Status and future of the C-SRNWP module of EUMETNET

Balázs Szintai C-SRNWP Manager

... with contributions from many of you

COSMO General Meeting Gdańsk / online 14 September 2023

Outline

•

•

•

•

•

News from EUMETNET

- . Next phase
 - FEMDI

Coordination SRNWP → EWGLAM Meeting

- **Obs-SET**
- **Global Lake Database**
- Physiography task

Next phase of EUMETNET

- Current EUMETNET phase ends in December 2023, next EUMETNET phase will cover 2024-2028
- Drafting Team → Modifications in the structure of Programmes
- Four Capability Areas: Observation, Information, Capacity, Support
 - New Crowdsourcing Programme
 - New Programme: E-WFC (Weather Forecasting Cooperation)
 - Four modules: C-SRNWP, SRNWP-EPS, Post-Processing, E-Nowcasting
 - Same requirements and same budget proposed for C-SRNWP as in this phase
- Bidding for programmes/modules started in May and finished in August
- OMSZ will not coordinate the C-SRNWP module in the next phase

FDCM Programme – A reminder

EUMETNET are creating a 'One-Stop Shop' for meteorological data and information.

This is called the Federated European Meteo-hydrological Data Infrastructure (FEMDI)

Data consumer experience

- Send one data request; Receive one response with data from lots of Members.
- Less time and resources needed.

Data provider experience

- Ability for others, including AI, to request and use our data is as easy as possible, increasing reach and reputation
- Lower costs through pooling resources, sharing development, and cheaper build cost due to use of widely supported standards

FEMDI components

FEMDI will be made up of:

- Community components, operated by EUMETNET; and
- Local components operated by a Data Supply capability provider. This is how NMSs will be able to publish their data through FEMDI.

More information on the Data Supply capabilities is available on the EUMETNET portal: INFORMATION -> FEMDI -> <u>FEMDI Communications folder</u>

FEMDI and WMO's WIS2.0

EUMETNET Members have committed to share data with WMO Members through WIS 2.0...

... FEMDI Data Supply implementation will enable EUMETNET members to meet their WMO commitments!

So NMSs should view delivery of their FEMDI Data Supply capability as helping them deliver their WIS 2.0 commitments, rather than a separate requirement.

The main difference is their data exchange mechanism:

- FEMDI needs to enable data exchange using APIs
- WIS 2.0 requires data exchange using data files and does not mandate use of APIs

In general, FEMDI = WIS2.0 + a little bit more

FEMDI plan

The FEMDI Community components will be developed and implemented over the next 3 years, as part of the RODEO project. RODEO also has work packages to develop FEMDI Local components for radar data, as well as surface and climate observations.

C-SRNWP Module of EUMETNET

- Coordination of Short Range
 Numerical Weather Prediction in
 Europe
- In the NWP Cooperation Programme
- 28 Member States,
 2 Cooperating States
- New Members: Germany, Ireland
- Module Manager: 0.3 FTE
- Coordinating Member: Hungary

C-SRNWP Expert Teams

To foster communication between Limited Area NWP groups in Europe

8 C-SRNWP Topical Expert Teams (ETs)

- Data Assimilation (chair: Bruce Macpherson)
- Diagnostics and verification (chair: Marion Mittermaier)
- Dynamics and lateral boundary coupling
- Link with applications (chair: Jeanette Onvlee)
- Physical parameterisation (upper air) (chair: Mike Bush)
- Predictability and EPS (chair: Chiara Marsigli)
- Surface and soil processes (chair: Patrick Samuelsson)
- System aspects

Advisory Expert Team (AET):

- Heads of NWP consortia
- C-SRNWP Topical ET Chairs
- Observers: FCAM, Post-processing MM, SRNWP-EPS MM

