

News CLM Community

COSMO General Meeting 2025 03 September 2025 Basel, Switzerland

Outline

- 1. Main working group activities last year
- 2. ICON-CLM simulations for EURO-CORDEX
- 3. CLM Community numbers and meetings

CLM Community Overview

SAB Chair: Stefan Hagemann (Hereon)

DLR stepped back as core institution in 2024

WG SUPTECH

- SPICE (Starter Package for ICON-CLM Experiments): release of v2.3, documentation updated
- Zonda (new web interface for EXTPAR and ICON Grid Generator): contribution to tests
- Training course (exercises using ICON-CLM and SPICE): prepared and conducted in May 2025

Starter Package for ICON-CLM Experiments (SPICE)

Installation and Setup Documentation

Version 2.3

DOI (SPICE in general): 10.5281/zenodo.1004704

GitLab

WG EVAL

EvaSuite developing (Evgenii Churiulin)

- Project Transferred: Migrated to the CLM DKRZ GitLab for collaborative development
- Code Refactoring: Simplified code structure with added type hinting and comprehensive docstrings
- Visualization Update: Replaced legacy R-based visualizations with a modern Python-based plotting framework
- Testing: Developed automated unit tests for key functions to ensure robustness and maintainability
- Example Collection: Created dedicated example workflows for demonstration and user onboarding
- Robustness Improvements: Enhanced logging system and introduced advanced error checking mechanisms
- Open Source Ready: Prepared the codebase for public release, following best practices for accessibility and reproducibility

WG EVAL

COPAT2 manuscript (Beate Geyer)

Scientific Publication Progress:

- Drafted a manuscript for submission to Geoscientific Model Development (GMD)
- Drafted a list of datasets for submission to GMD

Title:

Calibration of ICON-CLM for the CORDEX-EU Domain

Scope:

- Describes the setup, methodology, and results of calibrating the ICON-CLM regional climate model
- Focuses on the CORDEX-EU domain with emphasis on reproducibility and evaluation metrics
- Includes integration with EvaSuite for standardized evaluation workflows

Status:

Manuscript in preparation, plan to finish it before CLM assembly 2025

Calibration of ICON-CLM for the CORDEX-EU domain

Beate Geyer¹, Angelo Campanale², Evgenii Churiulin³, Hendrik Feldmann³, Klaus Görgen⁴, Stefan Hagemann¹, Ha Thi Minh Ho-Hagemann¹, Muhammed Muhshif Karadan⁵, Klaus Keuler⁵, Pavel Khain⁶, Divyaja Lawand⁵, Patrick Ludwig³, Vera Maurer⁷, Sergei Petrov¹, Stefan Poll⁴, Christopher Purr⁷, Emmanuele Russo⁸, Martina Schubert-Frisius⁹, Jan-Peter Schulz^{7,2}, Shweta Singh⁷, Christian Steger⁷, Heimo Truhetz¹⁰ and Andreas Will⁵

¹Institute of Coastal Systems, Helmholtz-Zentrum Hereon, Geesthacht, Germany

²CMCC Foundation - Euro-Mediterranean Center on Climate Change, Italy

³Institute of Meteorology and Climate Research Troposphere Research (IMKTRO), Karlsruhe Institute of Technology, Germany

⁴Institut f
ür Bio- und Geowissenschaften (Agrosphere, IBG-3), Forschungszentrum J
ülich, Germany

⁵Fachbereich für Atmosphärische Prozesse, Brandenburgische Technische Universität Cottbus-Senftenberg, Germany ⁶Israel Meteorological Service, Bet-Dagan, Israel

Deutscher Wetterdienst, Offenbach am Main, Germany

⁸Institute for Atmospheric and Climate Science, ETH Zurich, Zürich, Switzerland

GERICS, Helmholtz-Zentrum Hereon, Geesthacht, Germany

¹⁰Wegener Center for Climate and Global Change (WEGC) - University of Graz, Austria

