

STATUS OF KENDA-LETKF DA CYCLE AT CNMCA

Valerio Cardinali

27°Cosmo GM, 01-04 September 2025, Basel (Switzerland)

OUTLINE

- Current national operational setup
- Assimilation of RADAR radial winds in ICON: setup and results
- Assimilation of non conventional synoptic obs (MeteoNetwork)
- Future developments

Operational ICON-IT @ CNMCA - ITALY

- The ICON model (1h DA cycle + 00/12 UTC model runs) is fully operational at the Italian Met Service since jul 2020 on ECMWF-HPC and on local HPC and available to forecasters for daily use
- ☐ ICON-IT EPS: operational since March 2025, 20 members, 2.2 km res (on ECMWF-HPC)
- ICON-MED tests on ECMWF-HPC (5 km resolution)
- KENDA-LETKF provides analyses at a 1hourly interval

NAMELIST_EMVORADO for ICON (REFL + RADW obs)

RADAR REFLECTIVITY obs: operational since AUGUST 2024

```
&RADARSIM PARAMS
lout geom=.false.,
loutradwind=.true.,
loutdbz=.true.,
dom=1.
icountry=3,
itype supobing=1,
supob cart resolution = 10000.0, ! Superobbing at 10 km
supob lowthresh z obs = 5.0, ! 5 dBZ threshold on reflectivities
supob lowthresh z \sin = 5.0,
itype obserr vr=1,
ramp lowdbz obserr vr=0.0,
ramp highdbz obserr vr=10.0,
maxval obserr vr=25.0,
baseval_obserr_vr=2.5,
/END
```

- MIE scattering option activated, assuming spherical particles for all hydrometeors
- Superobbing at 10 km
- 5 dBZ threshold on reflectivities
- simulation and output for radial winds and reflectivity activated
- Ramp function for the error of the RADW obs activated (following ARPAE settings)

NAMELIST_KENDA for ICON (REFL + RADW obs)


```
!Set elevation 0.5 fo radial wind to active
  &RULES
              = 'specific parameters for RADAR operator'
  comment
  obstype
           = 13
                            ! RADAR
  sat zenith = 0.4 0.8
  uv%use
              = 11
   !Set elevation 1.5 fo reflectivity and radial wind to active
&RULES
              = 'specific parameters for RADAR operator'
   comment
  obstype
           = 13
                            ! RADAR
  sat_zenith = 1.1 2.1
  o%use
              = 11
  uv%use = 11
  !Set elevation 3.5 for reflectivity and redial wind to active
  &RULES
            = 'specific parameters for RADAR operator'
  comment
  obstype
            = 13
                            ! RADAR
  sat zenith = 3.14.0
  o%use
              = 11
  uv%use = 11
```

```
!Set reflectivity between 0 and 600 m 'passive'
&RULES
              = 'specific parameters for RADAR operator'
   comment
                            ! RADAR
   obstype
              = 13
   zlim
              = 0. 600. ! between 0.0 and 600.0 m
   o%use
              = 7
   uv%use
              = 7
  !Set radial winds and reflectivity above 10000 m to passive
&RULES
              = 'specific parameters for RADAR operator'
  comment
                             ! RADAR
  obstype
              = 13
  zlim
              = 9000, 99999, ! above 9000 m
  o%use
  uv%use
              = 7
```


RADAR: test

EXP1: 13 - 29 April

ICON-IT EXP (REFL+RADW) vs ICON-IT OPE (REFL)

Statistics:

VS SYNOP:T2m, TTC, RH2m, WS, Prec

VS RADIOSONDE: T and WS

RADAR STATS: 15 - 29 April 2025 (T2m)

SCORES vs STEP - T2m - 15-29 apr 2025 - ALL ITA stations

RADAR STATS: 15 - 29 April 2024 (wind speed)

SCORES vs STEP - WS - 15-29 apr 2025 - ALL ITA stations

RADAR STATS: 15 - 29 April 2024 (RH2m)

