Task 2.3 Extreme Value Theory (EVT) approach - Fitting precipitation object characteristics to different distributions

Verification of large contiguous precipitation areas using Generalized Pareto distribution <u>Results</u> Anatoly Muraviev, Anastasia Bundel RHM

> FTE 0.3, Start 09.2019 – End 08.2020 Finished. Report under preparation

PP AWARE session at the COSMO General Meeting, 13 September 2021

Analysis setup

- The core of the system is the statistical STEPS scheme (Short Term Ensemble Prediction System) (Seed 2003, Seed 2004, Bowler N. et al., 2006)
- Verification period: Warm: May-September 2017

Cold: November 2017-March 2018

- 9 radars in Central Russia used as observations
- 10 min time step until 3 h
- Grid size of about 2 km, 256x256 grid points domain
- R SpatialVx was used to identify objects (FeatureFinder)

Object identification: 1h precipitation greater than a certain value, e.g. >1mm/h,

The objects in the domain are identified by the number of contiguous grid points higher than a threshold, convolution smoothing with a radius of 9 grid points (~18 km)

X axis is time

Maximum areas of objects in Kursk radar fields from 5 to 19 May 2017.

Blue lines indicate times of maximum areas within a precipitation situation

Generalized Pareto distribution

• Generalized Pareto distribution is an approximation of PoT distribution based on the data from Generalized Extreme Value distribution if the following condition is satisfied:

- The moments of peaks in a given time period are the Poisson point process (a type of random mathematical object that consists of points randomly located on a mathematical space) (Suveges 2010)

• The Poisson point process is defined by the following conditions:

- stationarity : probability of k events in any time slot of length I depends on k and I only and doesn't depend in the initial time of the slot;

- occurence of k events in the time slot does not depend on occurence of this event before the given time slot;

- ordinarity: occurence of not less than two events in the short period is almost impossible

• Let λ to denote the mean number of events in the time unit (process intensity). If the probability of occurrence of k events during t is described by equation

these condition

• It was shown that the peak moments in our data satisfy these conditions

Generalized Pareto (GP) distribution

- The objects larger than a threshold (one from each precipitation situation) were fit to GP.
- GP has three parameters: location, scale, and shape.

But If location is fixed by the Pareto threshold in the PoT model, GP has only two parameters: scale (σ), and shape (ξ).

- Pareto thresholds: 625, 900, 1225 and 1600 grid points were used
- GP parameters were estimated using 1) generalized maximum likelyhood estimation (GLME), 2) maximum likelyhood,

3) L-moments, 4) Bayes with Monte Carlo Markov Chain modeling.

- GMLE was chosen as the basic method
- The standard errors (se) are calculated, and the confidence intervals for GP parameters estimates are calculated as CI = x±1.96*se
- *R*-extRemes, module fevd is used for GP parameters estimation (author: *E*.Gilleland)

What does this statistical analysis give?

- 1.General description of large precipitation areas depending on the season and the radar
- 2.Comparison of parameters of identified objects in the model and in observations in terms of extremes, that is, HIW
- 3. Estimation of return periods of extremely vast contiguous precipitation areas: predictability of extremes (analysis ongoing).

Density

Radars under study: Yellow circles

Fitting the distribution of precipitation object areas (histograms) to Generalized Pareto distribution (blue line), warm period, Kursk radar, lead time 60 min

A measure of STEPS quality: intersection ratio of confidence intervals of Generalized Pareto parameters estimates (σ and ξ) in STEPS and in observations (radars)

intersection ratio (IR) = A/B
Ideal intersection ratio = 100%
IR >= 50% : choosen empirically
as a useful skill level

The intersection ratio gives a diagnostic estimate of model ability to reproduce vast contiguous precipitation areas (or other extremes)

Summary table with scale (σ) parameter intersection ratio (IR), %

intersection ratio = A/B*100%

Scale parameter σ determines PDF at zero point (PDF(0)=1/scale). The higher σ , the smaller PDF at zero, and the smaller the probability of an object with a size close to Pareto threshold. Red is IR < 50%