WG SOILVEG: Activities

Urban modelling

- > Strategic insights on urban climate modelling: Participation in Euro-CORDEX and the WCRP Flagship Pilot Study URB-RCC with a coordinated team from CMCC, KIT and KU Leuven
- Implementation of ECOCLIMAP-SG in ICON (Schulz et al., DWD, CMCC), now testing and tuning

Irrigation

Impact of spatial extension of irrigation in ICON-NWP (Roque and Valmassoi, Uni Bonn, DWD)

Land surface process studies and development

- Initialisation of snow in TERRA for seasonal prediction (group of Ahrens et al., GUF)
- Studies on role of land surface in the climate system (groups of Seneviratne et al., Prein et al., ETHZ)

WG AIO: Regional Earth System Models (RESMs)

- Coupled to COSMO-CLM
 - ocean models NEMO 3.6, NEMO-MED12, MOM 5 (Hereon, GUF, IOW)
 - hydrological discharge model HD 5.2 (Hereon)
 - bio-geochemical model ECOSMO (Hereon)
 - community land model CLM 3.5.0 (FZJ)
 - the surface-subsurface hydrologic model ParFlow 3.13 (FZJ)
- Coupled to ICON-CLM
 - ocean NEMO 3.6 and hydrological discharge model HD 5.2 via OASIS3-MCT (Hereon)
 - ocean NEMO 4.2 via OASIS3-MCT (DWD)
 - ocean model ICON-O-LAM via YAC coupler (CMCC)
 - community land model eCLM vbeta-04 and ParFlow 3.13 via OASIS3-MCT (FZJ)
- Downscaled CMIP6 over the EURO-CORDEX
- CMORised model output data

Publications see appendix

WG Convection-Resolving Climate Simulations (CRCS)

- Main joint activity in WG-CRCS (25plus WG members involved)
 - Coordinated Evaluation of Convection Permitting Climate simulations with ICON-CLM for Germany (CECPI-Ger): Towards an optimized configuration for convection-permitting ICON-CLM climate runs
 - Methodologies: Coordinated Parameter Testing (COPAT), Linear Meta Model
 - Optimization of about 60 parameters with current ICON version in LAM setup over Germany
 - First optimized configuration (CEI195c) for single-moment scheme ready in February 2025 (start beginning of April 2024), for example: Reduction of 2m maximum air temperature biases; improvement of diurnal cycle, the 99th percentiles and spatial skill scores of precipitation, etc.; 11 highly sensitive parameters were identified; publications by Will et al. and Petrov et al. are under preparation
- Currently
 - Smaller Task Group continues towards optimized configuration with 2-moment MP scheme
 - Transient 150-year climate-mode ICON simulations at 3km over Germany in the BMBF UDAG project

WG Convection-Resolving Climate Simulations (CRCS)

- Other activities (non-comprehensive)
 - Provisioning of km-scale data from CORDEX-FPSCONV initiative via ESGF
 - Current FPSs with WG CRCS members' participation (e.g. FPS-URB)
 - Coupled RCSM runs from WG members under preparation (e.g., CMCC and FZJ)
 - Some WG CRCS members contribute to initiatives such as TEAMx
- Just started / Outlook
 - Establishment of Task Groups to test the new configuration e.g. over the Mediterranean and the Alps (with focus on specific processes)
 - Use of ICON-LAM km-scale operating environment on the new JUPITER GPU system at JSC in addition, e.g., to Levante for some WG CRCS simulations

Outline

- 1. Main working group activities last year
- 2. ICON-CLM simulations for EURO-CORDEX
- 3. CLM Community numbers and meetings

