COSMO GM 2021, AEVUS/CITTA meeting, 13.09.2021

Activities and updates from RHM/MSU team

Mikhail Varentsov

and COSMO-Ru team

Outline

- 1. Overview TERRA_URB developments
- 2. Testing recent version COSMO + TERRA_URB version
- 3. Towards improving external parameters for PP CITTA

4. Outlook

History of COSMO+TERRA_URB development

cosmo_191107_5.05_urb5: a basic stable version with TERRA_URB which we have as an outcome from AEVUS PT

cosmo_191107_5.05_urb5up* with 2D urban canopy parameters, see Varentsov et al. (2020)

... several intermediate versions with different bug fixes and minor developments

cosmo_191213_5.05_urb6up5 (September 2020):

- Provided to Ulrich Schättler for merging to GitHub
- Used for simulations in recent TERRA_URB papers by Varentsov et al. (2020) and Garbero et al. (2021)

Cosmo_210309_5.10_beta

- Several bugs found and fixed, resulting in intermediate versions 5.10f, 5.10f2
- Probably a bug related to impervious surface evaporation revealed (fixed in master version, yet I am not fully sure that it is a bug)

COSMO 5.11 (5.12) with TERRA_URB in master version in GitHub! Congrats!!!

• Reviewed by me in GitHub, but not tested yet, planned to be tested ASAP

Development around external parameters

Testing the recent 5.10beta version

- Runs based on TUnew2 simulation from AEVUS paper (Garbero et al., 2021), 1-15 June 2019
- New version tested only for finest 1-km domain, IBC taken from 5.05 run for intermediate domain
- No tuning for rooting depth (fac_rootdp2 = 1 instead of 2.5 in previous runs) since it is limited by 1.5 in v2.10
- GIS-based ISA & AHF, model defaults for thermal and morphological UCPS
- Test runs with zero ISA & AHF (*EMPTY runs)

Testing the recent 5.10beta version

- Technical test 1: simulations without TU (*noTU), with TU and ISA = 0, AHF = 0 (*EMPTY) To check is TU implemented correctly.
- **Technical test 2:** simulations with constant UCPs, provided through namelist settings and as 2D fields. To check that 2D parameters are loaded correctly.
- H-L sensitivity tests: simulations with higher (H) and lower (L) values of each specific parameter (H_BLD, FR_BLD, H2W, albedo, emissivity, heat capacity and conductivity), to check that UCPs work physically correct.

EXP-ID	Urban canopy parameter	Symbol	L	Н
А	surface albedo	α	0.10	0.25
В	surface heat conductivity	$\lambda_{\rm s} [{\rm W} {\rm m}^{-1} {\rm K}^{-1}]$	0.200	0.968
С	surface heat capacity	$C_{v,s} [10^6 \mathrm{Jm^{-3}K^{-1}}]$	0.321	1.56
D	canyon height-to-width ratio	$\frac{h}{w_{\rm c}}$	0.75	2.0
Е	building height	<i>h</i> [m]	3	30
F	roof fraction	R	0.40	0.70
G	anthropogenic heat emission	AHE	0	$2 \times FL09$

My suggestions (MV columns):

	D (HW)	L (HW)	н (нw)	L (MV)	H (MV)
H2W	1.5	0.75	2	0.5	2
building height	15	3	30	3	30
roof fraction	0.667	0.4	0.7	0.3	0.8
albedo	0.101	0.1	0.25	0.05	0.25
emissivity (1 - thermal albedo)	0.86			0.75	0.95
heat conductivity	0.767	0.2	0.968	0.2	1.3
heat capacity	1.25	0.32	1.56	0.3	2

 $\Delta T_2M.rural$ (v510f_TUnew2_EMPTY - *noTUnew2), 99th prc. 99th percentile of difference among all non-urban land grid cells

V510: not a systematic difference, but stochastic perturbations of the modelling results

 Δ T_2M.rural (v505_TUnew2_EMPTY - *noTUnew2), 99th prc.

Same patterns in "old" and "well-tested" 5.05urb

∆T_2M.rural (v510f2_TUnew2_EMPTY - *noTUnew2), 99th prc.

