

WG EPS

Chiara Marsigli Arpae-SIMC

WG EPS - ongoing work

- implementation, tuning and testing of SPP in ICON (DWD)
 - task of GLORI, focus on Alpine domain
- perturbation of soil temperature (IMGW)
- study of the excessive ensemble spread for precipitation (MeteoSwiss)
 - (an ensemble of headaches)
- ensemble for Nowcasting (IMS)
- transition to ICON-LEPS
 - verification to be performed
 - once the transition is completed, activate also model perturbation

Implementation of the SPP scheme in ICON and first results

Zahra Parsakhoo, Chiara Marsigli, Christoph Gebhardt

With special thanks to Axel Seifert and Daniel Reinert

CPP vs. SPP: Key Differences

Classical parameter perturbation (CPP)

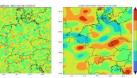
Each uncertain parameter is set to

- default or
- boundary value of the range

The value is kept fix during the run

~18 parameters

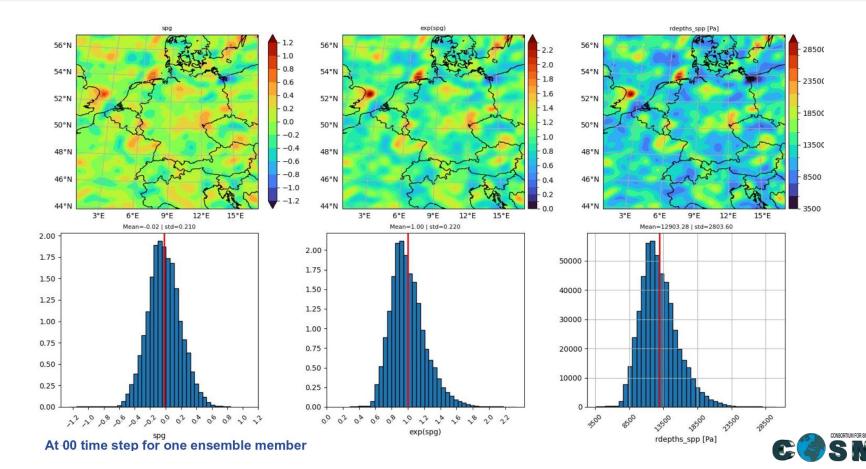
Seed different for each:


- parameter
- · ensemble member
- · initialization date
- initialization time

Each uncertain parameter is perturbed by

Stochastic Pattern

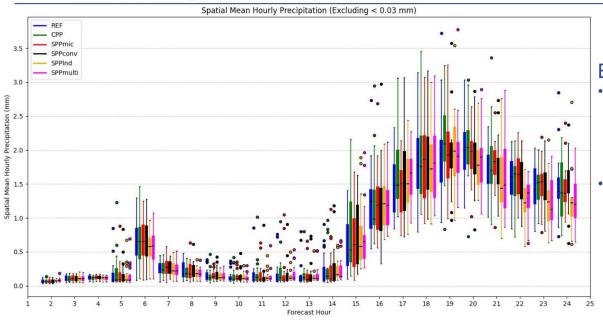
- Temporally evolving via spectral space
- Spatial and temporal correlations
 Some certain properties


