
@meteoswiss.ch 1

Eidgenössisches Departement des Innern EDI
Bundesamt für Meteorologie und Klimatologie MeteoSchweiz

PP IMPACT and HPC overview

X. Lapillonne¹, C. Osuna¹, D. Hupp¹, D. Alexeev5, V. Cherkas¹, R. Dietlicher¹, E.
Germann¹, F. Gessler¹, M. Jacob4, A. Jocksch3, J. Jucker²,C. Müller1, M. Röthlin1, W.
Sawyer3, U. Schättler4, André Walser¹
¹MeteoSwiss, ²C2SM, 3CSCS, 4DWD, 5Nvidia
06.09.2022, COSMO-GM WG6 – IMPACT parallel session

@meteoswiss.ch 2

OpenACC port overview

Initialization Parametrizations Dynamics Infrastructure Data assimilation

timeloop

● Most components for NWP Regional and global application ported,
optimization work ongoing

● Support for both double and mixed precision
● Some components, e.g. ecRad,l need to be merged, some need to be

ported
● Regular testing on builbot infrastructure

@meteoswiss.ch 3

Status of the OpenACC port to GPU
ported merged

nh_solve
nh_hdiff
transport
2 way nesting
convection
Microphysics (graupel)
radiation
radheat
Surface (terra)
cover
turbulence
Sea-ice
sso
Non-or. Wave drag
2 mom. microphysics

Ready

In progress

On CPU + data
copy and interface
ported

Not started

ported merged
NWP diagnostic
DA: LHN
DA: conv. operatior
DA: IAU (Incr. Anal. Update)
SPPT

Detailed missing features list: https://gitlab.dkrz.de/icon/wiki/-
/wikis/GPU-development/todo-list

@meteoswiss.ch 4
Source: Marek Jacob, DWD, using ICON branch with ecRad on GPU

CPU vs GPU vs NEC
Experiment:
• ~DWD deterministic forecast

Global R2B8
• 5 242 880 cells (10 km) +

Nested grid over Europe 845
340 cells (5 km)

• Output disabled

Performance and energy
• GPU 3x faster than GPU
• 32 GPUs: 663 s/day 268

Wh/day
• 32 VEs: 914 s/day 292 Wh/day

@meteoswiss.ch 5

ICON-22 Performance
New MeteoSwiss system HPC Computing
Services on Alps Plattform
• GPU nodes:

• 4 x NVIDIA A100
• 1 x AMD Epyc 64-cores CPU

• CPU nodes:
• 2 x AMD Epyc 64-cores CPUs

• 2 Virtual Clusters (VC)
• Production: 42 GPU / 15 CPU Nodes
• R&D: 30-50 GPU / ~15 CPU Nodes

(elastic)

@meteoswiss.ch 6

ICON-CH1 on Alps (MeteoSwiss)

0

2000

4000

6000

8000

10000

12000

20.5.2022 15.6.2022 4.7.2022 Oper.

ICON-CH1, 33h on 8 GPUs

ICON (Manali, A100 GPUs) COSMO (Arolla, V100 GPUs)

• Issues with the new system + slower GPU performance as compared to COSMO –
required time to solution < 3000 s

• First optimization brought some improvement.
• ICON ca 2-3x slower than COSMO for same configuration and hardware

COSMO even faster on
older generation GPU

@meteoswiss.ch 7

• DSL : computer language restricted to a particular domain
• We need performance to reach time to solution
• Separation of concern between domain and computer scientist
• Single source code for multiple target architectures
• Possible to write a new backend when a new technology emerged
• Allow aggressive optimization without degrading readability of user code
• Allow optimization across components – data centric optimization

Domain Specific Language (DSL) in
weather and climate – really ?