			Intersection ration (%).								
	Radar		SCALE PARAMETER								
			Warm pe	eriod			Cold period				
		Lead									
		Thresh	625	900	1225	1600	625	900	1225	1600	
		30	80	74	61	71	75	68	75	51	
	RAKU	60	83	77	80	79	50	63	73	28	
		90	83	73	84	70	23	38	67	54	
		120	79	68	79	75	21	20	52	70	
		•							•		
)		30	39	27	65	77	62	78	85	66	
	RATL	60	48	23	75	80	52	55	79	75	
		90	35	17	35	81	47	53	73	66	
		120	34	19	26	75	50	62	72	65	
		30	54	38	82	81	70	76	81	75	
	RAVO	60	58	37	84	56	64	74	68	76	
		90	56	46	80	50	61	63	64	73	
		120	52	35	53	82	50	64	65	64	
		30	92	88	91	73	75	78	71	29	
	RUDB	60	87	90	91	68	48	67	65	29	
		90	81	94	93	70	46	56	57	25	
		120	88	92	93	67	44	56	53	23	
		30	78	85	41	81	69	73	84	***	
	RUDK	60	76	80	47	76	54	68	67	***	
		90	80	82	57	75	50	60	54	***	
		120	72	80	59	70	52	50	48	***	
		30	75	63	62	31	47	52	50	64	
	RUDL	60	73	64	59	28	32	47	38	42	
		90	68	57	55	30	40	45	39	53	
		120	71	66	52	16	41	42	35	34	

Summary table with shape (ξ) parameter intersection ratio, %

- Negative ξ indicates βdistribution, zero ξ: exponential distribution, and positive ξ: Pareto itself.
- Positive shape parameter ξ indicates heavy tail in the Pareto distribution, the higher ξ, the heavier the tail (probability of largest precip areas here)
- (+/-) indicate ξ sign in the observations/forecast distribution pairs,
- 0 indicates ξ in the interval [-0.1, 0.1]
- *** : not enough cases
- A desirable quality of a forecast system is to reproduce the sign of shape parameter

		CI intersection (%). SHAPE							
RADAR		Warm period				Cold period			
	Lead								
	Thresh	625	900	1225	1600	625	900	1225	1600
	30	84 (+ +)	74 (+ +)	55 (0 +)	69 ()	78 (+ +)	47 (0 +)	79 (0 <u>0</u>)	90 (0 0)
RAKU	60	85 (+ +)	76 (+ +)	76 (0 <u>0</u>)	60 ()	68 (+ +)	44 (0 +)	7 8 (0 0)	64 (0 -)