Bug fixed with 5.10f2, thanks to Uli!

The only remaining difference is over lakes (something only in diagnostic, since other grids are not affected)

Urban canopy parameters are defined by same values using namelist constants (*UPDEF) or 2D fields (*UPDEF2D)

Explanation from Uli: stochastic effects are due to issues connected single/double precision of URB_FR_BLD and URB_H2W

	urb_fr_bld	ai_uc	alb_red_uc
Reading NL curb_fr_bld=0.69:	0.689999999999999999	1.9300000000000002	0.8160365945195858
Reading ext. field URB_FR_BLD:	0.6899999976158142	1.9300000071525574	0.8160365931047375

Zero differences if changing the way to define only URB_H_BLD!

Comment from Uli:

Parameter curb_h2w vs: URB_H2W: You all probably tested with curb_h2w=1.5, which is the default. With this value we get the same results for both COSMO runs. I also tested with curb_h2w (and URB_H2W) set to 1.7: and then I get different results for the two COSMO runs. I get similar stochastic fluctuations as for curb_fr_bld. My explanation is, that the value 1.5 can be exactly represented in double and single precision and even in the grib packing (if GRIB fields are used for the external parameters, what I do for my tests). But 1.7 cannot, and this leads to stochastic differences during the run time. The same is true for curb_fr_bld.

Note that URB_FR_BLD and URB_H2W are used to compute the fields ai_uc and alb_red_uc in src_input.f90, which are not only used in TERRA, but also in the turbulence and in the radiation scheme. I checked that the values for ai_uc and alb_red_uc already show differences up to 10E-8 when running with curb_fr_bld or with URB_FR_BLD. And especially in the turbulence small differences can really lead to the stochastic fluctuations you see. All other external parameters URB... are only used in TERRA, where such small differences are not amplified.

I attach two pictures:

t_2m-diff-nl-ext.png: Difference in T_2M after 36 hours of forecast from a run with namelist value curb_fr_bld set and a run where URB_FR_BLD is used (both set to 0.69) t_2m-diff-cray-nec.png: Difference in T_2M after 36 hours from a run at ECMWF cca (CRAY) and our NEC machine. These runs were using the same namelist input (all curb-values set, no extra external parameters)

You can see that the pictures are rather similar: so only using a different machine already leads to the same stochastical fluctuations as the ones you can observe by using curb_fr_bld vs. URB_FR_BLD.

So I am pretty sure (about 99 %) that the differences we see, really come from this fact: When reading a value from a GRIB or NetCDF file, we read a single precision value (from GRIB this value could even be modified by the GRIB packing), and from the namelists we read a double precision value. Just to highlight this, here are the prints for the fields urb_fr_bld, ai_uc, alb_red_uc, right after computing ai_uc and alb_red_uc in src_input.f90, for a point with fr_paved > 0.0:

Testing 5.10beta version: H-L sensitivity

Not a full set of tests is performed yet, but existing results are consistent between 5.05 and 5.10, and agrees with physical expectations

Testing 5.10beta version: H-L sensitivity

Not a full set of tests is performed yet, but existing results are consistent between 5.05 and 5.10, and agrees with physical expectations

Urban Climate 11 (2015) 24-50

Urban Climate

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/uclim

The impact of impervious water-storage parametrization on urban climate modelling

Hendrik Wouters ^{a,b,*}, Matthias Demuzere ^a, Koen De Ridder ^b, Nicole P.M. van Lipzig ^a

^a KU Leuven, Dept. Earth and Environmental Sciences, Celestijnenlaan 200E, 3001 Heverlee, Belgium ^b VITO, Flemish Institute for Technological Research, Boeretang 200, 2400 Mol, Belgium

- itype_eisa: type of evaporation from impervious surfaces. Options are:
 - 0: evaporation just like bare soil (of course, not recommended).
 - 1: no evaporation (dry impervious surface).
 - 2 (TERRA_URB default): density function of puddle depths (*Wouters et al.*, 2015).

zverbo without zeisa

zverbo with zeisa

Proposed bug fix makes model sensible to urban puddles:

using itype_eisa = 2 against itype_eisa = 1 provides a cooling effect over the city, which is expected