Length scale
Time scale
Variance
Mode

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

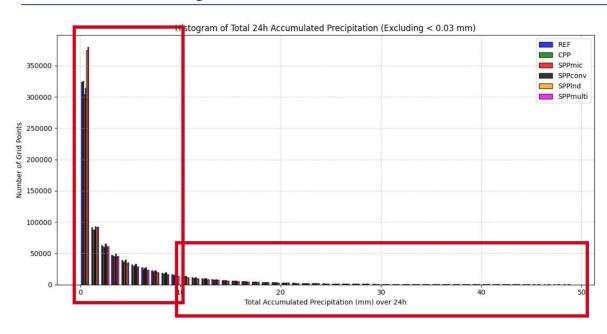
Test Setup



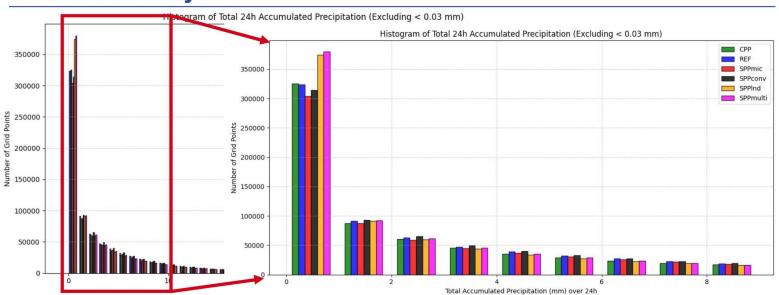
Statistical Analysis

Box-Whisker plot:

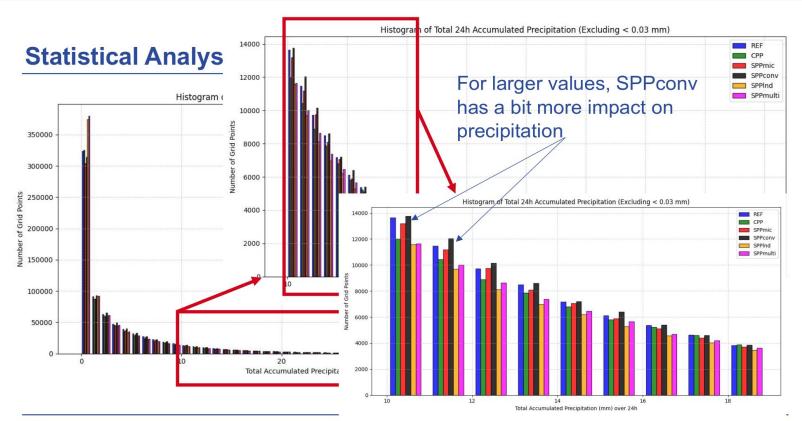
- The larger distribution (wider min-max range) observed in CPP indicates a higher level of perturbations.
- The medians across the different experiments are very similar, showing consistency.



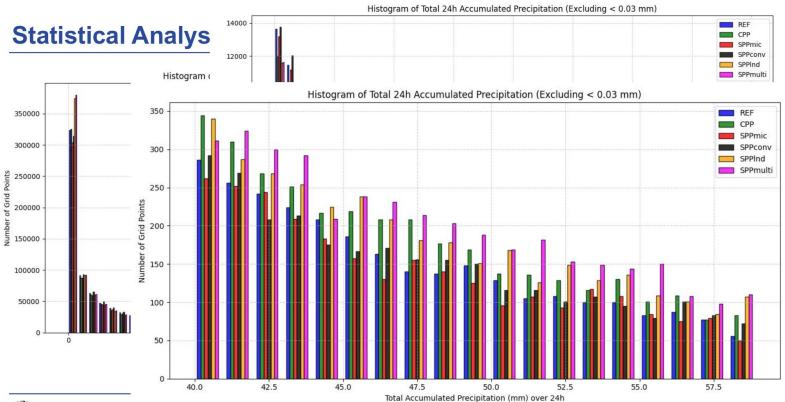
Statistical Analysis

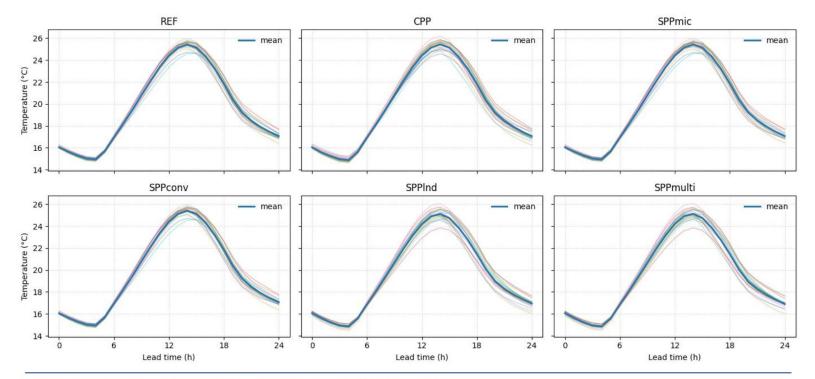


Statistical Analysis



The difference is too small. However, for small values, SPPInd has larger impact on rain





2mT domain-mean — (all members) by experiment

- Ensemble spread in 2mTemp is negligible before noon,
- Small spread for 2 m Temp when rain started!