	90	83 (+ +)	76 (+ +)	73 (0 0)	39 ()	54 (+ +)	33 (0 +)	50 (0 +)	97 (0 <u>0</u>)
	120	80 (+ +)	72 (+ +)	73 (0 0)	47 ()	54 (+ +)	23 (0 +)	45 (- +)	82 (0 0)
	20	74 (1-1)	41 (0 1)	78 (0.0)	48 (1 0)	79 (1 1)	97 (1 1)	01 (28 (0 1)
DATI	50	74 (++)	41 (0 +)	73 (0 0)	43 (+ 0)	/a(++)	3/(++)	91 (++)	33 (0 +)
KAIL	00	72 (++)	30 (0 +)	79 (0 0)	47 (+ 0)	09 (+ +)	71 (++)	87(++)	81 (0 ())
	90	66 (+ +)	32 (0 +)	48 (0 +)	46 (+ 0)	67 (+ +)	69 (+ +)	82 (+ +)	95 (0 0)
	120	65 (+ +)	34 (0 +)	44 (0 +)	43 (+ 0)	68 (+ +)	73 (+ +)	83 (+ +)	85 (0 0)
	20	70 (10 (0 .)	70 (0.0)	74 (0.0)		71 ()	72 (0 0 ())
BANO	30	78 (++)	40 (0 +)	79 (0 0)	74 (0 0)	70 (++)	/1 (+ +)	/3 (+ +)	50 (+ +)
KAVO	00	70 (+ +)	30 (0 +)	78(00)		72 (++)	0/(++)	05(++)	/1 (+ +)
	90	77(++)	38 (0 +)	82 (0 0)	73 (0 0)	00 (+ +)	03 (+ +)	60 (+ +)	05 (+ +)
	120	09 (+ +)	34 (0 +)	42 (0 +)	70 (U Û)	04 (+ +)	00 (+ +)	58 (+ +)	00 (+ +)
	30	93(++)	91 (+ +)	94(++)	90 (+ +)	72(++)	72(++)	65(++)	37 (0 +)
RUDB	60	91 (+ +)	92 (++)	95 (++)	88 (++)	60 (+ +)	64(++)	60 (++)	37 (0 +)
	90	92(++)	94 (+ +)	96 (++)	89 (+ +)	56 (++)	57 (++)	54 (+ +)	33 (0 +)
	120	89 (+ +)	92 (+ +)	94 (+ +)	89 (+ +)	55 (+ +)	56 (+ +)	52 (+ +)	32 (0 +)
	30	80 (+ +)	79 (+ +)	38 (0 +)	83 (0 0)	75 (+ +)	70 (+ +)	72 (+ +)	***
RUDK	60	75 (+ +)	74 (+ +)	39 (0 +)	79 (0 0)	64 (+ +)	64 (+ +)	61 (+ +)	***
	90	76 (+ +)	74 (+ +)	43 (0 +)	72 (0 0)	60 (+ +)	57 (+ +)	52 (+ +)	***
	120	74 (+ +)	73 (+ +)	41 (0 +)	79 (0 <u>0</u>)	56 (+ +)	53 (+ +)	49 (+ +)	***
	-								
	30	80 (+ +)	76 (+ +)	78 (+ +)	41 (0 +)	72 (+ +)	71 (+ +)	72 (+ +)	79 (+ +)
RUDL	60	76 (+ +)	73 (+ +)	73 (+ +)	36 (0 +)	64 (+ +)	63 (+ +)	60 (+ +)	63 (+ +)
	90	73 (+ +)	69 (+ +)	70 (+ +)	36 (0 +)	62 (+ +)	61 (+ +)	59 (+ +)	67 (+ +)
	120	74 (+ +)	70 (+ +)	69 (+ +)	28 (0 +)	59 (+ +)	57 (+ +)	55 (+ +)	58 (+ +)

