The Coordinated Parameter Testing 2 (COPAT2) initiative of the CLM-Community: towards a recommended configuration of COSMO-CLM and ICON-CLM new model versions

<u>Emmanuele Russo</u>¹, Christian Steger², Beate Geyer³, Ronny Petrik³, Klaus Keuler⁴, Burkhardt Rockel³, Klaus Goergen⁵, Patrick Ludwig⁶, Hendrik Feldmann⁶, Mauro Sulis⁷, Bijan Fallah⁸, HeimoTruhetz⁹, Ha Thi Minh Ho-Hagemann³, Jan-Peter Schulz², and Praveen Pothapakula⁶

1 ETH Zurich, Institute for Atmospheric and Climate Science, Zurich, Switzerland 2 Deutscher Wetterdienst (DWD), Offenbach, Germany 3 Helmholtz-Zentrum Hereon, Institute of Coastal Systems-Analysis and Modeling, Geesthacht, Germany 4 Brandenburg University of Technology, Cottbus, Germany 5 Research Centre Jülich (FZJ), Institute of Bio- and Geosciences (Agrosphere, IBG-3), Jülich, Germany 6 Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research, Karlsruhe, Germany 7 Luxembourg Institute of Science and Technology, Environmental Research and Innovation Department, Esch-sur-Alzette, Luxembourg 8 Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany 9 University of Graz, Wegener Center for Climate and Global Change, Graz, Austria

The CLM-Community, EVAL WG and COPAT2

The CLM-Community addresses the challenges of model development, efficient use of resources and answer key questions of regional climate modelling.

COPAT2

Determining optimal model configurations for

COSMO-CLM 6.0 ICON-CLM

General info on COSMO-CLM 6.0

- COSMO(-CLM) 6.0 released on 14 December 2021: last release of the COSMO model
- The CLM-Community used the COSMO model in **Cl**imate **m**ode (COSMO-CLM) for regional climate modelling over 20 years
- Main changes between COSMO 5.0 and COSMO 6.0:
 - Unification with CLM (new diagnostics, new tuning variables, new hydrology scheme, ...)
 - Implementation of snow model SNOWPOLINO
 - Modifications of NetCDF I/O (prefetching, asynchronous output, online compression, restart in single precision, ...)
 - Modifications for TERRA-URB (urban-canopy land-surface scheme)
 - New diagnostics for soil water budget and fix for computation of subsurface runoff
 - Additional Greenhouse-Gas Emission Scenarios (Shared Socioeconomic Pathways)
 - Changes in Data Assimilation (observation handling, single precision)
 - Implementation of radar forward operator EMVORADO
 - EULAG dynamical core added
 - Revised Cloud Radiation Coupling
 - Unification of Soil and Surface Modules with ICON
 - Implementation of skin temperature formulation in TERRA
 - Running COSMO in single precision

General info on ICON / ICON-CLM

• The ICON modelling framework is a joint project aimed at developing a unified next-generation global numerical weather prediction and climate modelling system

- The Climate Limited-area Mode of ICON (<u>ICON-CLM</u>) developed by the CLM-Community. It is based on the limited-area mode of ICON, including further developments and adjustments that are necessary for regional climate simulations
- The CLM-Community also provides a runtime environment (SPICE) for regional climate simulations with ICON-CLM, including pre- and postprocessing functionalities

General Strategy COPAT2

Parameters selection

1st Phase **Test single configuration options →** determine potential parameters improving model performances

Experimental Design COSMO-CLM 6.0

- Target domain: CORDEX Europe
- Target resolution: ~12 km
- Reference simulation for period 1979-2000 with configuration based on NWP configuration
- 1st set of simulation over period 1979-1985
- 2nd set of extended simulations over period 1979-1990
- Additional test simulations for more recent period

Source: ht tps://cordex.org/domains/cordex-region-euro-cordex/

All simulations are performed on the systems of the German Climate Computing Center (DKRZ):

 MISTRAL (decommissioned)
 LEVANTE

Details of Evaluation Procedure

- Score points of evidence: for a given metric (e.g. BIAS), ratio of points with significant improvement/worsening
- Consideration of **Standardized RMSE:** averaging first over a set of pre-defined regions:

1- Variables become quasi-gaussians

2- Reduce uncertainty related to chaotic nature of the system

First Evaluation Results

Prudence Regions

Score Points of Evidence based on BIAS 1981-1985

Conclusions & Outlook

- Designed calibration procedure for COSMO-CLM 6.0 and ICON-CLM
- First set of experiments performed with COSMO-CLM 6.0
- Some parameters of COSMO-CLM 6.0 show potential for additional tests
- Ongoing discussion on evaluation metrics
- Detection of test parameters for ICON-CLM and first experiments performance
- Use of radiosondes measurements for evaluation procedure (Ulrich Voggenberger, University of Vienna)
- Final results will be made publicly available

Thank you for your attention!

General Strategy: Parameters Selection

C2C201	Reference			
C2C202	DYNUM_group	y_scalar_advect = BOTTDC2, itype_fast_waves = 2, I_3D_div_damping = .TRUE., Idyn_bbc = .FALSE., itype_bbc_w = 114, I_diff_Smag = .TRUE.	Bott Advection with deformal correction; improved fast waves stability; fully 3-DIsotropic divergence damping	
C2C203	DYNUM_GROUP + DYNUM_SINGLE	DYNUM_GROUP + I hor_pgrad_Mahrer = .TRUE.	Better geostrophic gradient than in standard discretization	
C2C204	DYNUM_GROUP + DYNUM_SINGLE	DYNUM_GROUP + i type_outflow_qrsg = 2	no relaxation of qr, qs, qg is done at outflow boundary points	
C2C205	DYNUM_GROUP + DYNUM_SINGLE	DYNUM_GROUP+hd_corr_u_bd=0.75, hd_corr_t_bd=0.75, hd_corr_p_bd=0.75	Diffusion in wind components	
C2C210	Physics	itype_canopy=2, cskinc=-1	Explicit calculation of skin surface energy budget (Schulz and Vogel 2017)	
C2C212	Physics	itype_evsl = 4, c_soil=1.25	Improved bare soil evaporation	
C2C213	Physics	itype_hydmod = 1	Ground water formulation allowing ground water build up	
C2C214	Physics	itype_heatcond = 3	Soil Heat conductivity based on vegetation and not on soil moisture	
C2C220	Turbulence	Itkesso=.TRUE.	SSO-wake turbulence production for TKE	
C2C221	Turbulence	Itkes hs = .TRUE.	Consider horizontal shear production for TKE	
C2C222	Turbulence	icldm_turb=2,icldm_tran=2	Clouds sub-grid scale condensation considering water clouds	
C2C223	Turbulence ICON	loldtur=.FALSE., itype_vdif = 1	New ICON turbulence scheme	
C2C224	Turbulence ICON	pat_len=750.0, imode_pat_len=2 (turbdata.f90)		
C2C225	Turbulence ICON	Itkeshs=True, a_hshr=2.0, imode_shshear=2 (turbdata.f90)		