

Postprocessing model data for fog forecast

Julia Khlestova, Marina Shatunova, Ekaterina Tatarinovich, Gdaly Rivin

Hydrometeorological Centre of Russia, 11-13, B. Predtechensky per., Moscow, 123242, Russia

> 23th COSMO General Meeting 13/09/2021

Outline

- Fog as severe weather event
- Main fog characteristics
- Basic directions of fog forecast
- Postprocessing model data for fog forecast
- Conclusions

Fog as severe weather event

The fog is suspended cloud particles in the air near surface (1.5-2 m), which reduce the horizontal visibility up to 1 km and less.

Main fog reasons: radiation cooling, moist air mass advection, orography and anthropogenic activity.

Orography fog near Sochi, 16/02/2014

Fog hazards:

- Dangerous take off and landing of aircrafts
- Delayed flights (economic consequences)
- Vehicle accidents
- Difficulties for water and rail transport

The accurate forecast of fog location and intensity helps reduce the effects of severe weather event!

What is the "fog forecast" means?

Attenuation radiation coefficient (β)

$$\beta_{\lambda} = \int_{0}^{\infty} Q_{ext,\lambda} n(r) r^{2} dr \approx$$

and expensive task because of:

- Cloud inhomogeneity
- The difficulty of accurate

description of n(r)

- Mie efficiency factor
- r cloud droplet's radius
- n(r) number density of cloud droplets

The fog effect can be described using meteorological observations or NWP results

more appropriate

Directions of fog forecast development

a) Empirical ratios

 $\beta = f(k_1, k_2, k_3 \dots)$ k_i – meteorological parameters (air temperature, dew point temperature, wind speed, relative humidity).

(Zverev A.S., 1977)

Base: measurements

b) Machine learning methods

- meteorological parameters (air temperature, dew point temperature, wind speed, air pressure, relative humidity).

(Abdulkareem et al., 2019; Zhu et al., 2017; Oguz and Pekin, 2019)

Base: measurements or NWP results

c) NWP forecast (or postprocessing)

 $\beta_{\lambda} = \int_0^{\infty} Q_{ext,\lambda} n(r) r^2 dr$

or need the parametrization of $\boldsymbol{\beta}$

(Kunkel B.A., 1984; Wilkinson et al., 2013; Creighton et al., 2014)

Base: NWP results

Directions of fog forecast development

a) Empirical ratios

- meteorological parameters (air temperature, dew point temperature, wind speed, relative humidity).

(Zverev A.S., 1977)

Base: measurements

b) Machine learning methods

 $\beta = f(k_1, k_2, k_3 ...)$ k_i – meteorological parameters (air temperature, dew point temperature, wind speed, air pressure, relative humidity).

(Abdulkareem et al., 2019; Zhu et al., 2017; Oguz and Pekin, 2019)

Base: measurements or NWP results

(or postprocessing) $\int_{0}^{\infty} Q_{ext,\lambda} n(r) r^{2} dr$

c) NWP forecast

or need the parametrization of $\boldsymbol{\beta}$

(Kunkel B.A., 1984; Wilkinson et al., 2013; Creighton et al., 2014)

Base: NWP results

β parametrizations: "meteorological" approach

β is a function of meteorological parameters:

- Air temperature (T, °C)
- Dew point temperature (T_d , °C)
- Relative humidity (RH, %)
- a_i constants based on measurement data

1)
$$\beta = a_1 \frac{T - T_d}{RH^{a_2}}$$

(Doran et al., 1999)

$$\beta = a_3 \ln(RH) + a_4$$

(Gultepe et al., 2009)

β parametrizations: "meteorological" approach

 β is a function of meteorological parameters:

- Air temperature (T, °C)
- Dew point temperature (T_d , °C)
- Relative humidity (RH, %)
- a_i constants based on measurement data

1)
$$\beta = a_1 \frac{T - T_d}{RH^{a_2}}$$

(Doran et al., 1999)

2)
$$\beta = a_3 \ln(RH) + a_4$$

(Gultepe et al., 2009)

