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Project Extension requested:

« Short prolongation is proposed to complete Tasks and provide the related
deliverables. The requested extension is until the end of December 2021.

« Delays in Tasks 1.2, 2.3, 3.3. 4.1, and 4.4. The delays are due to partial
unavailability of some contributors due to health issues and other constraints.

« Consolidation of the outcomes of the project tasks will be made during the extension
period to provide the Executive Summary of the project. Final project technical
report will be delivered at the new deadline.

« The deliverable reports are available on the PP AWARE web page on the COSMO

web site (http://www.cosmo-model.org/content/tasks/priorityProjects/aware/defauIt.htm).

« Unused FTEs from the main project period will be relocated to the extension period
of the project. No additional FTEs are requested. The total resources are
equivalent to 0.45 FTE.
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TASK 1

Task 1.1 Overview of CW/HIW observational data sources characteristics

Review of non conventional observations and their use in verification

STATUS: Completed , presented during ICCARUS

Final report was prepared based based also on paper

(https://Inhess.copernicus.org/articles/21/1297/2021/nhess-21-1297-2021.html)

Task 1.2. Approaches to introduce observation uncertainty - 0.05 FTEs

for observation uncertainty (e.g., CRPS adapted for observation ensemble).

FTEs remaining: 0.02 A. Bundel

STATUS: Task delayed

Practical implementation: spatial scores using the radar precipitation data and
nowcasting zero step data as reference are planned. Extension without additional
FTEs is required to finish the task by the end of year 2021.
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https://nhess.copernicus.org/articles/21/1297/2021/nhess-21-1297-2021.html

Overview of appropriate
commonly used verification
measures

Task 2.1 Survey for assessment of proper verification of phenomena 0.35FTEs
Comparison and judgment whether continuous or discrete methods may/should be
applied.

STATUS: Completed. Pending Revision of Report: with applicability of recommended
methods and suggestions for parameters to account for flash rate derived from forecast
data.

Task 2.2 Role of SEEPS and EDI-SEDI for the evaluation of extreme precipitation
forecasts - 0.25FTEs
STATUS: Completed. Final Report available on COSMO web

Task 2.3 Extreme Value Theory (EVT) approach- Fitting precipi
characteristics to different distributions - 0.3FTEs
FTEs remaining: 0.0

STATUS: Completed. Pending Final Report. To be submitted by the end of project
extension.

tion object
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Task 2.3 Extreme Value Theory (EVT) approach - Fitting
precipitation object characteristics to different
distributions

Verification of large contiguous precipitation areas using
Generalized Pareto distribution
Results

Anatoly Muraviev, Anastasia Bundel
RHM

FTE 0.3, Start 09.2019 — End 08.2020
Finished. Report under preparation



Peaks over threshold (PoT)
model for the area size

Maximum areas of objects in Kursk radar fields
from 5 to 19 May 2017.

Blue lines indicate times of maximum areas within a precipitation

situation for area threshold of 625 contiguous grid points
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Density

Radars under study: Yellow circles

Fitting the distribution of precipitation object areas (histograms) to

ﬁ."““?af- Generalized Pareto distribution (blue line), warm period, Kursk radar,
@ lead time 60 min
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A measure of STEPS quality: intersection ratio of confidence
intervals of Generalized Pareto parameters estimates
(o and &) in STEPS and in observations (radars)

intersection ratio (IR) = A/B
Ideal intersection ratio = 100%
® IR >=50% : choosen empirically
as a useful skill level

e
\J

The intersection ratio gives a diagnostic estimate of model
ability to reproduce vast contiguous precipitation areas (or
other extremes)



Summary table with shape (§¢) parameter intersection
ratio, %
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Summary

Object-based verification of RHM nowcasting system is performed. The
verification period is May-Sep 2017 and Nov-March2017-2018, for seven
radars in Central Russia.

The ability of the system to forecast contiguous precipitation areas
greater than a certain threshold (peaks over threshold method) is
assessed. Several thresholds were studied.

Generalized Pareto distribution is used to assess precipitation areas in
distribution tails according to the shape parameter. The best fit of Pareto
distribution corresponds to the area threshold of 625 points (~¥50*50 km).

