2.1 is valid; a unique minimum is guaranteed.

4.2.1 Minimization

Although the soil moisture – 2–m temperature dependency is nonlinear in general, lineariza-
tion around the background state provides good approximations as long as the retrieved
values are not too far from the background state.

Linearization of the model 2–m temperature T (η) around ηb gives

T (η) .= T (ηb) + Γ (η − ηb) , (4.5)

where the Jacobian Γ∈ IRnobs×nsoil is approximated by one–sided finite differences,

Γi,j := min

Ti(ηj)− Ti(ηb)
ηjj − ηbj

, 0

 , (4.6)

with i=1, . . . , nobs and j=1, . . . , nsoil . The approximation (4.6) requires the routine forecast
based on the background moisture contents ηb and nsoil additional forecast runs with varied
soil moisture contents ηj . The partial derivatives are known to be negative for physical
reasons.3 The components of vector ηj are computed by

ηjk =

 ηjj

ηbj

for
k = j

k 6= j
, k=1, . . . , nsoil , (4.7)

where the varied soil moisture content ηjj is altered depending on air dryness point (ADP )
and field capacity (FC) of the soil model in order to reduce the influence of the soil type of
the actual horizontal grid point. The size of the alteration ∆η is given by

∆η = (FC −ADP ) ∆ε , (4.8)

the fraction ∆ε ∈ ]0, 1
2 [ is a tuning parameter. The direction of the variation is chosen ac-

cording to the forecast error as long as the background ηb is not too close to the limits ADP
and FC, i. e. :

ηjj =



min(ηbj , FC)+∆η for


nobs∑
i=1

Ti(ηb) >
nobs∑
i=1

T oi and ηbj+∆η < FC

or
ηbj −∆η ≤ ADP

min(ηbj , FC)−∆η for


nobs∑
i=1

Ti(ηb) ≤
nobs∑
i=1

T oi and ηbj−∆η > ADP

or
ηbj + ∆η ≥ FC

(4.9)

3 Slightly varying cloud covers in the different forecast runs can result in erroneous positive finite differences,
that are eliminated by the minimization.
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Although soil moisture influences evapotranspiration and 2–m temperature only between
ADP and FC (as defined by the applied soil model of COSMO4), higher moisture values
up to PV are allowed to reduce the instant impact on the soil model and to provide more
realistic soil moisture values (e. g. in case of heavy precipitation).

In order to provide reasonable analysis increments for background values ηb that exceed FC ,
it is necessary to derive non–vanishing soil moisture – 2–m temperature dependencies. The
minimization of ηbj by FC in Equation (4.9) assures that the varied soil moisture contents
reside in the sensitive range between ADP and FC even if ηbj exceeds FC .

Using the linearization (4.5) the gradient of the cost function can be analytically expressed
as

∇J (ηb) = −ΓT R−1
(
T o − T (ηb)− Γ (η − ηb)

)
+ B−1 (η − ηb) . (4.10)

For the low–dimensional minimization problem it is highly efficient to solve

∇J (ηa) != 0 (4.11)

directly5. Little calculus gives the minimum ηa of the cost function as

ηa = ηb +
(
ΓT R−1Γ + B−1

)−1
ΓT R−1

(
T o − T (ηb)

)
. (4.12)

Equation (4.12) is the formula that is implemented to actually compute ηa .

Worth to mention that the applied minimization by linearization and direct solution is no
degradation in accuracy of the retrieved soil moisture fields.

The minimization of the cost functional J is performed under the constraint that the ana-
lyzed values ηa are in the range

ADP ≤ ηaj ≤ PV , j = 1, . . . , nsoil . (4.13)

If the global minimum of the cost functional resides outside this valid range, the minimum at
the boundaries is computed to result in the analyzed values. The algorithm that computes
the minimum considering the boundary side constraints is rather technical and will not be
reported here6.

