An examination of the quality of a new snow parameterization scheme combined with the COSMO’s land surface scheme TERRA

Ekaterina E. Machul’skaya

Hydrometeorological Centre of Russian Federation, Moscow, Russia

Moscow State University, Russia
Introduction

The problem is that the modeled by TERRA snow tends to melt earlier and faster than the observed snow.
Snow models description

Implemented processes

- Heat conduction
- Melting when snow surface temperature > 0°C or when soil surface temperature > 0°C
- Heat conduction
- Liquid water transport
- Gravitational compaction + metamorphosis
- Solar radiation penetration

Numerical schemes

1 layer

Arbitrary number of layers; heat conduction: implicit (combined with soil heat conduction), latent heat and solar radiation: source terms
Implemented processes (2)

Heat and water transport

\[
\rho_{sn} c_{sn} \frac{\partial T_{sn}}{\partial t} = \frac{\partial}{\partial z} \lambda_{sn} \frac{\partial T_{sn}}{\partial z} + \mathcal{L}_i (R(z) - M(z))
\]

\[
\rho_{sn} \frac{\partial w_{sn}}{\partial t} (z) = \rho_w (M(z) - R(z) - q(z))
\]

\(T_{sn}\) - snow temperature, \(w_{sn}\) - snow liquid water content, \(\lambda_{sn}\) - snow heat conductivity, \(\rho_{sn}\) - snow density, \(c_{sn}\) - snow specific heat content, \(\mathcal{L}_i\) - latent heat for freezing/melting, \(M\) - melting rate, \(R\) - refreezing rate, \(q\) - infiltration rate due to gravity

Water percolation:

\[q = h \cdot \left(\frac{w_{sn}}{\Pi - w_{hc}} \right)^3 \]

\(h\) - snow hydraulic conductivity, \(w_{hc}\) - snow water holding capacity, \(\Pi\) - snow porosity
Gravitational compaction and metamorphosis

\[\frac{1}{\rho_{sn}(t)} \frac{d\rho_{sn}}{dt} = \frac{1}{\eta(t)} [\sigma_m(t) + \sigma_g(t)] \]

Where

- \(\sigma_g(t) = \int \rho_{sn}(t) gz \) describes the gravity effect
- \(\sigma_m(t) \) describes the snow metamorphosis, = 75 Pa
- \(\eta(t) \) - the snow compaction viscosity

Solar radiation penetration

\[S(z) = S_0 e^{-\beta z} \]
Results discussion (1)

<table>
<thead>
<tr>
<th></th>
<th>Correlation coefficient between time series of observed and simulated SWE (N = 221, p<0.0001)</th>
<th>Mean error (± standard deviation) in the time of the snow complete ablation (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TERRA</td>
<td>0.70</td>
<td>-17 (±7)</td>
</tr>
<tr>
<td>TERRA + new snow</td>
<td>0.90</td>
<td>-7 (±5)</td>
</tr>
</tbody>
</table>
Results discussion: snow water-equivalent depth, Valdai, 1966-1972
Continue: snow water-equivalent depth, 1972 - 1978
Continue: snow water-equivalent depth, 1978 - 1983

[Graph showing snow water-equivalent depth from 1978 to 1983 with different lines representing TERRA ctrl, TERRA + new snow, and observed values.]
Results discussion (2): snow density \rightarrow snow height

Snow density

- **Observed**
- **TERRA**
- **TERRA + new snow**

Snow height

- **Observed**
- **TERRA**
- **TERRA + new snow**
Continue: snow density → snow height
Results discussion (3): parameterizations related to snow-albedo feedbacks

Besides the processes which relate to liquid water treatment, there are various possibilities to describe:

- dependence of *snow cover fraction* (∝ of weighted grid albedo) on snow depth, snow “age”, or decreasing of
- dependence of *snow albedo* on: snow temperature, or … etc.

- *fresh snow albedo* (now 0.7, possibly too low)

Question: Maybe it will be enough to replace current dependencies with other ones without introducing of liquid water content? –

Parameterization of *snow cover fraction*:

can reveal an effect in 3d-experiments,

but in 1d-stand alone simulations the strength of *snow cover fraction*-albedo feedback is damped through the prescribed air temperature at 2m.
Results discussion (3): parameterizations related to snow-albedo feedbacks

Reference version:

<table>
<thead>
<tr>
<th></th>
<th>fresh snow albedo = 0.7</th>
<th>fresh snow albedo = 0.85</th>
</tr>
</thead>
<tbody>
<tr>
<td>albedo depends on</td>
<td>r = 0.70</td>
<td>r = 0.89</td>
</tr>
<tr>
<td>snow age</td>
<td>σ = 28.9 mm</td>
<td>σ = 18.9 mm</td>
</tr>
<tr>
<td>albedo depends on</td>
<td>r = 0.61</td>
<td>r = 0.81</td>
</tr>
<tr>
<td>snow temperature</td>
<td>σ = 32.6 mm</td>
<td>σ = 25.6 mm</td>
</tr>
</tbody>
</table>

“new snow” version:

<table>
<thead>
<tr>
<th></th>
<th>fresh snow albedo = 0.7</th>
<th>fresh snow albedo = 0.85</th>
</tr>
</thead>
<tbody>
<tr>
<td>age</td>
<td>r = 0.89</td>
<td></td>
</tr>
<tr>
<td></td>
<td>σ = 24.7</td>
<td></td>
</tr>
<tr>
<td>temp.</td>
<td></td>
<td>r = 0.90</td>
</tr>
<tr>
<td></td>
<td></td>
<td>σ = 24.3</td>
</tr>
</tbody>
</table>

Answer: no
(liquid water is needed)
Results discussion (3):

…but:

2 layers are enough!

Computational costs:

+5% of TERRA
Results discussion (4): hydrological outflow

Mean (for 18 years) seasonal cycle of run-off at Valdai

- observed
- TERRA
- TERRA + new snow

mm/month

months
Summary

• A new, more physically based parameterization of snow is suggested and implemented into TERRA. As the main component, this scheme includes description of the water phase transitions within snowpack.

• By means of the Valdai long-term data an comparison with the current snow model incorporated in COSMO is done. The new scheme represents the snow evolution more realistically, particularly during melting period.

• The new snow scheme essentially improves the simulated runoff.
Outlook

• Near future:
 3-d experiments, test cases (verification of SWE, surface and 2m temperatures, hydrological outflow (?)

• After:
 investigation of a possibility to account for a sub-grid variability of snow height and melting rates
Thank you for your attention!