A measure of STEPS quality is introduced: intersection ratio of confidence
intervals of Generalized Pareto parameters (o and &) estimates in STEPS
and in observations (radars). It gives a diagnostic estimate of model ability
to reproduce vast contiguous precipitation areas (or other extremes).

A paper “Evaluation of radar nowcasting of large precipitation areas using
the Generalized Pareto distribution under preparation”



TASK 3 Verificatior! applications
with spatial methods

Task 3.1 Verification of forecasts of intense convective phenomena ) .5FTEs
Report on the verification approach, recommendations and consideratj
STATUS: Completed, Pending Report Revision with the

thermodynamical indices. First draft report available on COSMO web

Task 3.2 Lightning potential index (LPI) in mountain regions

Integration in the operational chain of COSMO-1, and COSMO-E, Tests of the flash
conversion rate LPI to flash numbers

STATUS: Completed. Final Report available on COSMO web

Task 3.5 LPI verification and correlation of convective events with microphysical
and thermodynamical indices - 0.3FTEs
STATUS: Completed, Pending Final Report. To be submitted until Sept 2021

PPAWARE Session, 239 COSMO General Meeling, Videoconf, 13.09.21



Verification of forecasts of intense convective phenomena, task 3.1 PP AWARE

Flashrate verification — parameterisations

Four parameterisations of lightning intensity used
1. CAPE-based with cloud top/bottom temperatures correction
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Flashrate discrete verification — pafé?n?t@ﬁsations (summer 2020)

Verification of forecasts of intense convective phenomena, task 3.1 PP AWARE

-——-\-
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7km resolution
Par. EQS FAR FBI PFD POD SUC THS
#1 0.051 0.830 1.911 0.118 0.198 0.170 0.093
#2 0.056 0.853 2.730 0.159 0.264 0.147 0.103
#3 0.030 0.906 3.495 0.155 0.219 0.094 0.068
#4 0.030 0.883 2.720 0.174 0.237 0.117 0.083
2.8km resolution
Par. EQS FAR FBI PFD POD SUC THS
#1 0.084 0.823 2.337 0.126 0.386 0.176 0.140
#2 0.095 0.798 1.607 0.098 0.343 0.203 0.145
#3 0.075 0.837 2. 435 0.161 0.429 0.163 0.127
#4 0.067 0.863 2.645 0.134 0.375 0.137 0.110
14.09.2021 Institute of Meteorology and Water Management — National Research Institute; COSMO General Meeting 2021 13
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Verification of forecasts of intense convective phenomena, task 3.1 PP AWARE
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14.09.2021 Institute of Meteorology and Water Management — National Research Institute; COSMO General Meeting 2021 14




TASK 3 Verificatior! applications
with spatial methods

Task 3.1 Verification of forecasts of intense convective phenomena - 0.5FTEs
Report on the verification approach, recommendations and considerations.

STATUS: Completed, Pending Report Revision with the analysis on
thermodynamical indices. First draft report available on COSMO web

Task 3.2 Lightning potential index (LPI) in mountain regions
Integration in the operational chain of COSMO-1, and COSMO-E, Tests of the flash
conversion rate LPI to flash numbers

STATUS: Completed. Final Report available on COSMO web

Task 3.5 LPI verification and correlation of convective events wit
and thermodynamical indices - 0.3FTEs
STATUS: Completed, Pending Final Report. To be submitted until Sept 2021

microphysical

PPAWARE Session, 239 COSMO General Meeling, Videoconf, 13.09.21



lcons production pipeline

New methodology
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Observations — LPI comparison

Instantaneous value of LPI at every hour Gridpoints where there is at least one flash
that is above a threshold during one hour
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POD: all windows

ETS: all windows
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FAR: all windows

|

| Test Case ::
|Even original resolution exhibits skill !
'POD: skill reduces with lead time II
| FAR: For resolution >10x0.04~40km skil !
isteadily good I
iFBI: small underestimation in all upscaled grids |
|ETS: performance increases linearly with window ii
isize. For windows higher than 40km good |

LPI verification and correlation of
convective events with microphysical
and thermodynamical indices
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TeSt Case I ” LPI verification and correlation of
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The S values are variable with time model predicting
more widespread objects in the beginning and around
the end of the forecast time.