4.2.2 Kalman–filter Cycling

The soil moisture analysis is performed daily for 0UTC . For the start of the cycled soil
moisture analysis scheme the background error covariance matrix B is initialized with es-
timated error variances and covariances B0 of first guess moisture fields that are used as
initial background ηb .

The background state (ηb)t+1 and the background error covariance matrix (B)t+1 for the
following day are provided in a Kalman–filter cycled analysis (the valid times of the vari-
ables ηa , ηb , A , and B are indicated from now on by upper indices outside brackets). An

4 Similar boundaries should exist for other soil models.
5Because of the linearization a unique minimum is guaranteed.
6 A simpler approach would be to compute the global minimum and restrict the moisture values in both

soil layers independently to the valid range. Experiments showed only slight differences in the analyses.
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increase of confidence in the retrieved soil moisture values due to the assimilated screen–level
observations as well as a decrease due to the model error of the soil model are taken into
account.

The background soil moisture contents for the following day (ηb)t+1 are computed as

(ηb)t+1 = (ηa)t +
(
M t+1
t ((ηb)t)− (ηb)t

)
, (4.14)

where M t+1
t ((ηb)t) are the 24 h model values that result from the routine forecast that is

started at 0UTC with the background fields (ηb)t . Changes in soil moisture contents by
precipitation and evapotranspiration during the 24 hours are taken into account in this way
without the requirement of another additional forecast run.

The confidence in the retrieved values (ηa)t is given by the analysis error covariance matrix
A ∈ IRnsoil×nsoil ,

(A)t =
(
∇2J

)−1
=
(
ΓT R−1Γ + ((B)t)−1

)−1
, (4.15)

which is the inverse of the Hessian of J (e. g. Tarantola (1987)). If there is little dependence
of the moisture contents on the 2–m temperatures (Γ ≈ 0), then (A)t almost equals the
background error covariance matrix (B)t . The larger the dependence is, the smaller the
estimated analysis errors become.

An auxiliary new background error covariance matrix (B̃)t+1 is computed by

(B̃)t+1 = M (A)t MT + Q , (4.16)

where matrix M ∈ IRnsoil×nsoil is an estimation of the tangent linear of the forecast operator
M t+1
t . Matrix Q ∈ IRnsoil×nsoil expresses the assumed error of M t+1

t . This additive term
reduces the sensitivity of the background to past observations and is important to keep the
retrieved moisture contents variable in long–term cycled analyses.

In case of weak soil–atmosphere coupling (Γ ≈ 0) for a sequence of days, the background
error covariance matrices (B)t+1, (B)t+2, . . . increase linearly with Q , which reflects the
reduced confidence in the retrieved moisture fields and larger variations become possible in
subsequent analyses. The error variances and error covariances of Q are the main tuning
parameters of the cycled assimilation scheme.

The background error covariance matrix (B)t+1 is limited by Bmax in order to prevent the
background errors from unlimited growth that could affect the stability of the soil moisture
analysis in case of longer periods with no soil moisture impacts (e. g. snow). Strictly speaking:
the variances (diagonal elements of (B̃)t+1) are limited by Bmax and the covariances (non–
diagonal elements) are adjusted in order to result in the same correlation coefficients, i. e.
the coefficients of (B)t+1 are computed as

bi,j =


min(b̃i,j , bmaxi,j ) for i = j

b̃i,j

√
bi,i bj,j
b̃i,i b̃j,j

for i 6= j
, i, j=1, . . . , nsoil .
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4.2.3 Free Parameters

The tuning parameters of the variational soil moisture analysis scheme are the matrices R,
Q, B0, Bmax, and M as well as the fraction ∆ε . (They are controlled by namelist parameters
of the model SMA.)
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Section 5

Snow Analysis

5.1 Overview

Knowledge of the distribution of snow is necessary for the determination of surface albedo
and surface fluxes in weather prediction models. The presence of a snow cover reduces dra-
matically the absorption of short-wave radiance at the ground and hence strongly influences
the local near-surface temperature. Moreover, the distribution of snow cover can also have a
significant large-scale impact as it may affect the characteristics of air masses.