Core Members

	ACCORD	COSMO	HIRLAM	MetOffice	RC LACE	SEECOP	ECMWF contact
Data assimilation and use of observations	Roger Randriamampianina	Christoph Schraff	Magnus Lindskog	Marco Milan	Benedikt Strajnar	Bojan Kasic	
Diagnostics, validation and verification	Carl Fortelius	Flora Gofa	Bent Hansen Sass	Marion Mittermaier	Simona Tascu	Angel Marcev	Dave Richardson
Dynamics and lateral boundary coupling	Ludovic Auger	Michael Baldauf	Sander Tijm Ben Shipway		Petra Smolikova		Michail Diamantakis
Link with applications	Eric Bazile	Anastasia Bundel	Jeanette Onvlee	Simon Jackson	Simona Tascu	Bojan Cvetkovic	
Physical parameterisation (upper air)	Yann Seity	Matthias Raschendorfer	Emily Gleeson	Mike Bush	Bogdan Bochenek		Irina Sandu
Predictability and EPS	Henrik Feddersen	Chiara Marsigli	Inger-Lise Frogner	Aurore Porson	Clemens Wastl		Martin Leutbecher
Surface and soil processes (model and data assimilation)	Patrick Samuelsson	Jean-Marie Bettems	Ekaterina Kurzeneva	Martin Best	Stefan Schneider		Gianpaolo Balsamo Patricia de Rosnay
System aspects	Daan Degrauwe	Massimo Milelli	Daniel Santos	Richard Gilham	Oldrich Spaniel		Jenny Rourke

Additional Members

	ACCORD	COSMO	HIRLAM	MetOffice	RC LACE	SRNWP-EPS Activity	Post-Processing Activity
Data assimilation and use of observations	Loik Berre, Maria Monteiro	Mihail Tsyrulnikov	Jelena Bojarova, Kasper Hintz	David Simonin Lee Hawkness-Smith	Florian Meier, Michal Nestiak		
Diagnostics, validation and verification	Boryana Tsenova, Fabien Stoop	Joanna Linkowska	Xiaohua Yang, Ulf Andrae, Carl Fortelius	Nigel Roberts	Christoph Wittmann, Christoph Zingerle		
Dynamics and lateral boundary coupling	Piet Termonia				Jozef Vivoda		
Link with applications		Flora Gofa	Per Unden	Mike Bush	Martina Tudor, Benedikt Bica		Stéphane Vannitsem
Physical parameterisation (upper air)	Eric Bazile, Neva Pristov	Dmitrii Mironov Frederico Grazzini	Bent Hansen Sass	Anke Finnenkoetter	Jan Masek, Neva Pristov		
Predictability and EPS	François Bouttier, Geert Smet	André Walser, Christoph Gebhardt	Jan Barkmeijer	Anne Mccabe	Mihály Szücs, Martin Bellus	Alfons Callado Pallarés	
Surface and soil processes (model and data assimilation)	Patrick Le Moigne, Rafiq Hamdi	Jürgen Helmert, Jan-Peter Schulz		Breogan Gomez Cristina Charlton-Perez	Jure Cedilnik, Balázs Szintai, Alena Trojáková		
System aspects	Alexandre Mary	Uli Schaettler	Ulf Andrae, Xiaohua Yang		Martina Tudor		

EWGLAM Meeting 2023

- 25-28 September 2023
- Meeting will take place in Reykjavík, Iceland, on the kind invitation of IMO Hybrid format

Special subject this year: Uncertainty of modelling components and their impact

Website is available with programme, on-site registration closed, online registration is open until 15 September:

https://events.bizzabo.com/467647/home

Invited speakers:

- David John Gagne (NCAR)
- Isla Finney (Lake Street Consulting)

Travel funding approved for two participants from C-SRNWP Member States

•

Optimizing investment in E-ABO - MODE-S versus AMDAR

Opportunity:

MODE-S is a relatively new(ish) way of getting access to observations from aircraft. It provides an opportunistic access to huge volume of data (free of charge, unlike AMDAR).

Questions:

Can we replace AMDAR data with MODE-S data? What is the optimum balance of investment for Aircraft-based observations?

How:

Running data denial experiments of limited area models (e.g. UKV).

Three NWP centre are involved running the same scenarios but on completely differently designed and operated models, to provide more robust results and inform decisions.

