The Role of the Land Surface in Fog Modelling - Simulations with COSMO-FOG

Isabel Alberts, Matthieu Masbou and Andreas Bott

Meteorological Institute – University of Bonn,
ialberts@uni-bonn.de
What is FOG?

World Meteorological Organisation (WMO) definition

“Suspension of very small, usually microscopic water droplets in the air, generally reducing the horizontal visibility at the earth’s surface to less than 1km”

Webcam: http://www.loewenburger-hof.de/
Ingredients for Fog Formation

- Cooling
- Increase in humidity
- Calm or light winds
Ingredients for Fog Formation

Precipitation fog
Advection fog
Valley fog

- Cooling
- Increase in humidity
- Calm or light winds

Radiation fog
Advection fog
Valley fog
Fog Formation and the Land Surface

What is the role of the surface?

Local Surface Influences
- Soil type
- Vegetation
- Surface characteristics
- Soil moisture

Terrain Influences
- Topography
 - Mountain valley breeze
- Accumulation of cool air

What processes does the surface affect?

- Radiative cooling
- Advection
- Vertical mixing of heat and moisture
- Heat and moisture transport in the soil

e.g. different soil type/vegetation...
Coupling of **COSMO Model** and **PAFOG** (PArametrized FOG) (Bott & Trautmann (2002))

- $ke=20 \text{ m}$
- $ke=8 \text{ m}$
- $ke=4 \text{ m}$

Terra - MultiLayer

COSMO-Model (DWD)

COSMO-FOG

- $ke=12 \text{ m}$
- $ke=8 \text{ m}$
- $ke=4 \text{ m}$

- 2.8/7 km
- 1.0 km
Coupling of **COSMO Model** and **PAFOG** (PArametrized FOG) (Bott & Trautmann (2002))

Current NWP models run at resolutions that are too coarse for simulation of fog

Microphysics of PAFOG limited to the lower part of the atmosphere (2000m)

Introduction of a new prognostic variable: Concentration of Cloud Condensation Nuclei (CNN)

COSMO-Model (DWD)

ke=20 m

ke=8 m

ke=4 m

COSMO-FOG

ke=12 m

ke=8 m

ke=4 m

Terra - MultiLayer
Research Area
Needed DATA for description of the surface

Soil type
Vegetation
Topography

Surface roughness
Root depth
Plant cover
Leaf area index
Needed DATA for description of the surface:

- Soil type
- Vegetation
- Topography

Surface roughness
- Root depth
- Plant cover
- Leaf area index

To take the high heterogeneity into account:
set of modified external parameters implemented into COSMO-FOG; resolution 1 km

Source: FAO/UNESCO Soil map of the world (Food and Agricultural Organization of UNO, 10 km resolution)

Source: Soil map 1:50 000 (BK50, Geologisches Landesamt NRW and Rheinland Pfalz, 50 m resolution)
Explicit modelling of vegetation layer as one „big leaf“ which is situated between atmosphere and surface: e.g. vegetation temperature, humidity, wind,... Deardorff (1978); Schädle (1989); Siebert et al. (1992); von Glasow and Bott (1999)

Modifications of:

...radiation ->
ground surface
albedo

\[\alpha_{\text{veg}} \]

Land use dependant
values Ament, 06

\[\alpha_{\text{baresoil}} \]

Water content and soil / veg
parameters Schädler, 89

...water fluxes:

Evapotranspiration
controlled by ->
atmospheric resistance

\[r_a \]

stomata resistance

\[r_s \]

http://meted.ucar.edu

=> Expect a more detailed simulation of e. g. temperature and humidity over vegetation
Model Setup

Sensitivity Study: Two model runs with different data set of external parameters and parameterizations concerning boundary layer:

- **CTL** and **COSMO-VEG**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initialization:</td>
<td>05.10.2005 12 UTC</td>
</tr>
<tr>
<td>Forecast hours:</td>
<td>48 hours</td>
</tr>
<tr>
<td>Time step:</td>
<td>10s</td>
</tr>
<tr>
<td>Boundary conditions:</td>
<td>COSMO-DE</td>
</tr>
<tr>
<td>Horizontal resolution:</td>
<td>120 x 80 Pixel resolution: 1.0 km</td>
</tr>
<tr>
<td>Vertical resolution:</td>
<td>ATMOSPHERE – 40 layers</td>
</tr>
<tr>
<td></td>
<td>Δzmin= 4m</td>
</tr>
<tr>
<td></td>
<td>25 layers in the lower 2000 m of the atmosphere</td>
</tr>
<tr>
<td></td>
<td>Soil: 8 Layers TERRA-ML</td>
</tr>
</tbody>
</table>
2m Liquid Water Content g/kg 2 UTC

CTL | COSMO-VEG

all pixels with LWC > 0.01g/kg

0.5 0.4 0.3 0.2 0.1 0.05 g/kg
2m Liquid Water Content g/kg 2 UTC

CTL

COSMO-VEG

Forecast hours

ctl

COSMO-VEG
2m-VISIBILITY in m 2 UTC

CTL

COSMO-VEG

all pixels
with
visibility
< 1000

Forecast hours

No. Pixels in %

200 400 600 800 1000

200 400 600 800 1000

COSMO-VEG

CTL
2m-VISIBILITY in m Measurements

VISIBILITY in m COLOGNE AIRPORT

VISIBILITY in m NOERVENICH

VISIBILITY in m BONN

VISIBILITY in m Bad Marienberg

<table>
<thead>
<tr>
<th>Blue</th>
<th>Red</th>
<th>Black</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTL</td>
<td>COSMO-VEG</td>
<td>Measurement</td>
</tr>
</tbody>
</table>

time in hour
Conclusion and Outlook

- COSMO-FOG is sensitive to surface characteristics
- The new implemented surface parameters plus Vegetation module have an impact on the surface fluxes, the surface temperature, and accordingly on the fog formation.
- Characteristic spatial patterns are similar, but results of the simulation with the modified parameters are more heterogenous
- Differences of 2m-temperature are between +2°C and -3,5°C
- Differences of latent heat flux are in the range of +30 and -40 W/m² and of sensible heat flux in the range of +20 and -50 W/m²
- TERRA 2-m temperature as well as surface temp. is higher than COSMO-VEG temp.
- Modifications of TERRA-ML concerning vegetation (canopy temperature, canopy humidity, ...)

Thank you for your attention!