) A Amplitude The A absolute values are less than 0.5 and the total LPI
C’j — o — is satisfactorily predicted (slightly over forecasted mainly
= 20-23h).
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L Location

0.0
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LPI

The L parameter is low (around 0.2) and shows good
agreement on the location of objects in respect to the
observed.
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Test Case lll: Thermodyamical indices vs. obs lightning
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’\ Verification applications
TASK 3 / with spatial methods

Task 3.4 DIST methodology tuned on high-threshold events for flash floods
forecast evaluation - 0.1FTEs

Verification of average values of precipitation over catchment areas to investigate the
ability of models in reproducing different amounts of precipitation.

STATUS: Completed. Final Report available on COSMO web

Task 3.6 Work on the comparative verification of NWC and NWP results using
spatial verification methods as part of the SINFONY project at DWD 0.16FTEs
STATUS: Completed. Final Report available on COSMO web

PPAWARE Session, 239 COSMO General Meeling, Videoconf, 13.09.21



SINFONY project etor s i s cirar E

- Seamless INtegrated FOrecastiNg sYstem
- Here: ,seamless” = from minutes to hours*

ens001

- Aim: Development of a coupled probabilistic system ens002

consisting of precipitation nowcasting and short- ens003

range numerical weather prediction (+12 h) on the ens004

convective scale ens005

ens006

ens007

- SINFONY-RUC (Rapid Update Cycle) E"Sggg
ens

- Hourly initialization of ICON-D2-EPS ens010

(20+1 members) + 8 hours lead time ens011

= 2-moment microphysics ::zglg

- Running since June 2021 ens014

= Object-based verification of features from ::2812

KONRAD3D cell detection tool of observed radar ens017

reflectivities and from model equivalents ens018

(EMVORADO forward operator) ens019

ens020

= Reflectivity objects as polygons with several
properties, e.g., position, size, intensity, ...

m Object-based verification — Gregor Pante (FE12) 2 SL_NL'EL__ )NY



Deutscher Wetterdienst %
Wetter und Klima aus einer Hand \ ‘

Pseudomember (Johnson et al., WAF, 2020)

- Selection of the locally most representative
objects from the ensemble

- Each pseudomember object has a
probability of occurrence, i.e., the
percentage of ensemble members with
similar objects

- Use unified area of ,matching” objects from
other members to define uncertainty
regions

probability of
occurrence
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% Object-based verification — Gregor Pante (FE12)




Example: pseudomember objects with p 2 30% eutscher wetterdienst )

NWP deterministic NWP pseudomember

7 "”‘\Mw =0.20 T~ s \MMI = 0.50
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init 10:00 UTC
+ 05:00 hh:mm

i 16°E
Object-based verification — Gregor Pante (FE12) 8 SIN F*'QNY




Deutscher Wetterdienst

Local beats gIObaI Wetter und Klima aus einer Hand u

SINFONY ref.: 27 May - 25 Jun 2016, hourly init. 12-16 UTC

> Pseudomember: a-priori selection of locally
most representative objects only based on
ensemble forecasts

1.00+

= ,Best member”: a-posteriori selection; use
observations to evaluate which member is
globally the best at each time step

= Pseudomember has higher MMI than the

0.751

. — Nowcasting
best member selection! S e _ NWP deterministic
= — NWP pseudomember, p=30%

— NWP best member

0.251

0.00+

41 01 2 3 45 6 7
Lead time, hours
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Overview of forecast methods,
representation and user-oriented
TASK 4 products linked to HIW

Task 4.1. Postprocessing vs. direct model output for HIW — 0.5FTEs

Studying literature, internet search to understand the state-of-the art in fog/visibility
modelling, and in postprocessing methods to predict fog/visibility and convection
related CW and the overview of these methods

STATUS: Pending Final Reports:

Task 4.2 Improving existing post-processing methods - 0.12FTEs (initially
planned 0.25 FTEs, but 0.13 FTEs for year 2020-2021 moved to MILEPOST)

Report on the quality of various forecasts methods, advantages and disadvantages;
conclusions (recommendations) of hind-cast evaluation, esp. of ANN vs. MLR and
ALSR; recommendations for future and operational use