Meteorological parameters are not able to fully describe the cloud structure

β parametrizations: "microphysical" approach

β is a function of cloud characteristics (one-moment or two-moment):

- liquid water content (QC, g/m³)
- ice water content (QI , g/m³)
- number concentration of cloud droplets (N_c , cm⁻³)
- number concentration of ice particles $(N_i, \text{ cm}^{-3}))$
- Radius of cloud droplets (r_c , m)
- a_i constants based on measurement data

1) $\beta = a_1 QC^{a_2}$ HARMONIE, (Kunkel B.A., 1984; Creighton et al., 2014) 3) $\beta = a_5 \frac{r_c}{QC}$ MM5 (Juisto J.E., 1981)

$$\beta = a_3 N_c^{a_4}$$

(Meyer et al., 1980)

β parametrizations: "microphysical" approach

β is a function of cloud characteristics (one-moment or two-moment):

- liquid water content (QC, g/m³)
- ice water content (QI, g/m³)
- number concentration of cloud droplets (, cm⁻³)
- number concentration of ice particles (, cm⁻³))
- Radius of cloud droplets (, m)
- constants based on measurement data

4)
$$\beta = a_6 Q C^{a_7} N_c^{a_8}$$
 $\beta = a_9 Q I^{a_{11}} N_i^{a_{12}}$ PAFOG,
(Trautmann and Bott, 2002; (Gultepe et al., 2015) MM5
Gultepe and Milbrandt, 2007)
5) $\beta = a_{13} r_c^2 N_c + a_{14}$ UM
(Clark et al., 2008; Boutle et al., 2016)

Impact of two-moment microphysics

- Low-level cloudiness
- Liquid water clouds mostly Model: COSMO v.5.08

Grid step: 1 km

Microphysics: 2-moment (2797) **Convection:** shallow (type 3)

Aerosol-cloud-radiation interaction:

- CLOUDRAD scheme (Hu & Stamnes, 1993; Fu et al., 1996 ;1998) with additions.
- 100, 500 and 1000

$$\beta = a_6 Q C^{a_7} N_c^{a_8}$$

(Trautmann and Bott, 2002)

solubility and anthropogenic impact

Visibility forecast based on ICON/COSMO results

• Liquid water content (QC)

• Number concentration of cloud droplets ()

only for two-moment microphysics

Conclusions

- There are three main ways of fog forecast: using empirical ratios, machine learning methods, and numerical weather prediction (or model postprocessing)
- The NWP fog forecast is preferable because it has not only fog intensity, but includes also the fog vertical extent, moment of fog formation and duration
- The microphysical approach of horizontal visibility range calculation is better than meteorological approach
- The two-moment microphysics allows expanding the range of horizontal visibility due to accounting for the geographical location and the level of aerosol pollution
- The visibility forecast using ICON results needs the analysis all liquid and ice water sources (schemes) in the model

Structure of cloudy experiments

Dates: 22/04/2018, 02/05/2019, 08/05/2020, 22/05/2020

Model settings:

Model: COSMO v.5.08

Grid step: 1 km

Forecast: 0-24 UTC, 0.5

Microphysics: 1-moment 4-class and 2-moment (2777 and 2797)

- Ice nucleation (Meyers et al., 1992; Fletcher et al., 1962)
- Liquid water nucleation (Segal & Khain, 2006)
- Warm processes (Seifert & Beheng, 2000; Pinsky et al., 2000)

Convection: shallow (itype_conv = 3)

Aerosol: Tegen climatology (for clear sky)

Cloud-radiation interaction:

 CLOUDRAD scheme (Hu & Stamnes, 1993; Fu et al., 1996; 1998) with additions. 150, 200 and 300

Latent heat nudging: no

Experiments:

a) one-moment b) two-moment default (2777)

c) two-moment with upper N_{CCN} (2797)

2011)

The accordance of liquid water content (LWC) and horizontal visibility

The effect of number concentration of cloud condensation nuclei () on the horizontal visibility