Therefore, snow depth is analyzed 2-dimensionally in a separate procedure and transformed
into the model variable snow water content in order to be used in COSMO. Typically, this
is done at a frequency of once every 6 hours during the data assimilation cycle. Note that
in the context of short-range numerical weather prediction, it is less important to determine
exactly the snow depth than the horizontal extent of the snow-covered areas.

The object of the snow depth analysis is to find a proper value for each model grid point
which is representative of the grid box and the height of the model orography. This height
is a mean value of the real orography within the grid box.

5.2 Input Data

There are three sources of information that are used in the snow depth analysis:

1. surface-level synoptic observations (SYNOP);
2. model ’forecast’ values of snow water content transformed into snow depth from the

COSMO nudging run for data-pour areas where the total influence (weight) of the
SYNOP observations is below a given threshold;

2. monthly snow depth climatology (from ECMWF) for defining permanently ice-covered
glacial areas.

Depending on the information content, different data are extracted from SYNOP reports:

- Total snow depth. If this is not reported then also:
- 6-hourly precipitation sum. This is converted into a snow depth increment provided
that the 2-m temperature T2m (observed or, if it is not observed, model-derived) is
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below 0◦C and the present or past weather observations ww indicate snowfall. If
6-hourly precipitation is also missing, then also:

- Present and past weather observations. In case of reported snowfall, a snow depth
increment is calculated using an empirical function of ww . Other weather observations
result in zero snow depth increments.

Quality Control

At first, observed snow depth is subject to a plausibility check. It is rejected if it exceeds an
acceptance limit d alsn = 1.5 [m] · (1 + zob/800 [m]) which depends on station height zob .

Then, a first guess quality control check is performed. Here, the previous snow depth analysis
d
a(t−1)
sn is regarded as a first guess for truth, and the observation is rejected if it deviates

from that guess by more than a threshold value d thrsn given by

d
thr

sn = 0.8 [m] ·
(

1 + zob
2000 [m]

)
·max

(
0,min

(
1, 287.16 [K]− T2m

10 [K]

))
(5.1)

5.3 Analysis Method

The analysis method used for snow depth is based on a simple weighted averaging of observed
values and does not use a background field except in data-pour regions. The individual weight
wk of an observation k at a target grid point depends both on the horizontal distance ∆r
and the vertical distance ∆z between these two points,

wk = max
(
s2 −∆r 2

s2 + ∆r 2 , 0
)
· max

(
z2
s −∆z 2

z2
s + ∆z 2 , 0

)
(5.2)

The weight is zero for observations which are further away from the target point than the
radii of influence s and zs . The horizontal radius s is set to 120 km in data-dense areas
and to 200 km elsewhere, whilst the vertical radius of influence zs = 0.4 ·z+180m increases
with increasing height z of the target point.

Using Eq. (5.2), the weighted averages of snow depth observations dsn
ob and of snow depth

increments ∆dsn
ob derived from precipitation and weather observations are calculated as

well as the sum of weights W d =
∑
wdk resp. W∆d =

∑
w∆d
k . The total weights W d and

W∆d are measures for the local data density of the two types of observations.

As these data densities may vary strongly in space and time, the way to determine the final
analyzed snow depth depends on them. If the sum of weights of snow depth data is greater
than a prescribed value Wsuf then the analyzed snow depth d asn at that grid point is set
simply to the weighted mean value of observed snow depth, i.e.

d asn = dsn
ob =

∑
k

wk · dksn / W d , W d ≥ Wsuf ≡ 2 (5.3)

If this condition is not satisfied but the mean of the two data densities is greater than
Wsuf , i.e. if 1/2 ·(W d + W∆d) ≥ Wsuf > W d , then (only) the weighted mean of snow
depth increments ∆dsn

ob is additionally taken into account. The weighted mean increment

Section 5: Snow Analysis Part III – Data Assimilation 6.00



5.3 Analysis Method 91

is added to the previous analysis d
a(t−1)
sn , and a possible snow melt ∆dmeltsn is subtracted.