I
DSL

@meteoswiss.ch 8

• Need to support unstructured grid, such as ICON grid
• New abstraction (e.g. neighbors operations)
• Focus on usability, productivity. Should be usable for domain scientist
• High level python dsl (gt4py)
• Development work in the EXCALIM project

• High resolution use cases
• Re-write code components using python DSL framework

High level DSL for ICON

@meteoswiss.ch 9

@field_operator

def intp(

fe: Field[[EdgeDim], float],

w: Field[[CellDim, C2E2C2EDim], float],

) -> Field[[CellDim], float]:

f_c = neighbor_sum(w * f_e(C2E2C2E), axis=C2E2C2EDim)

return f_c

Python DSL notation example (gt4py) :
Neighbor Chains

+

@meteoswiss.ch 10

Performance of ICON dycore (DSL) prototype

• Stencil by stencil translation 10-20% faster DSL compared to OpenACC.
• Prototype DSL dycore about 40% (1.4x) faster then OpenACC - not fully optimized.

Dry dycore only.

DSL :
Dusk/
Dawn

@meteoswiss.ch 11

• Dry dycore almost completely translated to gt4py (7 of 110 stencils still in progress)
• Performance the same as dusk/dawn (tested for 20 stencils)

• Tracer advection partially translated (20 stencils), continuing work

• Dry dycore + tracer advection are 60%-70% of the runtime of a full run

• Next focus for dycore: optimization and robustness

• Also ongoing: microphysics using gt4py; focus here is good language support
(example: if-else)

Current state gt4py re-write

@meteoswiss.ch 12

• First version of ICON model ported to GPU using OpenACC compiler directives
• Most components for global and regional NWP ported, and shall be soon

available in icon-nwp master
• basic version: Q4 2022
• complete version: std NWP configurations tested with buildbot: Q4 2023

• Reasonable first performance, 3x faster than CPU, but still potential for
optimization as still 2x time slower than COSMO

• Training of the ICON developers to work with OpenACC will be organized
• NWP application can likely benefit from DSL development in EXCLAIM, in

particular for the dynamical core which shall be used once available

Conclusions

@meteoswiss.ch 13

Additional slides

@meteoswiss.ch 14

Center for Climate Systems Modeling C2SM 1417.03.20
22

COSMO-ICON performance comparison on Daint
Socket to socket comparison: operational ICON-CH2 / COSMO-2E (2 km) 8 Nodes, 1h, P100 GPU vs
Intel Xeon E5 12 cores (Piz Daint, CSCS, GPU node) - timeloop only

• ICON CPU vs GPU : 4.2x speedup
• ICON is 2.9x slower than COSMO on GPU for an equivalent setup.

Speed up relative to ICON-CPU
2.9x

@meteoswiss.ch 15

Porting and optimization challenges

● GPU and CPU working
asynchronously
○ Reduces launch overhead

● Bundling similar loop constructs into
single GPU kernels
○ Improves cache reuse
○ Reduces launch overhead

● Compiler assisted / manual inlining of
function calls
○ Required for complex (deep call-trees)

GPU kernels
○ Enables optimizations above

● Tiling for surface and turbulence
○ Implicitly introduces sub-blocking which

leads to underutilized GPUs
● Physics initialization on CPU

○ Prohibitively slow because of unsuitable
nproma and MPI settings for CPU

● Radiation sub-blocking
○ Radiation (ec-rad) has an additional

dimension which can be parallelized Sub-
blocking as a memory optimization

● Code management
○ Disruptive code changes are challenging
○ ecrad: juggling diverse Institutes

OpenACC optimizations Conceptual challenges

	PP IMPACT and HPC overview
	OpenACC port overview
	Status of the OpenACC port to GPU�
	Slide Number 4
	ICON-22 Performance
	ICON-CH1 on Alps (MeteoSwiss)
	Domain Specific Language (DSL) in weather and climate – really ?
	High level DSL for ICON
	Python DSL notation example (gt4py) : Neighbor Chains

	Performance of ICON dycore (DSL) prototype
	Current state gt4py re-write
	Conclusions
	Additional slides
	Slide Number 14
	Porting and optimization challenges