Is it really a bug? Hendrik's comments:

 The reason why zeisa is not taken into account in zverbo and zlhfl_s is because it is used to force soil moisture for the bare soil:

3646		! total forcing for uppermost soil layer	
3647		<pre>zfor_s(i,j) = zrnet_s(i,j) + zshfl_s(i,j) + zlhfl_s(i,j) + zsprs(i,j)*(1ireals - fr_snow(i,j))</pre>	&
3648	! EM	+ fr snow(i,j) * (1. ireals-ztsnow pm(i,j)) * zgsb(i,j)	
3649		+ (1. ireals-ztsnow pm(i,j)) * zgsb(i,j)	
3650			

• Note that zlhfl_s is not used to consider evaporation towards the atmosphere. For that, the surface variable qv_s

The following questions remains:

- 1) Should be the moisture fluxes used when calculating qv_s (ze_sum) and zlhfl_s?
- 2) Should we worry about soil moisture forcing for urban (impervious) tile?

UHI in different model versions

v505

UHI in different model versions

Migration to 5.10 from 5.05 slightly shifts the diurnal temperature and UHI cycles

UHI in different model versions

Proposed "bug fix" with urban tile evaporation slightly decreases UHI

Outlook and discussion: external parameters

Towards to comprehensive review the large-scale data sets

There are so many global data sets that include urban fraction, and the data is so different.

Data set	Grid spacing	Time period	Urban data type
Globcover, default LC for COSMO/ICON	300 m	2009	urban LC class fraction
ESA CCI Landcover, upcoming LC for COSMO/ICON?	300 m	1992- 2015	urban area fraction
Copernicus Global Land Cover (CGLC)	100 m	2015- 2020	built up area class
ECOCLIMAP SG*	300 m	???	Fractions of urban LCZs
Global Man-made Impervious Surface (GMIS)	30 m	2010	Impervious cover
Global artificial impervious area (GAIA) between	30 m	1985- 2018	Impervious cover (but actually not)

And many other....

*does anybody know how to access ECOCLIMAP SG data?

Outlook and discussion: external parameters

Methods of deriving file-scale parameters

Outlook and discussion: external parameters

Methods of deriving file-scale parameters

Locally defended street canyon height as 5-m raster

Outlook and discussion: TERRA_URB + TSA

Motivation: TERRA_URB's participation in surface models intercomparison project, Urban Plumber (thanks to Matthias Demuzere for inviting me)

Problem: there is not TSA version that combines TERRA_URB and other recent developments (bare soil evaporation, skin-layer temperature scheme). TERRA_URB is available only for old TSA v4.11.

Questions: who is responsible for TSA development? Are there plans to unify it with recent COSMO version?

Urban-PLUMBER will evaluate the performance of land surface models used in in meteorological or climatic simulations of urban areas. The project is open to any group that wishes to gain a better understanding of how their model performs in a wide range of urban environments.

Outlook and discussion: TERRA_URB + ART

- It is essential to consider UHI and urban air pollution together as part of integrated urban environmental services.
- Coupled modelling of urban aerosol in Moscow with COSMO-ART and TERRA_URB is planned in one of current research projects of MSU and RHN (Russian-Finish megagrant).
- Unfortunately, ART and TERRA_URB are not compatible yet, firstly due to implementation of tile approach in recent COSMO versions.
- Who is responsible for making ART compatible with recent COSMO version (including TERRA_URB)?

	5.0	5.05	5.10
URB compiled	✓	✓	✓
ART compiled	✓	×	×
URB or ART	✓	×	×
URB and ART	×	×	×

Outlook and discussion: other issues

□ Test on the GPUs? Does anybody test TERRA_URB there?

□ Further TERRA_URB development in COSMO/ICON

- Improved treatment for impervious/urban areas
- Snow in urban areas

Participation in WMO Research Demonstration Project "Paris Olympic Games 2024" (<u>http://www.umr-cnrm.fr/RDP_Paris2024/?page=home</u>)?

Thank you for attention!

http://vostokfilms.ru/upload/category/project/photo/026_9916.jpg