

PP IMPACT / HPC Latest Developments at DWD

Introduction

- → A new colleague, Marek Jacob, is working at DWD on the GPU port of ICON (since 1st of April).
- At DWD we are working on:
 - → Nesting feature: Marek
 - Tiedtke-Bechtold convection: Uli
- → GPU machine available at DWD: Up to now only our Linux workstations, with PGI compiler 21.2. This is a good platform for development, but not for testing larger domains, especially for the nesting.
 - → Device: NVIDIA Quadro P400
 - → Memory: 2 GB

Porting Tiedtke-Bechtold Convection

- → Rather similar code has been ported by Italian colleagues (Riccardo Scatamacchia et al.) for COSMO, so most of the OpenACC commands could be taken from COSMO with little adaptations.
- → But ported code did not work "out-of-the-box":
 - → Module mo_cuparameters.f90 already contained an acc statement: "acc declare copyin(rd)" after REAL declaration of rd (gas constant), but no "update device" after computation of rd: So ICON worked with rd=0
 - → On the workstation, the CPU does not work with FMA, but GPU does. This lead to slightly different results.
- Thanks to the work done by Riccardo and his team, porting the ICON version of Tiedtke-Bechtold to GPUs was rather easy. BUT....

Testing Tiedtke-Bechtold on GPUs

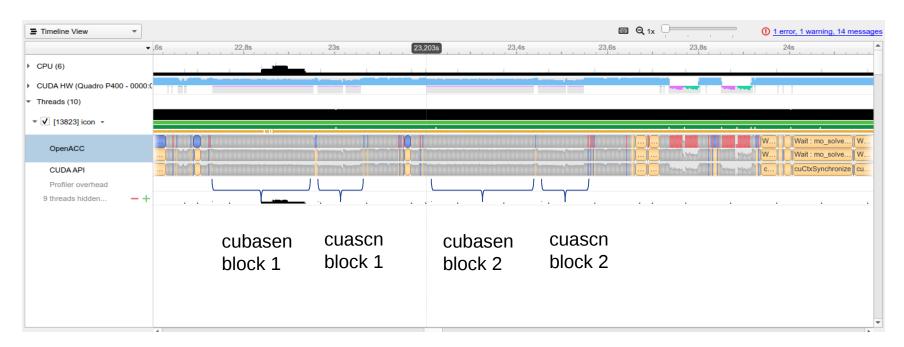
→ For the small domain I use on my workstation (1788 cells). Timings from a 1-hour forecast:

	CPU nproma=16	GPU nproma=1788
Total	12.390	22.489
nh solve	6.237	3.191
NWP Turbulence	0.566	1.450
NWP Microphysics	0.488	0.367
NWP Convection	0.699	3.372

Testing Tiedtke-Bechtold on GPUs

→ ICON-D2 on Daint using 32 nodes. Timings from a 1-hour forecast:

	CPU nproma=16	GPU nproma=8192
Total	1117.193	
nh solve	564.026	
NWP Turbulence	74.506	
NWP Microphysics	52.561	
NWP Convection	43.795	


The run on Daint GPUs crashed after a few timesteps (exceeding CFL)!

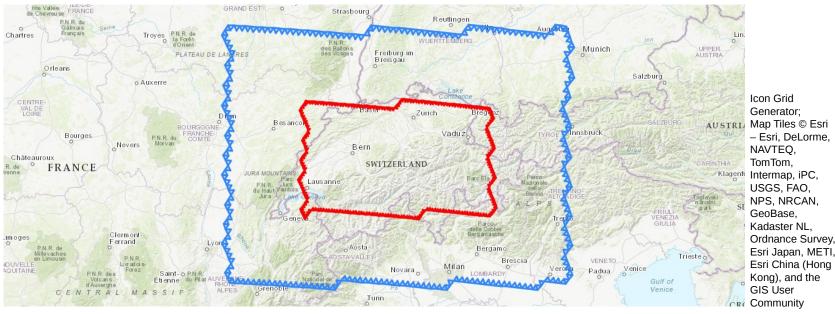
Profiling

- Started to learn about profiling tools (nsys, nvprof), but not yet matured enough
- → An nsys-example from my workstation:

But this was done with optimization level -O0!

Short Summary

- Convection has several nested vertical loops (ascent / descent), which result in a lot of kernels.
- On my workstation, convection on the GPU runs slower than on the CPU.
- On Daint, no big tests could be performed up to now (with the latest iconnwp/master)
- Learning and understanding is "ongoing work".


OpenACC contributions (Marek Jacob) Deutscher Wetterdienst

8

- → Lat-lon sampled output in post-processing (output_nml:remap = .TRUE.)
- Serialization (for verification of ACC ports): Any (global) scalar or array can be considered in serialize_all now

Main work: two-way nesting on GPU

Two-way nesting on GPU

9

Working features

- two nested local area domains (LAM)
- multiple compute processes (MPI)
- initialization with initial and boundary data
- initialization of both domains a t=0 or delayed (e.g. grid_nml:start_time = 0., 10)
 - Delayed, i.e. online, initialization is done on CPU
 (as is the regular initialization. uses device-to-host copy before and host-to-device copy afterwards.)
- output writing
- Options:
 - Nest boundary nudging (gridref_nml:grf_intmethod_e=4 (6))
 - Density boundary nudging (gridref_nml:l_density_nudging=.TRUE. (.FALSE.); grid_nml:lfeedback=.FALSE. (.TRUE.))

Two-way nesting on GPU (2)

- Changes include:
 - continuation of Günther's work
 - Improve serialization tests
 - Make serialization code aware that there can be more than one domain
 - Find and fix openACC pitfalls in relation to nested derived types, e.g.
 - !\$ACC ENTER DATA CREATE(turbdiff_config(jg)) !(not wanted)
 - !\$ACC ENTER DATA CREATE(turbdiff_config(jg:jg))
 - Fix communication for gridrefinement (data locality)
 - Added `IF acc CALL finish()` to non-ACC functions that branch out from GPU regions.
 - Avoid uninitialized memory in global arrays.
 - Fixed a synchronization bug with Terra (missing WAIT after ASYNC)
 - New buildbot test case for Daint (mch_opr_r04b07_nest)