SPP in ICON

Summary

- SPG Implementation is done by Axel Seifert (since June2025 is merged in ICON-Master),
- SPP Implementation has been tested for 3 parameters (sed. vel. graupel, rdepths and cr_bsmin) and multiSPP (rdepths & cr_bsmin) successfully with ICON-LAM.
 - Initial tests confirm expected behavior of the SPP scheme
 - Findings motivate the need for additional cases to ensure robustness

Outlook

Implementation:

- More case studies
- Test other physical uncertain parameters
- Multi-parameter perturbation
- Nest: First test uncoupled at 500 m resolution, then fully coupled with SPP.

Benchmarking:

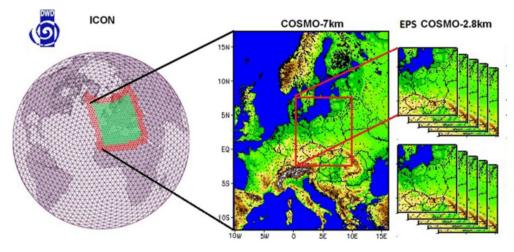
 Tuning SPG in ICON-LAM-D2: Optimize values for SPG parameters (e.g., length scale, wave mode, temporal scale) for perturbing physical parameters.

Refining SPP for Higher Resolution: Focus on 1 km resolution for the GLORI Alpine region.

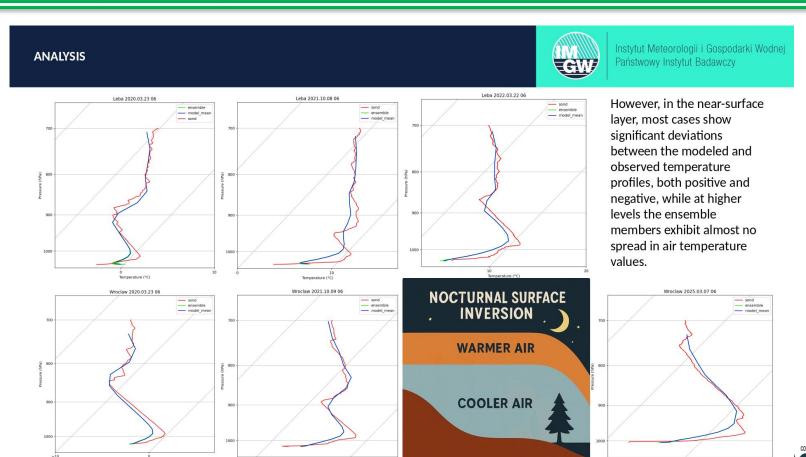
Influence of perturbation of surface temperature on temperature inversion at selected SYNOP stations in Poland – intro, preliminary results

A. Mazur, T. Tabalchuk, A. Wyszogrodzki

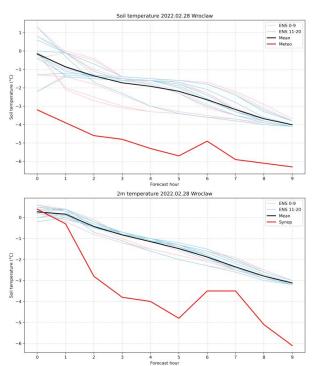
01/09/2025, Basel

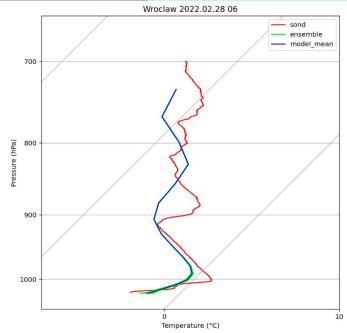


METHODS



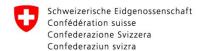
Modeling used the COSMO-2k8 ensemble with surface temperature perturbations, along with a separate deterministic run. The 20 ensemble members were split into two groups: 1–10 with perturbations in initial conditions only; 11–20 with perturbations in both initial and boundary conditions





ANALYSIS

For the case of 2022.02.28, when the amplitude of surface temperature values persists throughout the modeling period, a greater spread in air temperature values is observed, leading to improved temperature forecasts.