Total cost - 200.4 k€

Table 5: Overview of Study AS.02 R&D proposals							
	RMIB	DWD	Met Office				
Model	ALARO or AROME.	ICON-D2, LEKF, 40 members.	UKV, 4d-Var, hourly cycling.				
Domain	Belgium AROME.	Germany and surrounding areas.	UK, Ireland and large parts of France, Germany, Northern Italy.				
Datasets for the OSE	2 separate 30-day periods – summer and winter.	2 separate 30-day periods – summer and winter.	2 separate 30-day periods – summer and winter.				
Evaluation	Forecast T+36 every 12 hr.	Forecast T+36 every 6 hr.	Forecast T+30 every 6 hr.				
Case studies	Analysis of a number of fog and high-impact weather events.	Not specified	Analysis of a small number of high-impact weather events. Forecasts to T+8 hourly.				
Monitoring	OmA, OmB, observation error	OmA, OmB.	OmA, OmB, profiles of bias and stdey, distribution maps				
Verification	Radiosonde & SYNOPS.	Classical score (radiosonde, ABO), categorical score with respect to SYNOPS, Fractional skills score.	Classical score (radiosonde, ABO), categorical score (SYNOPS), Fractional skills score.				
Resources	RMIB	Post Doc	Met Office				
Timeline	52 weeks	26 weeks	28 weeks				
Cost	€ 60,165	€ 55,000	€ 85,250.52				

Table 2. Over investigation of Charles A2 O2 D0 D reserves

Slide provided by: Jacqueline Sugier

Planning the replacement of AMDAR with MODE-S

Following the outcome of Study A3.02, there is a clear consensus in the EUMETNET scientific community that AMDAR data can be replaced by MODE-S data, where good quality MODE-S coverage exists.

In addition, the MODE-S coverage is about to be hugely expanded via the Met Office project to make Global MODE-S data available to the community.

➤These present a clear opportunity to review the E-ABO coverage, and to re-identify observations gaps and their priorities.

Met Office:

 Met Office recommend starting a parallel Suite trialling of UKV model using Scenario 4 (i.e. removing AMDAR data in 'good' Mode-S coverage areas in higher altitudes (above 850 hPa).

RMI:

 Given the neutral to positive impact on forecast skill, RMI support the idea of replacing AMDAR by EMADDC data.

DWD:

 DWD recommendation is to replace the AMDAR data by MODE-S in regions of good MODE-S coverage in flight level and, in a second step, to replace the upper part of the AMDAR profiles at Airports by MODE-S data.

Planning the replacement of AMDAR with MODE-S

OBS SET accept the conclusions of Study A3.02 and agree that the community should start planning the replacement of AMDAR with MODE-S data (where good quality MODE-S coverage exist) during the next 5 years. There are however several steps still need to be completed before starting this transition:

- All Members must be given enough time to implement the assimilation of MODE-S in their Global and Regional models
- An **additional study** should be conducted early next phase to investigate the impact of reducing AMDAR where good MODE-S coverage exists
- Reassurance on the **sustainability of the provision** of MODE-S data via the EMADDC
- Access to **detailed documentation** of the processing performed by the EMADDC

The OBS PMT would be happy to receive feedback from NWP experts about this transition

Contact: eucos@metoffice.gov.uk

SRNWP Data Pool of surface observations

- Database of surface and boundary layer observations → validation of PBL and land surface models
- Freely available for EUMETNET Members and collaborating universities
- Important in-kind contribution from DWD (collecting the data) and HNMS (web-site)

Statistics for Sept 2020 – Aug 2022:

- 4 new users
- 730 monthly files downloaded

Website: http://srnwp.cosmo-model.org/content/default.htm Account request: http://srnwp.cosmo-model.org/content/register.htm

Global Lake Database

- Database of lake location and depth
- Important input for NWP models running a lake parameterization
- In the past ~10 years: work financed by different LAM consortia
- Financial support of EUMETNET since 2017: 8500 EUR/year (for maintenance and development) → since 2019 included in the C-SRNWP budget
- Work coordinated by FMI (Ekaterina Kurzeneva), person involved: Georgy Kurzenev
- Currently ongoing work:
 - The algorithm to correct miss-classification errors between sea, lakes, river estuaries and coastal lagoons (C. Fortelius et al., 2020, p. 47) was adapted to the fine resolution datasets (e.g. ECOCLIMAP SG and JRC GSW).
 - The algorithm of mapping lakes (Kourzeneva et al., 2012) was adapted to the fine resolution datasets.
 - Now, a new dataset on lake depth will be projected on the fine resolution map globally.