FTEs remaining: 0.0

STATUS: Completed. Final Report available on COSMO web

PPAWARE Session, 239 COSMO General Meeling, Videoconf, 13.09.21



Overview of forecast methods,
representation and user-oriented
TASK 4 products linked to HIW

Task 4.3 QPF evaluation approaches — 0.1 FTEs
An overview of all the products provided to the end-user (forecaster or hydrologist)
STATUS: Completed. Final Report available on COSMO web

Task 4.4. Representing and communicating HIW forecast for decision making —
0.3 FTE (0.2 RHM, 0.1 NMA)

Overview of approaches to communicating high impact weather to different categories
of users. Feedback from users. Examples of representing HIW forecasts.

FTEs remaining: 0.11 RHM, 6-3-NMA

STATUS: Pending Final Report. A.Bundel is preparing the report “Preparing and
communicating warnings based on high-resolution NWP in the cities, international
experience and Moscow applications™. Extension to complete the reports until 2021.
NMA contribution is cancelled.



Postprocessing model data for
fog forecast

Julia Khlestova, Marina Shatunova,
Ekaterina Tatarinovich, Gdaly Rivin

Hydrometeorological Centre of Russia, 11-13, B. Predtechensky per.,
Moscow, 123242, Russia

23t COSMO General Meeting
13/09/2021



What is the “fog forecast” means?

vertical
Intensit e —
Y FOG extent
horizontal time of
visibility formation
range (VIS) and duration
In (1) p - volumetric attenuation radiation coefficient
Q VIS = & \ - wavelength (=550 nm usually)

ﬁ){ ¢ - eye contrast threshold (=0.05 or 0.02 usually)



Directions of fog forecast development

a) Empirical ratios

l

B=f(ky ky k3 ...)
k; — meteorological parameters
(air temperature, dew point
temperature, wind speed,
relative humidity).

(Zverev A.S., 1977)

Base: measurements

b) Machine learning
methods

|

B=f(kykyks..)
k; — meteorological parameters
(air temperature, dew point
temperature, wind speed, air
pressure, relative humidity).

(Abdulkareemet al., 2019; Zhu et
al., 2017; Oguz and Pekin, 2019)

Base: measurements or NWP
results

c) NWP forecast
(or postprocessing)

|

B =L Qext,ln(r)rzdr

or need the parametrization of

(Kunkel B.A., 1984; Wilkinson et al
2013; Creightonet al., 2014)

Base: NWP results




Impact of two-moment microphysics

* Low-level cloudiness 450
* Liquid water clouds mostly 400k —_
Model: COSMO v.5.08 TNeen->TN, i
Grid step: 1 km N 3%0¢ e :
Microphysics: 2-moment (2797) 33300 I ' |
Convection: shallow (type 3) 8 250 '
Aerosol-cloud-radiation interaction: % 200 —— |
* CLOUDRAD scheme (Hu & Stamnes, g 150 - i :

1993; Fu et al., 1996 ;1998) with j,; '

-

[=]

f=
T

o
o
T

additions.
* Ngey =100, 500 and 1000 cm™3 :

|
%

Neep: 100 cm™ 500 cm™ 1000 cm™

CLOUDRAD&2MOM can use aerosol fields from chemical-
transport models for more realistic aerosol effect

B = asQC¥N;° '

(Trautmann and Bott, 2002) Additional information about aerosol typification,
solubility and anthropogenic impact




Conclusions

The NWP fog forecast is preferable because it has not
only fog intensity, but includes also the fog vertical
extent, moment of fog formation and duration

The microphysical approach of horizontal visibility range
calculation is better than meteorological approach

The two-moment microphysics allows expanding the
range of horizontal visibility due to accounting for the
geographical location and the level of aerosol pollution

The visibility forecast using ICON results needs the
analysis of all liquid and ice water sources (schemes) in
the model
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Tornado hazard prediction with
COSMO-Ru Parameters and indices

Denis Zakharchenko & Denis Blinov

dozentmi7@mail.ru
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Tornado OCCUFFGHCE IN Russia

06 |50 * Previous estimates of Tornado
: P | i | sy occurrence frequency in Russia

SON

- [Snitkovsky, 1987] turned out to
be severly undervalued.