"Be careful what you wish for, lest it come true"

Aesop's Fables

Federal Department of Home Affairs FDHA
Federal Office of Meteorology and Climatology MeteoSwiss

Swiss Confederation

Marco Arpagaus for the MeteoSwiss team COSMO General Meeting, 01.09.2025

Forecasting System based on IC®N

recap 2024

Ensemble Data Assimilation:

LETKF

40+1 members at 1.0 km grid size with ICON-CH1 setup (SPPT) hourly cycling

ICON-CH1-EPS: 33 hour forecasts, 8x per day

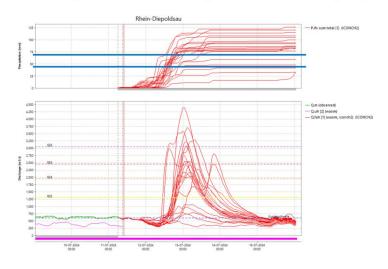
1.0 km grid size (R19B08), 80L

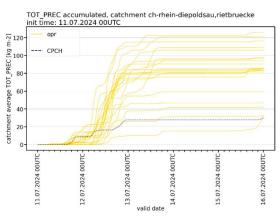
Lateral boundary conditions:

IFS ENS
9 (18) km
4x per day

operational since 28 May 2024

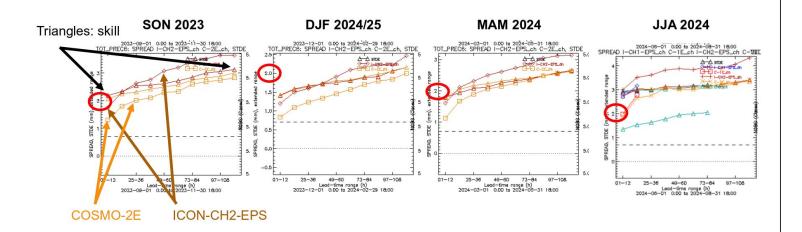
ICON-CH2-EPS: 5 day forecasts, 4x per day 2.1 km grid size (R19B07), 80L 21 ensemble members





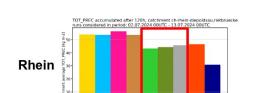
Excessive ensemble spread for precipitation

Hydrologists: "excessive spread and frequent overestimation in the runoff forecasts" → multiple events in early summer 2024 (May-Jul); large convective contributions



Precipitation, spread vs skill - ICON VS COSMO

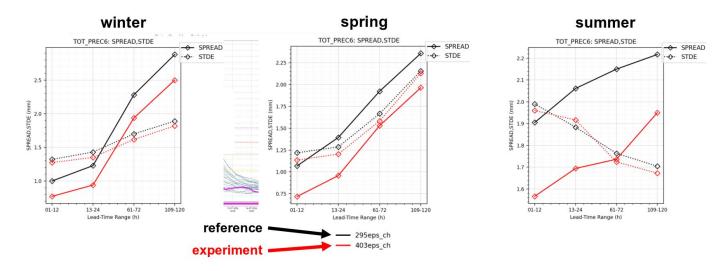
Ensemble **spread exceeds skill** (STDE of ensemble mean) in all seasons for ICON-CH2-EPS for the large lead times