SCORES vs STEP - RH2m - 15-29 apr 2025 - ALL ITA stations

RADAR STATS: 27 March - 3 April 2024 (TCC)

SCORES vs STEP - TCC - 15-29 apr 2025 - ALL ITA stations

RADAR STATS: 15 – 29 April 2025 (TS prec)

Time Series - Prec12h - 15_29_Apr_25 - All ITA stations

RADAR STATS: 15 – 29 April 2025 (T – against RAOB)

RADAR STATS: 15 – 29 April 2025 (WS – against RAOB)

RADAR exp1: RADW obs inc statistics (ALL radars)

Conclusions – RADAR obs assimilation

- EXP 1: REFL + RADW assimilation.
 - About surface verification, small improvements for RH2m, T2m and WS;
 - Improvements in terms of precipitation;
 - Obs increments: reduction of stdv for each vertical levels, small reduction of bias in almost all vertical levels;
 - Small improvements visible in the upper air verification (for T and WS);
 - other experiment done in May with similar results;
 - **OPERATIONAL** since August 2025.

Assimilation of Non conventional Synoptic observations COSMO

- **MeteoNetwork:** crowd sourced synoptic stations, station number:1030
- **MeteoMont:** Army Alpine Observation department, station number: 46
- Autostrade: station number: approx 250
- **DPC:** Civil Protection Department, station number: approx 5500

Variables: T, u,v, sp, rh

Period of study: January - December 2024

	mean	(obs-fg)	stdv	(obs-fg)	num_obs
T	mean	0.011554	stdv	1.323750	$185\overline{6712}$
		0.087984		0.824691	1812925
u	mean	0.029436	stdv	1.789542	452120
V	mean	-0.090808	stdv	1.757326	452120
q	mean	0.013023	stdv	0.101105	1934252

Conventional synop obs assimilated in ICON-IT

Assimilation of Non conventional Synoptic observations CSSMO

	٦	Γ	
stdv\mean	0-0.2	0.2-0.4	> 0.4
0-1.5	G	Y	0
1.5-2.5	Y	Y	R
> 2.5	0	R	R

wind

0.4-0.7

Υ

> 0.7

0-0.4

0

stdv\mean

0-2.0

2.0-3.5

> 3.5

35				
stdv\mean	0-0.5	0.5-1.5	> 1.5	
0-1.0	G	Y	0	
1.0-2.0	Y	Y	R	
> 2.0	0	R	R	

q				
dv\mean	0-0.05	0.05-0.1	> 0.1	
0-0.1	G	Y	0	
0.1-0.2	Y	Y	R	
> 0.2	0	R	R	

GREEN-YELLOW ASSIMILATED

ORANGE-RED BLACKLISTED

Exp1 (20/03 – 08/04 2025): MeteoNetwork (T and WS)

MeteoNetwork stats (T2m)

SCORES vs STEP - T2m - 20 march-08 apr 2025 - ALL ITA stations

MeteoNetwork stats (WS)

Verification vs synop - all ITA stations - FF

MeteoNetwork stats (RH2M)

Verification vs synop - all ITA stations - RH2m

MeteoNetwork stats (TCC)

Verification vs synop - all ITA stations - TCC

MeteoNetwork stats (T – against RAOB)

MeteoNetwork monitoring for assimilated stations

Conclusions – METEONETWORK obs assimilation

- EXP 1: METEONETWORK T2m and wind speed assimilation.
 - About surface verification, good results for T2m, and small improvements for rh2m and WS (only rmse);
 - small increase of bias for wind speed.
 - constant monitoring of stations in terms of bias and stdv.
 - other experiment in May (5-20) gave similar results;
 - **OPERATIONAL** since end of May 2025.

Future developments

- ☐ LHN + RADAR polar volumes assimilation within ICON
- Assimilation of other non conventional synoptic observations (DPC, Highways, MeteoMont)
- Assimilation of the GNSS ZTDs obs within ICON (and STD)