Planned Simulations CLM Community for EURO-CORDEX

GCM RCM	EC-Earth3- Veg r1i1p1f1	MPI-ESM1-2- HR r1i1p1f1	CNRM-ESM2- 1 r1i1p1f2	NorESM2-MM r1i1p1f1	MIROC6 r1i1p1f1	CMCC-CM2- SR5 r1i1p1f1
COSMO-CLM	historical SSP1-2.6 SSP3-7.0 SSP5-8.5	historical SSP1-2.6 SSP3-7.0 SSP5-8.5		historical SSP1-2.6 SSP3-7.0	historical SSP1-2.6 SSP3-7.0	historical SSP1-2.6 SSP3-7.0
ICON-CLM	historical SSP1-2.6 (SSP2-4.5) SSP3-7.0 (SSP5-8.5)	historical SSP1-2.6 SSP2-4.5 SSP3-7.0 (SSP5-8.5)	historical SSP1-2.6 (SSP2-4.5) SSP3-7.0 (SSP5-8.5)	historical SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5	historical SSP1-2.6 (SSP2-4.5) SSP3-7.0 (SSP5-8.5)	historical SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

Rot = UDAG Partner (KIT, BTU, Hereon)

Blau = DWD

Schwarz = CLM Community partners: CMCC, WegC, C2SM, IMWM; FZJ, LIST,

UDAG – 12 km simulations

- Provide regional climate projections based on current global climate models (CMIP6)
- "Dynamical Downscalling"
 - → ICON-CLM replaces COSMO-CLM
 - → 4 global models as driving models
 - → Scenarios: SSP1-2.6 und SSP3-7.0 (further scenarios depending on capacity)

Climate Limited-area Modelling Community

GCM RCM	EC-Earth3-Veg r1i1p1f1	MPI-ESM1-2-HR r1i1p1f1	CNRM-ESM2-1 r1i1p1f2	NorESM2-MM r1i1p1f1	MIROC6 r1i1p1f1	CMCC-CM2-SR5 r1i1p1f1
COSMO-CLM	historical SSP1-2.6 SSP3-7.0 SSP5-8.5	historical SSP1-2.6 SSP3-7.0 SSP5-8.5		historical SSP1-2.6 SSP3-7.0	historical SSP1-2.6 SSP3-7.0	historical SSP1-2.6 SSP3-7.0
	Historical 2014	Historical	Historical 2014	Historical	Historical 2014	Historical
	SSP1-2.6 2150	SSP1-2.6 2100	SSP1-2.6 2100	SSP1-2.6	SSP1-2.6 2100	SSP1-2.6
ICON-CLM	SSP2-4.5	SSP2-4.5	SSP2-4.5	SSP2-4.5	SSP2-4.5	SSP2-4.5
	SSP3-7.0	SSP3-7.0	SSP3-7.0 2100	SSP3-7.0	SSP3-7.0	SSP3-7.0
	(SSP5-8.5) 2028	\$\$P5-8.5 2100	SSP5-8.5 2049	SSP5-8.5	2100 SSP5-8.5 2045	SSP5-8.5

Evaluation of 12km simulation

Comparison of ICON-CLM eval and hist run

UDAG – 3 km simulations

→ High-resolution simulations (3 km) for "Hydrological D-A-CH Region": Refinement of 12 Simulations to a convection-permitting scale (3 km)

Setup of 3 km Simulation

- Based on latest NWP configuration
- Tuning Parameter:
 - Turbulence parameter
 - Cloud microphysics
- Development of a "Linear Meta-model" to optimize the model setup
- Many test simulations to optimize the set up

Status simulations @3km

GCM driven ICON- CLM@12km	Processor (CPU/GPU)	ERA5 reanalysis	MPI-ESM1-2-HR	EC-Earth3-Veg	MIROC6
RCM					
	СРИ	Evaluation 2003	Historical 2014	Historical 2014	Historical 2000
ICON- CLM@3km	CPU and GPU		SSP1-2.6 2055	SSP1-2.6 2015	SSP1-2.6 2015
	CPU and GPU		SSP3-7.0 2072	SSP3-7.0 2015	SSP3-7.0 2015

Completed + CMORized Completed Running Planned

Outline

- 1. Main working group activities last year
- 2. ICON-CLM simulations for EURO-CORDEX
- 3. CLM Community numbers and meetings

CLM Community members and institutions

CLM Community development of publications

Meetings/Events 2025 + 2026

ICCARUS 2025:

10 - 14 March 2025, OF

ICON training course 2025:

12 - 16 May 2025, OF

CLM Community Assembly 2025:

23 – 26 September 2025, Graz

ICCARUS 2026:

16 -20 March 2026, OF

ICON training course 2026:

t.b.d.