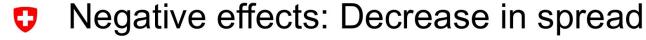
Marco Arpagaus

Excessive spread for precipitation – Summary

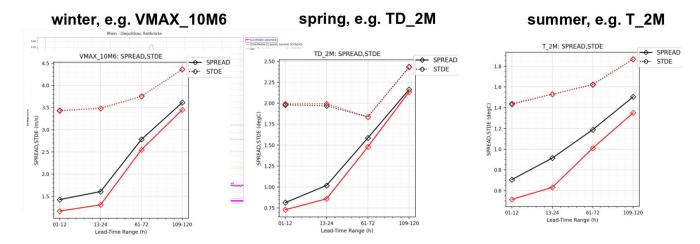
- Not a technical issue (interpolation, aggregation, workflow,..)
- ICON-CH2-EPS produces higher precipitation amounts and larger spread than COSMO-2E
- Reduction of the model perturbations reduces the precipitation of the ICON-CH2-EPS members on average and the precipitation spread, and hence mitigates the excessive precipitation spread issue
- However, the ICON-CH2-EPS uncertainty forecasts for temperature, humidity and wind speed get worse (not shown)
- ➤ Still unclear why model perturbations in ICON trigger more excessive precipitation than in COSMO → investigations ongoing
- Reduction of exaggerated convective precipitation rates / peaks does not substantially reduce the excessive spread for precipitation



Positive effects: spread of TOT_PREC

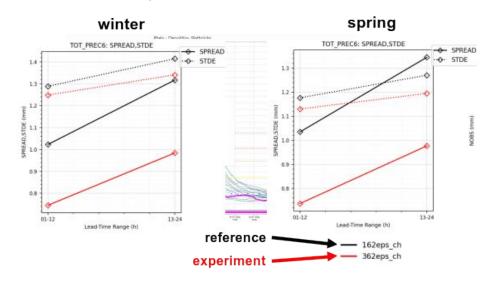

Decrease in spread, spread is below STDE for the majority of periods and lead times

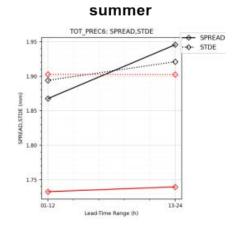
2 km ensemble



Slight) decrease in spread for many of the other variables: T_2M, TD_2M, FF_10M, VMAX 10M6 (less so for CLCT, PS and PMSL) → SPREAD/STDE gets worse

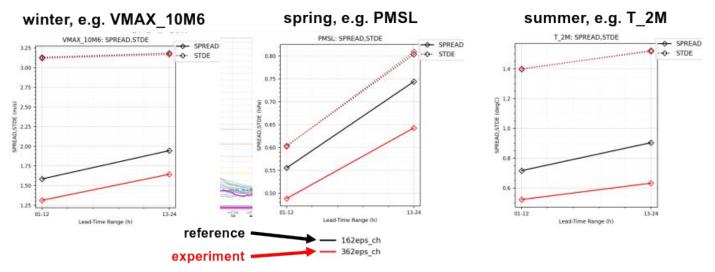
2 km ensemble




Positive effects: spread of TOT_PREC

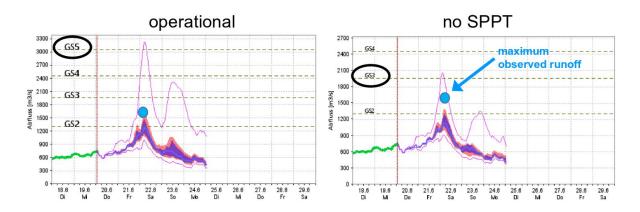
Decrease in spread, spread is below STDE for all periods and lead times (too much reduction?)

1 km ensemble



Negative effects: Decrease in spread

(Slight) decrease in spread for many of the other variables: T_2M, TD_2M, FF_10M, 1 km VMAX_10M6, PS, PMSL (less so for CLCT) → SPREAD/STDE gets worse ensemble



Decision (hopefully temporary ...): Deactivate SPPT in ICON-CH2-EPS, but keep it in ICON-CH1-EPS

operational since 11 December 2024

"Please give me just one forecast, but good!"

the mayor

Ensemble for Nowcasting

RUC at IMS: Best-member selection for nowcasting

Pavel Khain, Elyakom Vadislavsky, Anat Baharad, Yoav Levi, Amir Givati Israel Meteorological Service