Summary table with shape (ξ) parameter intersection ratio, %

- As Pareto threshold rises, ξ has a tendency to change sign from positive to zero, and becomes negative in some cases.
- For Pareto threshold of 625 grid points, only RUDN radar has a zero shape parameter ξ, and no negative ξ. Thus, a conclusion can be made that the threshold of 625 grid points provide the best fit of Pareto distribution
- Nowcasting system is more informative in forecasting extreme precipitation areas in the cold period: the number of (++) pairs is about 50% of cases in the warm period, and about 75%, in the cold period

CI intersection (%). SHAPE									
RADAR		Warm period				Cold period			
	Lead								
	Thresh	625	900	1225	1600	625	900	1225	1600
	30	84 (+ +)	74 (+ +)	55 (0 +)	69 ()	78 (+ +)	47 (0 +)	79 (0 <u>0</u>)	90 (0 0)
RAKU	60	85 (+ +)	76 (+ +)	76 (0 0)	60 ()	68 (+ +)	44 (0 +)	78 (0 0)	64 (0 -)
	90	83 (+ +)	76 (+ +)	73 (0 0)	39 ()	54 (+ +)	33 (0 +)	50 (0 +)	97 (0 <u>0</u>)
	120	80 (+ +)	72 (+ +)	73 (0 0)	47 ()	54 (+ +)	23 (0 +)	45 (- +)	82 (0 0)
	30	74 (+ +)	41 (0 +)	78 (0 0)	48 (+ 0)	78 (+ +)	87 (+ +)	91 (+ +)	38 (0 +)
RATL	60	72 (+ +)	36 (0 +)	79 (0 <u>0</u>)	47 (+ 0)	69 (+ +)	71 (+ +)	87 (+ +)	81 (0 0)
	90	66 (+ +)	32 (0 +)	48 (0 +)	46 (+ 0)	67 (+ +)	69 (+ +)	82 (+ +)	95 (0 0)
	120	65 (+ +)	34 (0 +)	44 (0 +)	43 (+ 0)	68 (+ +)	73 (+ +)	83 (+ +)	85 (0 0)
	30	78 (+ +)	40 (0 +)	79 (0 0)	74 (0 0)	76 (+ +)	71 (+ +)	73 (+ +)	80 (+ +)
RAVO	60	76 (+ +)	36 (0 +)	78 (0 0)	69 (0 <u>0</u>)	72 (+ +)	67 (+ +)	65 (+ +)	71 (+ +)
	90	77 (+ +)	38 (0 +)	82 (0 0)	73 (0 0)	66 (+ +)	63 (+ +)	60 (+ +)	65 (+ +)
	120	69 (+ +)	34 (0 +)	42 (0 +)	76 (0 0)	64 (+ +)	60 (+ +)	58 (+ +)	60 (+ +)
				_		_			
	30	93 (+ +)	91 (+ +)	94 (+ +)	90 (+ +)	72 (+ +)	72 (+ +)	65 (+ +)	37 (0 +)
RUDB	60	91 (+ +)	92 (+ +)	95 (+ +)	88 (+ +)	60 (+ +)	64 (+ +)	60 (+ +)	37 (0 +)
	90	92 (+ +)	94 (+ +)	96 (+ +)	89 (+ +)	56 (+ +)	57 (+ +)	54 (+ +)	33 (0 +)
	120	89 (+ +)	92 (+ +)	94 (+ +)	89 (+ +)	55 (+ +)	56 (+ +)	52 (+ +)	32 (0 +)
	30	80 (+ +)	79 (+ +)	38 (0 +)	83 (0 0)	75 (+ +)	70 (+ +)	72 (+ +)	***
RUDK	60	75 (+ +)	74 (+ +)	39 (0 +)	79 (0 <u>0</u>)	64 (+ +)	64 (+ +)	61 (+ +)	***
	90	76 (+ +)	74 (+ +)	43 (0 +)	72 (0 0)	60 (+ +)	57 (+ +)	52 (+ +)	***
	120	74 (+ +)	73 (+ +)	41 (0 +)	79 (0 <u>0</u>)	56 (+ +)	53 (+ +)	49 (+ +)	***
	30	80 (+ +)	76 (+ +)	78 (+ +)	41 (0 +)	72 (+ +)	71 (+ +)	72 (+ +)	79 (+ +)
RUDL	60	76 (+ +)	73 (+ +)	73 (+ +)	36 (0 +)	64 (+ +)	63 (+ +)	60 (+ +)	63 (+ +)
	90	73 (+ +)	69 (+ +)	70 (+ +)	36 (0 +)	62 (+ +)	61 (+ +)	59 (+ +)	67 (+ +)
	120	74 (+ +)	70 (+ +)	69 (+ +)	28 (0 +)	59 (+ +)	57 (+ +)	55 (+ +)	58 (+ +)

Discussion

- The importance of compromise between the strict Extreme Value theorems (the asymptotic Fisher-Tippett-Gnedenko theorem and Pickands-Balkema-de Haan theorem) with simple heuristic methods
- Thus, the importance of correctly constructing the sample:
- 1. The model choice (block maxima, PoT, taking into account the season, ...),
- 2. The threshold choice (according to asymptotic theorems, histogram forms, empirically, ...),
- 3. Method of estimation of distribution parameters (generalized maximum likelyhood, maximum likelyhood, L-moments, Bayes with Monte Carlo Markov Chain modeling...)

Summary

- Object-based verification of RHM nowcasting system is performed. The verification period is May-Sep 2017 and Nov-March2017-2018, for seven radars in Central Russia.
- The ability of the system to forecast contiguous precipitation areas greater than a certain threshold (peaks over threshold method) is assessed. Several thresholds were studied.
- Three-parameter Generalized Pareto distribution is used to assess precipitation areas in distribution tails according to the shape parameter. The best fit of Pareto distribution corresponds to the area threshold of 625 points (~50*50 km).
- A measure of STEPS quality is introduced: intersection ratio of confidence intervals of Generalized Pareto parameters (σ and ξ) estimates in STEPS and in observations (radars). It gives a diagnostic estimate of model ability to reproduce vast contiguous precipitation areas (or other extremes).
- A paper under preparation