Q

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

En route to a 'new' operational multi layer snow cover scheme.

(COSMO

Sascha Bellaire¹, Varun Sharma^{2,3}, Louise Braud¹, Michael Lehning^{2,3}, Jean-Marie Bettems¹, Jürgen Helmert⁴

¹MeteoSwiss, Zurich, Switzerland

²WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland ³CRYOS, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland DWD, Deutscher Wetterdienst

So what? Why do we need a 'new' model?

— Snow analysis

Advanced Swiss snow cover model SNOWPACK

SNOWPOLINO – SNOWPACK's little 'brother'

N = 10

N = 8 + 1

Layering (n_{def.} = 25)

.....

1D heat equation

 $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}; \quad 0 \le x \le L; \quad t \ge 0$

Phase Changes

Water transport

Settling/Densification

Metamorphism

PT SAINT – a little project 'history'

2013 March Start of the Austrian Science Fund Project SAINT (Snow cover Atmosphere INTeraction) at the University of Innsbruck (CO-PI Prof. Rotach); **Project Goal:** coupling/forcing of SNOWPACK with COSMO **2017** July Revival of the 'SAINT' project co-funded by WSL Institute for Snow and Avalanche Research SLF and MeteoSwiss; **Project Goal:** development of a new multi-layer scheme for COSMO/ICON 2017 _{September} SAINT became an **priority task project** of the COSMO consortium (**PT-SAINT**) 2020 December 'Official' end of PT-SAINT (formal extension required) 2021 September End of PT-SAINT and potential start of follow up project.

What models currently contain SNOWPOLINO?

SNOWPOLINO_{stand-alone}

TERRA_{stand-alone} **(TSA)**

- decoupled version of COSMO/ICON of the surface scheme TERRA
- TSA can be forced with gridded and non-gridded data
- \circ unified code (with COSMO v6.0)
- Low computational costs

COSMO

- part of official COSMO (v6.0) code
- o code is GPU capable
- $\,\circ\,$ currently implemented outside of TERRA ...
- hence, transition to ICON and usage for other scheme, i.e. vegetation, urban model, sea/lake ice possible.

Local and regional verification (CH) - H_SNOW_{TSA}

TSA – TERRA Stand Alone; measured forcing

Winter 2020/21 (Weissfluhjoch)

Local and regional verification (CH)

Time

Local and regional verification (CH) – COSMO

- e_suite
 - COSMO-2
 - hindcasts, i.e. from analysis (KENDA-1)
 - 24h lead-time
- o itype_snow = 3
 - new multi layer snow scheme ('SNOWPOLINO')
- o itype_snow_start = 0
 - warm start from analysis, cycled in from SNOWPOLINO output
- o itype_snow_start = 1
 - cold start; all snow is wiped out
- itype_snow_start = 2
 - 'soft' warm start (required snow fields are derived from available/mandatory fields (W_SNOW, RHO_SNOW etc.)

Local and regional verification (CH) - H_SNOW

Local and regional verification (CH) - T_SNOW

Winter 2020/21 (Weissfluhjoch)

Local and regional verification (CH) - Scores

Reference

COSMO-S

T 2M: ME

204_ch 2020-12-08 13:00 to 2020-12-23 12:00 01-24 +Min: -5.935 degC at station GOS +Max: 2.011 degC at station GIH

200_ch 2020-12-08 13:00 to 2020-12-23 12:00 01-24 +Min: -3.561 degC at station MTR +Max: 4.677 degC at station SRS

CH – 2020-12-08 to 2020-12-23

U

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

En route to a 'new' operational multi layer snow cover scheme.

(ICON

Sascha Bellaire¹, Varun Sharma^{2,3}, Louise Braud¹, Michael Lehning^{2,3}, Jean-Marie Bettems¹, Jürgen Helmert⁴

¹MeteoSwiss, Zurich, Switzerland

²WSL Institute for Snow and Avalanche Research SLF, Davos, Switzerland ³CRYOS, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, Switzerland DWD, Deutscher Wetterdienst

Surface Temperature comparison (CH) - T_SNOW

Reference

ICON-S

ICON-D2 – 20210317 12 UTC

Comparison ('Bias') Alps – H_SNOW & T_SNOW

ICON-D2 – 20210317 12 UTC

Conclusions — cosmo-s & ICON-s

COSMO-S

- Fully coupled GPU Version merged with master (will be part of COSMO-6.0)
- Local/regional validation shows sound results in terms of snow height and surface temperature.
- Full (season) e_suite and verification pending
 - 2 weeks verification shows too cold T_2M
- Integration into KENDA cycle pending.
- No deadline for production (itype_snow_start = 2).

ICON-S

- Implemented into ICON (went through first code review at DWD; Günther Z.)
- Comparable results to COSMO-S however worse!
- Current obstacles:
 - Unknow snow related pitfalls.
 - Code is not ready for vector machine. (major)
 - I/O needs to be implemented (minor)
 - Editorial changes needed. (minor)

Turbulent fluxes

rence le

height and Canopy refer

z=0

Ground surface

Many, many more things to do!!!

Q

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Thanks! Comments and/or questions?

(COSMO-S & ICON-S)

Contact: Sascha.Bellaire@meteoswiss.ch