

Clouds and Aerosols Improvements in ICON Radiation Scheme - CAIIR Priority Project

Harel Muskatel (IMS) 24th COSMO General Meeting, September 14, 2022

Clouds and Aerosols Improvements in ICON Radiation Scheme - CAIIR Priority Project

Project duration: March 2020 - September 2023

Participants:

- Harel Muskatel (IMS)
- Pavel Khain (IMS)
- Alon Shtivelman (IMS)
- Yoav Levi (IMS)
- Daniel Rieger (DWD)
- Ulrich Blahak (DWD)

- Alexey Poliukhov (RHM)
- Julia Khlestova (RHM)
- Gdaly Rivin (RHM)
- Natalia Chubarova (RHM)
- Marina Shatunova (RHM)

Cloud optics

Aerosols inputs: CAMS forecast, CAMS climatology,
2D advection scheme

Microphysics – new cloud nucleation schemes

Spectral Bin Microphysics

New droplets optical properties for ecRAD

Muskatel, Blahak, Khain, Levi & Fu; Atmosphere 2021, 12, 89.

New ice optical properties for ecRAD

4 Our new parametrization is now implemented in IFS. ICON is next...

ECCKD

https://confluence.ecmwf.int/display/CKDMIP/

Aerosols Inputs in ICON Radiation scheme

irad_aero = 8

irad_aero=6 & iprog_aero=1

ICON-ART irad aero = 9

CAMS forecast advanteges

CAMS	Tegen Climatology
Vertical profile based on dynamics	Fixed vertical profile based on AOD
Optical properties calculated for each RRTM/ecRad WL intervals	Optical properties calculated at 550 nm and corrections made for other WL
Optical properties of hydrophilic aerosols are RH-dependent	Optical properties are RH-independent
Number concentrations are calculated explicitly from mixing ratios	Number concentrations are evaluated from AOD
11 species of aerosols	5 species of aerosols
Data assimilation is used	Fixed monthly climatology
Longwave scattering included	longwave scattering not included

Negligible additional CPU cost

BUT: Emissions, Advection, Convection, sedimentation etc. are done in CAMS model and not inside ICON

Horizontal Interpolation

- CAMS 3D mixing ratios 5 days ahead, 3hr resolution are interpolated in space and time into 1 hr resolution latbc files using iconremap. The fields fill the whole domain.
- Step by step interpolation is done by ICON
- 11 species aermrXX fields are combined with the usual IFS latbc fields
- Recommendation: intp_method = 3 INTP_RBF_SCALAR (Radial Basis Function) instead of = 4

INTP_NNB_SCALAR (nearest-neighbor interpolation)

Vertical interpolation

From 137 levels (CAMS) to 65 levels (ICON)

Hydrophilic Optical properties

• 5 Hydrophilic aerosols (Sea-salt X 3, sulfate, black carbon) optical properties are RH dependent. Therefore, RH at each grid point is diagnosed.

Hydrophilic Optical properties

Shortwave surface downward radiation for clear skies

- 80 35°N - 70 RMSE = 25.5207 bias = 23.3855 - 60 33°N - 50 8 - 40 31°N - 30 29°N -20 - 10 27°N ۰ ۱ 25°E 27°E 33°E 35°E 39°E 29°E 31°E 37°E

RH = 40% - RH = 100%

2D AOD results

- In all ICON_CAMS runs Tegen stratospheric aerosols background are included a recommended mode due to the positive bias of all models
- Tegen stratospheric aerosols background reduces the radiation ~3 W/m²

CAMS vs Tegen AOD 2020-03-12 01:00:00Z

Verification Domains

ICON-SEE verifications

Verifications in Israel domain only

COSMO, ICON-CAMS, ICON vs. IFS errors in [%] (Lower is better)

ICON-SEE verifications

Verifications in Israel domain only

COSMO, ICON-CAMS, ICON vs. IFS errors in [%] (Lower is better)

Ice nucleation

"...clouds that have ingested dust glaciate more quickly, forming a large number of very small ice particles. These have a higher reflectance than large ice particles in the "microphysical" channels (near-IR 1.6 and IR 3.9 micrometer) and appear as bright orange in the day microphysics RGB." https://www.meted.ucar.edu/

IN(T) for April 5, 2020

 $IN(T) = 5 \cdot exp^{0.304(T_0 - T)}$

 $IN(T, ndust) = 1000 \cdot n_{dust}^{1.25} exp^{0.46(T_0 - T) - 11.6}$

ICON for April 5, 2020 – Polluted case IMS domain

Aerosols effects on the atmosphere

Global Radiation (Wm⁻²) & 2m Temperature bias (K) 05/04/2020

ICON for January 27, 2022 – SEE domain

snow depth (cm) at center mountains +28h: Thu 27 JAN 04Z

default

CAMS

CAMS_DeMott

Next step: New cloud droplets nucleation

COSMO: *R_{eff}* based on CAMS & Segal-Khain

CAMS climatology in ICON-ecRAD

0.02 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.6

2D Aerosol Optical Depth (D. Rieger)

Prognostic equation for 2D AOD $\psi_i(x, y)$, using vertically averaged horizontal wind $\overline{v_{H,j}}$:

Results of the Kok et al. 2014 scheme in ICON

A Simple Scheme for Sea Salt Optical Depth

Prognostic equation for 2D AOD $\psi_j(x, y)$, using vertically averaged horizontal wind $\overline{v_{H,j}}$:

- Improve sea salt AOD source function $S_{e,seas}$
- Use computationally cheap emission parameterization (Grythe et al., 2014)
- Perform offline Mie calculations to derive optical properties
- Calculate AOD flux from emission flux

A Simple Scheme for Sea Salt Optical Depth

Sea salt emission scheme implemented successfully

- Grythe et al. (2014) without temperature correction (top)
- → Grythe et al. (2014) with temperature correction by Jaegle et al. (2011) to account for the relatively high SSA concentrations found in the tropics (bottom)

2D-seas calculations are available in icon-nwp:master

- → R2B6 Simulation for 2019
- Climatological values smaller than from CAMS (see next slide)
- Comparisons with AERONET data at remote stations show lower RMSE than CAMS

Accumulated Sea Salt Emission Flux (kg m⁻² yr⁻¹)

.18

2D Aerosol optical depth

2D-seasalt AOD Results

From: Bozzo et al. (2017): Implementation of a CAMS-based aerosol climatology in the IFS, ECMWF Techn. Mem. 801

Spectral Bin Microphysics in ICON

- Warm-Phase Spectral-Bin Microphysics (SBM) scheme was implemented in ICON (not master).
- 66 bins: droplets + CCN tracers
- Runs ~7 times slower than 1M.
- SBM and 2M schemes compared: SBM shows reasonable behavior, strong sensitivity to CCN.
- Example: Cumulonimbus development (Weisman-Klemp 1982)
- **Published** in: Khain, P., J. Shpund, Y. Levi and A.P. Khain (2022): Warm-phase spectral-bin microphysics in ICON: reasons of sensitivity to aerosols. Atmos. Res., 279, 106388.

Pavel Khain, Koby Shpund, Yoav Levi, Alexander Khain Thanks to: Axel Seifert, Daniel Reinert, Daniel Rieger

Spectral Bin Microphysics in ICON

- Preliminary: real "warm" case shows strong sensitivity to topography
- Ongoing: Mixed phase SBM
- A tool for model verifications, physical parametrizations, test cases, scientific research etc.

Thanks for your attention!