Global Lake Database

Example of processing data over Poland: Land-water map, ECOCLIMAP SG:

Dark yellow – land, light blue – sea, blue – lake Lake depth (m) projected on the map. List of lakes projected on the map.

ber of i	the reverse stroke of the floatin	ig window in pixels U= 12	
lunder of i	705 Nist- 363		
tact oumbe	aring lakes		
Soots-	222		
opPeg-	703		
lofPad_	31		
tart readi	ing Lake Database		
u_	23		
itart makir	na links		
1	1 A DDUZZENO	19 4660001	54 0000085
	2 149 77CADNOWLEEKIE	18 0580005	54 7669983
	3 220 DADIN 1581E DOLNE	18 0450001	54 2879982
2	4 0 WDZYDZE PYOLITINOCNE	17,9379997	54.0180016
	5 220 RADUNISKIE GYORNE	17,9699993	54,2319984
ē	5 220 OSTRZYCKIE	18.0919991	54.2500000
-	7 163 CHOCZEWSKIE	17,9300003	54.7369995
ş		18.5129993	54.0769997
ç	9 0 SUDONTE	17.9029999	54.0950012
10	0 220 LTTAPALICKTE	18,1229992	54.3530006
11	1 204 LUBOWIDZKIE	17.8349991	54,5569992
12	2 0 SUNTNO	17.8029995	54,1749992
13	3 216 KAMIENICKIE	17.8790008	54.4000015
14	4 0 WYRYOWNO	17,8269997	54.0550003
15	5 0 ZAGNANIE	18.0370007	54,0680008
10	5 220 BRODNO WIELKIE	18.1119995	54,2779999
17	7 220 KLIIODNO	18.1100006	54.3219986
_18	B 215 POTYEGOWSKIE DUZZGE	17.9349995	54.4199982
19	9 211 TUCHONSKIE	18.3700008	54,4300003
20	0 GARCZYN	17.9099998	54.1180000
21	1 O HUTOWE	18.1250000	54.0499992
22	2 0 POLASZKOWSKIE	18.1559998	54.0480003

Slide provided by: Ekaterina Kurzeneva

Physiography work

- Goal: checking and correction of ESA-CCI land cover map for NWP purposes
- Budget: 27.000 EUR for three years: 2021-2023 (money not spent in other C-SRNWP tasks)
- Supervisory team defined on 24 February 2021:
 - C-SRNWP Surface ET Chair: Patrick Samuelsson (SMHI)
 - NWP expert: Ekaterina Kurzeneva (FMI)
 - GIS expert: Bolli Pálmason (IMO)
- Successful application: Sandro Oswald (ZAMG) on 24 March 2021
- Questionnaire to collect user needs (autumn 2021) \rightarrow fine tune the goals of the work
- First version of corrected dataset distributed via C-SRNWP Surface ET in August 2023
- Feedback will be discussed in the Surface Parallel Session at the EWGLAM Meeting (27 September)

Physiography work

Use the **Open Street Map** and **GlobalLand30** to correct the land-water mask and to distinguish between fresh and salt water

