

Clouds and Aerosols Improvements in ICON Radiation Scheme - CAIIR Priority Project

Harel Muskatel (IMS) 23nd COSMO General Meeting, September 14, 2021

Clouds and Aerosols Improvements in ICON Radiation Scheme - CAIIR Priority Project

- Project duration: March 2020 February 2022
- **Total planed FTEs** : 6.6 (2.9, 3.7)
- Used until Sep-2021: 4.57

Participants:

- Harel Muskatel (IMS)
- Pavel Khain (IMS)
- Alon Shtivelman (IMS)
- Yoav Levi (IMS)
- Ulrich Blahak (DWD)
- Daniel Rieger (DWD)

- Alexey Poliukhov (RHM)
- Julia Khlestova (RHM)
- Gdaly Rivin (RHM)
- Natalia Chubarova (RHM)
- Marina Shatunova (RHM)

Task 1: New droplets optical properties for ecRAD

Task 2: New ice optical properties for ecRAD

Aerosols Inputs for ICON Radiation

Tegen (1997) irad_aero = 6

CAMS (2017) irad_aero = 7

CAMS irad aero = 8

Prognostic 2D AOD irad_aero=6 & iprog_aero=1

6.4

3.2

1.6

1.2

.8

.4

.2

1

ICON-ART irad_aero = 9

Task 4: CAMS forecasted aerosols in ICON

Advantages of CAMS forecasted aerosols

CAMS	Climatology
Vertical profile based on dynamics	Fixed vertical profile
Optical properties calculated for each RRTM/ecRad WL intervals	Optical properties calculated at 550 nm and corrections made for other WL
Optical properties are RH dependent	Optical properties RH independent
Number concentrations are calculated explicitly from mixing ratios	Number concentrations are evaluated from total column AOD
11 species of aerosols	5 species of aerosols
Data assimilation used	Fixed climatology
Longwave scattering included	No longwave scattering

With almost zero additional CPU cost Additional memory is needed

Dynamics, emissions, washout etc. are done in a separate model not consistent/coupled with ICON model

2D integrated AOD

1 Year Verifications – 2020

• 2020, 78 hours lead time, 00UTC RUNS

Verifications – polluted days

- 28 test cases in 2020, 24 hours lead time
- When average measurements of PM2.5 all over Israel is more

10

Southeast Europe Domain

12 March 2020 test case

Task 3: R_{eff} based on CAMS & Segal-Khain

13

Ice nucleation scheme based on CAMS aerosols

COSMO Results for Oct-Nov 2019

Task 5: CAMS climatology in ICON-ecRAD (RHM)

0.02 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.5 0.6

Task 5: CAMS climatology in ICON-ecRad (RHM)

CAMS climatology in EXTPAR (iaot_type = 5)

11+(1) aerosol species, 4D arrays

- ✓ Compiled
- ✓ Tested

✓ Added in development version of EXTPAR - Waiting official version

CAMS climatology in ICON

Problems:

- ➢ No interface to read 4D or 5D variables
- A huge memory footprint for all variables Solution:

An internal buffer to store two time slices (in the CAMS climatology case: months) of data – 3D fields

- Linear vertical interpolation
- ✓ Compiled
- ✓ Not tested

Task 6: 2D Aerosol optical depth (D. Rieger)

Prognostic equation for 2D AOD $\psi_i(x, y)$, using vertically averaged horizontal wind $\overline{v_{H,j}}$:

Results of the Kok et al. 2014 scheme in ICON

Task 6: 2D-Aerosol Optical Depth

Converting Mass Flux to AOD flux

Dust Optical Depth Ref: 2019-06-01T00:00:00, Valid: 2019-06-01T00:00:00

Task 6: 2D-Aerosol Optical Depth

Task 7: MACv2 climatology in ICON (RHM)

Kinne-MACv2 (2013) vs. Tegen (1997)

Task 9: Correction of ICON stratiform cloud cover scheme over the Eastern Mediterranean

- Summertime: too many points with low CLC, too little points with CLC=1.
- Two main stratiform liquid cloud cover (CLC) schemes: Martin's scheme (inwp_cldcover=1) and the ICON "COSMO" scheme (inwp_cldcover=3).
- The dependence CLC(RH) was analyzed for both schemes, using several test cases over the Eastern Mediterranean.
- A new parameter "allow_overcast" was introduced ICON scheme which allows to change the steepness of the CLC(RH) curve.
- For tune_box_liq_asy=1.7 and allow_overcast=0.63 the ICON "COSMO" CLC(RH) behavior is achieved, i.e. steep increase towards CLC=1 at RH=100%.

Task 9: Correction of ICON stratiform cloud cover scheme over the Eastern Mediterranean

- Summertime: too many points with low CLC, too little points with CLC=1.
- Two main stratiform liquid cloud cover (CLC) schemes: Martin's scheme (inwp_cldcover=1) and the ICON "COSMO" scheme (inwp_cldcover=3).
- The dependence CLC(RH) was analyzed for both schemes, using several test cases over the Eastern Mediterranean.
- A new parameter "allow_overcast" was introduced ICON scheme which allows to change the steepness of the CLC(RH) curve.
- For tune_box_liq_asy=1.7 and allow_overcast=0.63 the ICON "COSMO" CLC(RH) behavior is achieved, i.e. steep increase towards CLC=1 at RH=100%.

Effect of ICON shallow convection schemes on precipitation over the Eastern Mediterranean

Problem: Convection permitting models with grid spacing below ~4 km usually describe deep convection on grid scale, but still parametrize the shallow convection, being sub-grid scale process. The artificial combination of resolved and parametrized convection might deteriorate the model forecast skill, particularly precipitation

Effect of ICON shallow convection schemes on precipitation over the Eastern Mediterranean

- Optimal precipitation rates distribution is obtained when the SCP is strongly limited by limiting the development height
- Reduction of maximum depth is a good solution for weak precipitation However, it "kills" SC which may have negative effect on other fields.
- 3. Increase of maximum depth increases SC precipitation but strongly decreases GS precipitation, leading to underestimation.
- 4. Stochastic SDE scheme improves the situation, still underestimating precipitation
- 5. Strange land-sea contrast in SC precipitation

CAIIR: project overview

Cloud optics

- Aerosols inputs: CAMS forecasted, CAMS climatology, 2D advection scheme, MACv2 climatology
- Microphysics R_{eff} and LWC revised, Realistic cloud formation
- Clouds and precipitation improvements and the Stochastic convection scheme
- Model testing and tuning

Thank you for your attention!