CLM Community Assembly 2026:

22 – 25 September 2026, Lüneburg (t.b.c)

Take away messages

- CLM Community completed the transition from COSMO-CLM to ICON-CLM
- ICON-CLM simulations have in general better quality as COSMO-CLM simulations
- Recommend set ups for Europe @12 km and hydrological DACH region @3km (soon)
- Huge community effort to produce simulations for EURO-CORDEX. Many COSMO institutions/countries are involved (Italy, Poland, Switzerland, Israel)
- If other countries would also like to work in the field of regional climate modelling or require data for climate services, please contact Christian
- Simulations are on schedule and data will be published as soon as ESGF nodes are ready to take the data
- The new CORDEX-CMIP6 simulations will be the basis for climate services, climate adaptation and policy consultancy in Germany an many other countries in Europe

GCM RCM	EC-Earth3- Veg r1i1p1f1	MPI-ESM1-2- HR r1i1p1f1	CNRM-ESM2- 1 r1i1p1f2	NorESM2-MM r1i1p1f1	MIROC6 r1i1p1f1	CMCC-CM2- SR5 r1i1p1f1
COSMO-CLM	historical SSP1-2.6 SSP3-7.0 SSP5-8.5	historical SSP1-2.6 SSP3-7.0 SSP5-8.5		historical SSP1-2.6 SSP3-7.0	historical SSP1-2.6 SSP3-7.0	historical SSP1-2.6 SSP3-7.0
ICON-CLM	historical SSP1-2.6 (SSP2-4.5) SSP3-7.0 (SSP5-8.5)	historical SSP1-2.6 SSP2-4.5 SSP3-7.0 (SSP5-8.5)	historical SSP1-2.6 (SSP2-4.5) SSP3-7.0 (SSP5-8.5)	historical SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5	historical SSP1-2.6 (SSP2-4.5) SSP3-7.0 (SSP5-8.5)	historical SSP1-2.6 SSP2-4.5 SSP3-7.0 SSP5-8.5

Questions?

Starter Package for ICON-CLM Experiments (SPICE)

Installation and Setup Documentation

Version 2.3

DOI (SPICE in general): 10.5281/zenodo.10047046

WG SUPTECH

Further ongoing work:

- Community Website
- GitLab
- General Testsuite for new model versions
- User Management
- User Support
- Namelist-Tool
- Cmip2caf converter programs for input data
- CMORization tools

WG AIO: Regional Earth System Models (RESMs)

- Evaluation RESMs over the EURO-CORDEX domain
 - GCOAST-AHOI (Hereon): paper published (Ho-Hagemann et al., 2024)
 - IOW-ESM (IOW): paper published (Karsten et al., 2024)
 - ROAM-NBS (DWD): paper submitted (Maurer et al., 2025)
 - TSMP1 and TSMP2 (FZJ): paper in preparation (Poll et al.)
 - ICON-CLM + ICON-O-LAM (CMCC): paper in preparation (Campanale et al.)
- Downscaled CMIP6 over the EURO-CORDEX
 - Simulations are running and planned based on the balance matrix of the EURO-CORDEX initiative
- CMORised model output data
 - Join the EURO-CORDEX evaluation initiatives (on-going work)
 - Publish to the Earth System Grid Federation (ESGF) portal (planned)

Technical updates

- Porting of ICON-CLM to GPUs
 - Reduction of runtime by approx. 20 %
 - Minimal differences in 2m temperature between CPU and GPU (BIAS: -0.002K)
- Consolidation of output diagnostics in ICON and optimization in runtime environment SPICE
 - Storage of driving data for 3 km as lateral boundary frames
 - Calculation of potential evapotranspiration as ComIN plugin