Slide provided by: Sandro Oswald

Physiography work

Example for Cologne, Germany

Built types	Land cover types			
Compact highrise Dense mike's tall buildings to tens of stories. Fe or no trees. Lind cover mostly paved. Concrete steel, stone, any glass construction materials.	Pense trees Heavily wooded landscape of deciduous and/or wergreen trees. Land cover mostly penidous (is penise). Zone function is natural forest, tree cuttivation or urban park.			
Compact midrise 2 Compact midrise Utilings (3-9 stories). Fee or no trees. Land cove mostly paved. store, brid, tile, and concrete construction materials.	Scattered trees B where the states and the states of deciduous and/or program the states and cover mostly pervises the cuttoration, or urban park.			
Compact lowrise Dense mix of lowrise build, es (1-3 stories). Fer or no trees. Land cover mos ly paved. Store, brick, tile, and concrete construction materials.	Bush, scrub C C C C C C C C C C C C C			
Open highrise Open arrangement of tail but ings to tens of stories. Abundance of pervice land cover (law plants, trees). Concrete, steel, tone, and gass construction materials.	Low plants D Featureless landscape of grass or herbaceous plants/crops, Few or no trees. Zone function is natural grassland, agriculture, or urban park.			
Open midrise 5 Copen arrangement of midrise bildings (3-9 stories). Abundance of pervisus and cover (low plants, scattered trees). Concret, steel, store, and glass construction materials	Bare rock or paved Featureless landscape of rock or paved cover. Rew or no trees or plants. Zone function is natural desert (rock) or urban transportation.			
Open lowrise Open arrangement of lowrise buildings [1-3 tories]. Abundance of pervious and cover (low plants, scattered trees). Wood, Irick, stone, tile and concrete construction materials.	Bare soil or sand Featureless landscape of soil or sand cover. Fee or no trees or plants. Zone function is natural desert or agriculture.			
Lightweight lowrise Dense mix of single-story build us. Few or no trees. Land cover mostly hard-sociad. Lightweight construction matchals (e.g., wood, thatch, corrugated metal).	Water Large, open water bodies such as seas and lake or small bodies such as rivers, reservoirs, and lagoons.			
Large lowrise Open arrangement of large wwise buildings [1 3 stories]. Few or no trees. I nod cover mostly paved. Steel, concert, mena, and store	VARIABLE LAND COVER PROPERTIES Variable or ephemeral land cover properties that change significantly w synoptic weather patterns, agricultural practices, and/or seasonal of			
construction materials.	b. bare trees Leafless deciduous trees (e.g., winter). In sky view factor. Reduced albedo.			
Sparsely built Sparse arrangement of small or medium-sized buildings in a natural setting. Abundance of	s. snow cover Snow cover >10 cm in depth. Low admittance. High albedo.			
Dervious land cover (low plants, scattered trees	d. dry ground Parched soil, Low admittance. Large Bowen ratio Increased albedo.			
Heavy industry Lowrise and minime industrial structures Itowrrs, tanks stacks). Few or no trees. Land cover mostly paved or hard-packed. Metal, stee and control e construction materials.	w, wet ground Waterlogged soil. High admittance. Small Bowen ratio. Reduced alloedo.			

Use the Local Climate Zones (LCZ) to correct the urban class \rightarrow 10 classes instead of 1

Short Term Scientific Missions

- NWP consortia have the funds to support internal exchange, however, this is usually not applicable for travel outside the consortia
- Yearly 1-2 missions (2000 EUR/year) will be funded to deal with cross-consortia issues (either technical or scientific).
- A typical stay would last 1-2 weeks and participation of young scientist is encouraged.
- Application form have been prepared and sent to Contact Points and consortia PMs
- Decision to be taken by AET
- 2019 autumn: Martin Imrisek (SHMU) work on GNSS STD assimilation (ALADIN-LACE-HIRLAM) at KNMI for four weeks (shared funding with LACE)
- 2020-2021: no travels due to COVID, funds carried forward to 2022
- 2022: two weeks travel by Ivan Bastak Duran (University Frankfurt) to CHMI to work on ICON and ALARO turbulence schemes
- 2023: one stay planned at Meteo-France, funding available for more (cannot be carried forward for next year!)

Thank you for your attention!

CONTACT DETAILS

Balázs Szintai C-SRNWP Manager

EIG EUMETNET European Meteorological Services' Network www.eumetnet.eu

Phone: +36 1 346 4705

Email: szintai.b@met.hu