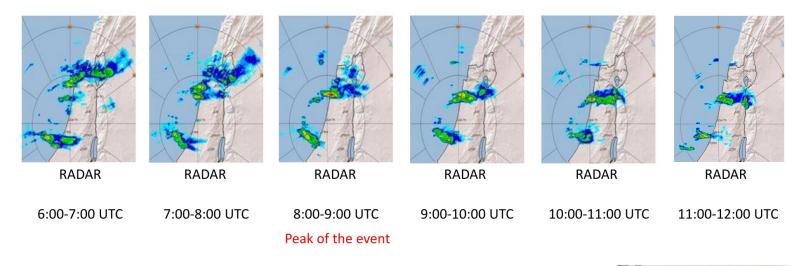
Precipitation Nowcasting

run for additional 12 hours

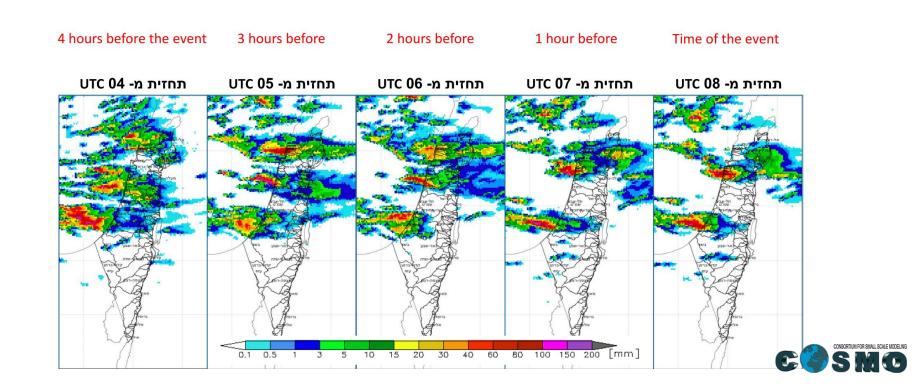
Method

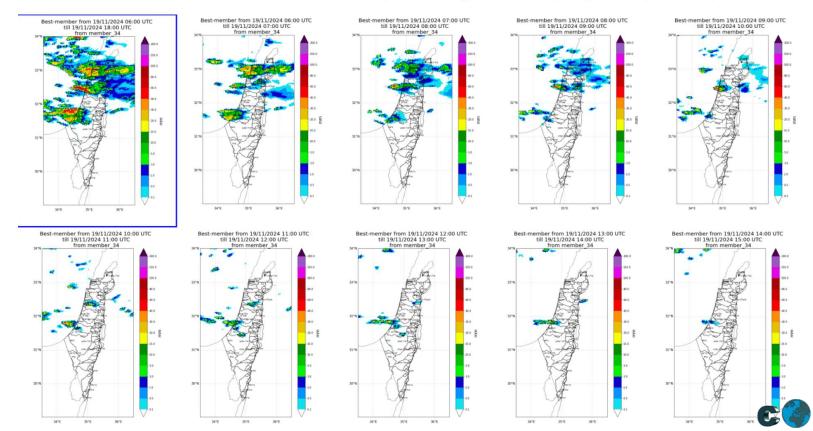
- Platform: ICON-EPS runs (ecFlow suite in Bologna) for rain nowcasting
- During rainy days (defined automatically by IFS forecast) ICON-EPS is running twice daily with 50 members, driven by EC-ENS for 30 hours
- Every hour, all 50 ICON-EPS members are automatically verified versus the radar data during the last hour, using FSS, and the best member for the current hour is defined
 - FSS, and the **best member** for the current hour is defined