The result is combined with the mean weighted observed snow depth so that

d asn = W d

Wsuf
· dsn

ob +
(

1− W d

Wsuf

)
·
(
d
a(t−1)
sn + ∆dsn

ob −∆dmeltsn

)
(5.4)

Whenever the mean of the two data densities is also smaller than Wsuf , the third data
source, i.e. the 6-hour model forecast of snow water content converted into snow depth d fcsn ,
is also used. Then, the analyzed value is given by

d asn = W d

W
suf

· dsn
ob + W∆d

2W
suf

(
1− W d

W
suf

)
· dsn

inc +
(

1− W∆d

2W
suf

)(
1− W d

W
suf

)
· d fcsn (5.5)

where dsn
inc = d

a(t−1)
sn + ∆dsn

ob −∆dmeltsn .

At grid points where climatological data indicate permanent ice cover the snow depth is set
to 100m . In a final check, it is ensured that the analysis increment at any grid point does
not exceed a limit that depends on height and temperature.
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Section 6

Analysis of Sea Surface
Temperature and Ice Cover

Overview

Over water, the sensible and latent heat fluxes at the surface strongly depend on the surface
temperature. The correctness of its specification is a prerequisite for realistic simulations of
cyclonic development, particularly in baroclinic regions. In addition, the location of the sea
ice boundary is also very important since strong vertical heat fluxes can be induced when
cold air masses are advected from ice-covered areas to the open water.

Therefore, sea surface temperature and the location of the sea ice boundary are analyzed
2-dimensionally in another separate procedure. Typically, this analysis is performed once a
day at 0UTC as part of the data assimilation.

The object of the sea surface temperature analysis for COSMO is to capture not only the
slowly varying large-scale temperature patterns, but also smaller-scale phenomena such as
cold anomalies due to upwelling currents or the relatively rapid warming in shallow coastal
areas in periods of strong solar irradiation. However, diurnal or very small-scale variations
should be filtered out because sea surface temperature is held constant during the forecast.

Analysis Method

Firstly, the extent of the sea ice cover is analyzed. For this purpose, external analyses are di-
rectly interpolated to the model grid. Namely for the Baltic Sea, a weekly analysis from
the Federal Maritime and Hydrographic Agency of Germany (BSH) with a latitudinal–
longitudinal resolution of 0.1 by 0.16 degrees is used. For other areas, a daily global analysis
(Grumbine (1996)) from the Ocean Modelling Branch of NCEP based on SSMI satellite data
is available at a resolution of 0.5 by 0.5 degrees and could be used if required. Sea ice temper-
ature is currently derived from ECMWF climatology, however it is planned to compute this
quantity by means of a one-layer sea ice model incorporated in COSMO in the foreseeable
future.

Sea surface temperature (SST) is analyzed by means of a correction scheme. The analysis is
determined by adding weighted observation increments to a first guess or background field
in the environs of the observations. As a first guess field, the interpolated SST analysis of
GME is deployed for which the first guess field is given by a 0.5 by 0.5 degree SST analysis
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of NCEP. The latter analysis does not only use in-situ observations but also bias-corrected
satellite data (eynolds and Smith (1994)). Hence, the SST analysis of COSMO does also
benefit from these satellite data.

The observational data set used for the SST analysis of COSMO comprises of all the ship
and buoy data from within the previous 5 days. As a quality control, the data are checked
against the first guess and against observations from the other stations in the vicinity. For
the analysis at each grid point, the first guess value is corrected by a weighted mean of all
the observation increments. The individual weights depend on the distance between analysis
and observation time, on the observation type, and on the spatial distance of the observation
from the target point according to Eq. (5.2) with ∆z = 0 and s = 200 km ( s = 430 km for
the SST analysis of GME).
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