+ Recent research [Chernokulsky
et al, 2020] showed that on
average Russia experiences
about 100-150 tornadoes per
year. During some years the
number can rise up to 350.

40N

30N

« About 10% of these tornadoes

e . become significant (EF-2 or
Spatial distribution of Tornadoes, observed over Northern Eurasia in

979-2016 [Chernokulsky et al, Monthly Weather Reviews, 2020 z'gher) and dcfl" Ca”sj Ster:'ous
DOI-10.1175/MWR-D-19-0251.1] AL R AL LU e L

injuries.

13.09.2021 Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet) 2
Hydrometeorological Research Centre of Russian Federation




. CONSORTIM FOR SMALL SCALE MODELN

* According to the European Severe
Weather Database (ESWD), 85
tornado records took place in Russia
in 2021.

Weather Database
_www.eswd.eu.

- * The most damaging outbreaks on the
(c)ESSL S i

European part of Russia in 2021 were
recorded on May 15 and August 2.

The COSMO-Ru Setup

Vo U 60w
“ . 4z 45w
30w

Federal Service for Hydrometeorology and Environmental Monitoring (Roshydro 4
Hydrometeorological Research Centre of Russian Federation

36‘5_ 60'E 90°E . 1206
The experiments were performed using global ICON
13km-grid initial and boundary data and
downscaling to 1km-grid domains.



Case 1.The May 15 Tornado outbreak and Derecho
* 13:00 UTC COSMO-Ru (2.2 km) Supercell Detection index 2 & Significant Tornado Parameter.

0.001
 0.0003
10,0003

-0.001

rcell detection index 2 (rotating updrafts, 1/s

0.003

-0.009

13.09.2021 Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet) 17
Hydrometeorological Research Centre of Russian Federation
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Conclusions

« The comparison between simulated Significant Tornado Parameter values
and the Supercell Detection index values in some cases can help exclude
false alarms in Tornado risk prediction

« Experiments performed with COSMO-Ru with 1km spatial grid resolution

show more distinct supercell and mesoscale convective systems
compared to COSMO-Ru 2.2 km

13.05.2021 Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet) 34
Hydrometeorological Research Centre of Russian Federation




Related publications & conference presentations

* Marsigli, Chiara & Ebert, Elizabeth & Ashrit, Raghavendra & Casati, Barbara &
Chen, Jing & Coelho, Caio & Dorninger, Manfred & Gilleland, Eric & Haiden,
Thomas & Landman, Stephanie & Mittermaier, Marion. (2020). Observations for
high-impact weather and their use in verification. 10.5194/nhess-2020-362.

* Object based verification of radar-reflectivities on the convective scale
G. Pante, M. Hoff, and U. Blahak. Deutscher Wetterdienst, Offenbach, Germany.
Presented in ICCARUS 2021

* Verification of Intense Precipitation over diverse climatological areas Boucouvala
D.1, Gofa F. 1 and Kolyvas C.1. HNMS. Paper submitted and will be presented in
COMECAP 2021.

 Muraviev et al. a paper “Evaluation of radar nowcasting of large precipitation
areas using the Generalized Pareto distribution under preparation




PP-AWARE continuation (phase II)

l. Stressing of observations role in HIW
Unew obs types use in the evaluation of forecasted phenomena (severe convection, fog).
Obs Types:

* Remote sensing derived non-conventional observations. Use of satellite products (e.g. cloud
oprical thickness, brightness temp, LWR, SWR) to evaluate characteristics of convection,
NWC-SAF products for fog verification

* Crowd-sourced data: third party and citizen met stations, smart phones, web & social media
etc. usefulness for NWP predictions and €

tUobservation uncertainty and impact on score

Il. Verification scheme for convection permitting ensemble forecasts
Uobject-based approaches: methodology and criteria for reduction/summarizing of object
information, metrics for performance evaluation, visualisation

Ubuild of a robust common verification framework for sensitivity tests

lll. Impact-based warnings issuing and evaluation
IV. e,

Not resources available yet, to be
discussed after the end of current phase