 This member is rerun till that hour with radar-data assimilation (LHN) and then continued as free
- This "best" member serves as our "deterministic" precipitation nowcast (also LPI and hail diagnostics)
- Includes: Urban scheme, Convective precipitation correction
- · Recently:
 - ☐ all IMS deterministic models were added as optional "best members"
 - ☐ Lightning (ground measurements+MTG) helps choosing the "best member"
 - □ EUMETSAT MTG FCI L2 AMV (Atmospheric Motion Vector) helps choosing the "best member"


```
s icon_eps_ruc A
   INFO: SCHOST = hpc and STHOST = ws1
   number_of_ens_jobs_submitted: 0/9 000
   number_of_mem_jobs_submitted: 0/7 00
 ▼ F main_ruc ▲
       YMD=... 20241121 ...
      ▶ F 00 ▲
      ▶ F 01 ▲
      ▶ F 02 ▲
      ▶ F 03 ▲
      ▶ F 04 ▲
      ▶ F 05 ▲
      ▶ F 06 ▲
      ▶ F 07 ▲
      ▶ F 08 ▲
     ▶ F 09 ▲
     ▶ F 10 ▲
      ▶ F 11 ▲
      ▶ F 12 ▲
     ▶ F 13 ▲
      ▶ F 14 ▲
      ▶ F 15 ▲
      ▶ F 16 ▲
     ▶ F 17 ▲
     ▶ F 18 ▲
     ▼ F 19 ▲
         ▶ Truc_testECrain ②
         F run_ruc A
      ▶ F 20 ▲
      ▶ F 21 ▲
      ▶ F 22 ▲
     ▶ F 23 ▲
 ▼ F main_eps ▲
       YMD=... 20241122 ...
      ▶ F 00 ▲
```

▶ F 12 ▲


Example: 19.11.2024



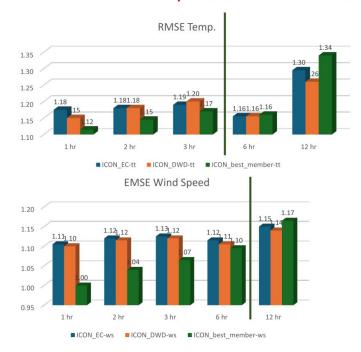
Best member forecasts several hours before the event (12h accumulation)

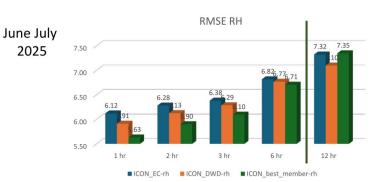
Forecast from 06 UTC: 12 accumulation (blue frame), and hourly precipitation (no frame)

Surface fields nowcasting

Surface fields nowcasting

- Platform: ICON-EPS runs (ecFlow suite in Bologna) for rain nowcasting
- Every day ICON-EPS is running twice daily with 20 members, driven by EC-ENS for 120 hours
- Every hour, all 20 ICON-EPS members are automatically verified versus the surface observations during the last hour, and the best member for the current hour is defined, for each field seperatelly
- This "best" member serves as our "deterministic" T/RH/WS nowcast





Surface fields nowcasting

Best member nowcasting 20 EPS + 3 deterministic ICONs compared to 10 min obs. at the last hour

The best member approach is good for the first ~3 hours

Ensemble for nowcasting

Conclusions

- ICON best ensemble member improves "deterministic" nowcasting both for rain (based on special 50-members runs), and surface fields (based on regular 20-members runs)
- A lot of open questions related to the choice of the current best ensemble member:
 - Metric?
 - Focus on entire area or strongest cells?
 - Time span to define the best member?
 - Met. Fields to define the best member?
 - New idea: run not only the best member, but an ensemble of several winners!

WG EPS - new project proposal

- proposal for the new PP (title still uncertain)
- model perturbation
 - Stochastically Perturbed Parametrizations (SPP) (DWD, Arpae; when the implementation is more mature, others are interested in testing)
 - further work on SPPT and possible test of different schemes (MCH)
 - introduce model perturbation in ICON-LEPS (Arpae)
 - surface temperature perturbation (IMGW)
 - ensemble for nowcasting (IMS)
 - precipitation nowcasting
 - surface fields nowcasting

WG EPS - new project proposal

- verification and diagnostic for ensembles:
 - homogeneous verification and evaluation of operational ensembles: WG V/A
 - use methods for homogeneous spatial verification and spread/skill evaluation -> test the DWD method by Michael Hoff (all)
 - verification for ICON-LEPS, operational and development (Arpae, DWD, HNMS)

SRNWP-EPS (EUMETNET) Meeting in Bologna,
 25-27 November 2025
 on Model Perturbation and Use of Ensembles

WG EPS

Thank you for your attention!