On going activities at CIRA-CMCC on ICON configuration over Italy

C. De Lucia¹, P. Mercogliano¹, M. Montesarchio^{1,2}, M. Adinolfi¹, A. Mastellone², P. Schiano¹, E. Bucchignani^{1,2}

CMCC Foundation, Caserta, Italy
 CIRA Centro Italiano Ricerche Aerospaziali, Capua, Italy

COSMO GM – PP C2I 6 September 2021

The ICON Environment

- Software configuration: ICON Version: icon-2.6.2.2, ICONTOOLS Version: 2.4.12
- Compiler used: Intel parallel studio XE v.19.5 and Intel-mpi v.19.5
- CMCC cluster specifications :

 Operating System: Linux CentOS 7.6 x86_64;
 Processor: Intel Xeon Gold 6154 (18 cores);
 Processor Speed: 3.0 GHz;
 # of processor cores: 12528;
 # of nodes: 348 (dual processors nodes);
 Memory per node: 96 GB;
 Interconnection: Infiniband EDR (100Gbps);
- Grid: an R2B10 and is made up of 451384 triangular cells, with a spatial resolution of about 2.5 km. The geometrical centre of the grid is positioned in Gaeta (longitude 13.802°E latitude 41.560°N);
- Forcing data: ECMWF IFS (resolution of 0.075°);
- Test cases considered:
 - 1. August 16 to August 31, 2020;
 - 2. January 01 to January 14, 2019.

Reference configuration: provided by DWD with some modifications by Pavel Khain

Vertical levels

- 65 ---- runtime: 16.5 min for each day simulated
- 50 ---- runtime: 13.2 min for each day simulated >>>> -20%
- 90 ---- runtime: 22.5 min for each day simulated >>>> +36%

Time step

- dt=24s ---- runtime: 16.5 min for each day simulated
- dt =12s ---- runtime: 30 min for each day simulated >>>> +81%
- dt=32s ---- runtime: 12.7 min for each day simulated >>>> -23%

Domain size

- 451384 triangles cells ---- runtime: 16,5 min for 1 day simulated
- 498712 triangles cells (larger of about 50km on each side) Runtime: 18,5 min per day >>>> +11%
- 562240 triangles cells (larger of about 100km on each side).
 Runtime: 20.6 min per day >>>> +20%

Sensitivity ICON over different domains

SLOVAKIA

HUNGARY

Budapest

SERBIA

Pristina

Thesad

GREECE

Tirana. Skopje

ALBANIA

For all simulations: 65 vertical levels, the timestep is 24s ٠

Id_simulation	Domain	Runtime (m) 1 day
ref1	Italy (451384 cells)	16.1
sim1	Large_Italy_20pt (498712 cells)	18.1
sim2	Large_Italy_40pt (562240 cells)	20.7

T_2M results of different domains

ICON Italy: List of sensitivity tests

Sim	Convective scheme	Shallow conv	Radiation scheme	Cloud Microphysics	Land Surface	Cloud Cover	Turbulent transfer
	inwp_convection	lshallowconv_only	inwp_radiation	inwp_gscp	inwp_surface	inwp_cldcover	inwp_turb
<mark>#1_ref1</mark>	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	hydci_gr (COSMO-DE microphysics, 3-cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)*	1: COSMO diffusion and transfer*
#2	Tiedtke/Bechtold convection (1)	FALSE	ecRad (4) *	hydci_gr (COSMO-DE microphysics, 3-cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer
#3	Tiedtke/Bechtold convection (1)	TRUE	RRTM radiation (1)	hydci_gr (COSMO-DE microphysics, 3-cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer
#4	Tiedtke/Bechtold convection (1)	TRUE	Ritter-Geleyn radiation (2)	hydci_gr (COSMO-DE microphysics, 3-cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer
#5	Tiedtke/Bechtold convection (1)	TRUE	PSRAD (3)	hydci_gr (COSMO-DE microphysics, 3-cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer
#6	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	Two-moment microphysics by A. Seifert (4) **	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer
#7	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	as 1, but with improved ice nucleation scheme by C. Koehler (3)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer
#8	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	Kessler scheme (9)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer
#9	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	hydci_gr (COSMO-DE microphysics, 3-cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	3: clouds from COSMO SGS cloud scheme	1: COSMO diffusion and transfer
#10	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	hydci_gr (COSMO-DE microphysics, 3-cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	4: clouds as in turbulence (turbdiff)	1: COSMO diffusion and transfer
#11	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	hydci_gr (COSMO-DE microphysics, 3-cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	5: grid scale clouds	1: COSMO diffusion and transfer
#12	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	hydci_gr (COSMO-DE microphysics, 3-cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	2: GME turbulence scheme
#13	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	hydci_gr (COSMO-DE microphysics, 3-cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	5: Classical Smagorinsky diffusion

Sim	Convective scheme	Shallow conv	Radiation scheme	Cloud Microphysics	Land Surface	Cloud Cover	Turbulent transfer
	inwp_convection	lshallowconv _only	inwp_radiati on	inwp_gscp	inwp_s urface	inwp_cldcover	inwp_turb
#1_ref1	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	hydci_gr (COSMO-DE microphysics, 3- cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer
#2	Tiedtke/Bechtold convection (1)	FALSE	ecRad (4) *	hydci_gr (COSMO-DE microphysics, 3- cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer

Full convection vs shallow convection only:

- ref1 and ref2 generally overestimate precipitation over North Italy in winter 2019 and over South Italy in summer 2020
- Simulation ref1 shows better performances in summer 2020 thanks to the explicit treatment of deep convection.
- The differences between the two simulations are generally limited to 1 mm/day.

Daily Cumulative Precipitation

Sim	Convective scheme	Shallow conv	Radiation scheme	Cloud Microphysics	Land Surface	Cloud Cover	Turbulent transfer
	inwp_convection	lshallowconv _only	inwp_radiati on	inwp_gscp	inwp_s urface	inwp_cldcover	inwp_turb
#1_ref1	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	hydci_gr (COSMO-DE microphysics, 3- cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer
#3	Tiedtke/Bechtold convection (1)	TRUE	RRTM radiation (1)	hydci_gr (COSMO-DE microphysics, 3- cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer
#4	Tiedtke/Bechtold convection (1)	TRUE	Ritter-Geleyn radiation (2)	hydci_gr (COSMO-DE microphysics, 3- cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer
#5	Tiedtke/Bechtold convection (1)	TRUE	PSRAD (3)	hydci_gr (COSMO-DE microphysics, 3- cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer

Simulation 5 crashed (in fact, in the new ICON version it will be removed) Simulation 4 produces unrealistic results.

A slight better behavior of Simulation 1 in summer and a better one of Simulation 3 in winter.

Mean TEMPERATURE at 2m

Min and Max TEMPERATURE

2019

Min TEMPERATURE

Max TEMPERATURE

-

Sim	Convective scheme	Shallow conv	Radiation scheme	Cloud Microphysics	Land Surface	Cloud Cover	Turbulent transfer
	inwp_convection	lshallowconv _only	inwp_radiati on	inwp_gscp	inwp_s urface	inwp_cldcover	inwp_turb
#1_ref1	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	hydci_gr (COSMO-DE microphysics, 3- cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer
#6	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	Two-moment microphysics by A. Seifert (4) **	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer
#7	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	as 1, but with improved ice nucleation scheme by C. Koehler (3)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer
#8	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	Kessler scheme (9)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer

Simulations 7 and 8 produce unrealistic results.

Simulation 1 performs better in both seasons, also in terms of correlation and standard deviation.

ref1
 ref6

• ref1

ref6

RMSE

RMSE

RHO

RHO

Max difference: 3 mm in Friuli

MAE

MAE

• ref1

ref6

• ref1

ref6

2020

RMSE

RMSE

31

• ref1

• ref6

• ref1

0

ref6

Max difference: 2.4 mm in Trentino

Sim	Convective scheme	Shallow conv	Radiation scheme	Cloud Microphysics	Land Surface	Cloud Cover	Turbulent transfer
	inwp_convection	lshallowconv _only	inwp_radiati on	inwp_gscp	inwp_s urface	inwp_cldcover	inwp_turb
#1_ref1	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	hydci_gr (COSMO-DE microphysics, 3- cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer
#9	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	hydci_gr (COSMO-DE microphysics, 3- cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	3: clouds from COSMO SGS cloud scheme	1: COSMO diffusion and transfer
#10	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	hydci_gr (COSMO-DE microphysics, 3- cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	4: clouds as in turbulence (turbdiff)	1: COSMO diffusion and transfer
#11	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	hydci_gr (COSMO-DE microphysics, 3- cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	5: grid scale clouds	1: COSMO diffusion and transfer

The problem of precipitation overestimation over the Alpine region is partially mitigated by Simulation 10.

Daily Cumulative Precipitation

Sim	Convective scheme	Shallow conv	Radiation scheme	Cloud Microphysics	Land Surface	Cloud Cover	Turbulent transfer
	inwp_convection	lshallowconv _only	inwp_radiati on	inwp_gscp	inwp_s urface	inwp_cldcover	inwp_turb
#1_ref1	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	hydci_gr (COSMO-DE microphysics, 3- cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	1: COSMO diffusion and transfer
#12	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	hydci_gr (COSMO-DE microphysics, 3- cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	2: GME turbulence scheme
#13	Tiedtke/Bechtold convection (1)	TRUE	ecRad (4) *	hydci_gr (COSMO-DE microphysics, 3- cat ice: cloud ice, snow, graupel) (2)	TERRA (1)	1: diagnostic cloud cover (by Martin Koehler)	5: Classical Smagorinsky diffusion

In winter 2019, the precipitation overestimation over South Italy is partially mitigated by Simulation 12

Daily Cumulative Precipitation

Mean TEMPERATURE at 2m

Thank you for your attention

Dataset & variables for the validation

• ERA5 at 2km

- o Mininum Temperaure at 2 m
- o Maximum Temperature at 2 m
- o Mean Temperature at 2 m
- o Total precipitation

• EOBS

- o Mininum Temperaure at 2 m
- o Maximum Temperature at 2 m
- o Mean Temperature at 2 m
- o Total precipitation

Daily Cumulative Precipitation (micro ph)

Daily Cumulative Precipitation (turb)

Mean TEMPERATURE at 2m (turb)

2019

- 3.0 - 2.5 - 2.0 - 1.5 - 1.0 - 0.5

Min and Max TEMPERATURE (turb)

2019

Max TEMPERATURE

Min TEMPERATURE Box plot of daily min temperature at 2 m - Italy

Max TEMPERATURE

