

COSMO Priority Task ÆVUS 2 Analysis and EValuation of TERRA_URB Scheme 2 WG 3b, Urban activities

FRANCESCA **BASSANI*** (1), VALERIA **GARBERO** (2), MASSIMO **MILELLI** (2,3) (1) Polytechnic of Turin, Italy; (2) Arpa Piemonte, Italy; (3) CIMA Foundation, Italy

13 September 2021 23rd COSMO General Meeting – Virtual

* francesca.bassani@polito.it

Overview

- Setup, domain and model version
- Local Climate Zones for ISA and AHF
- Urban Canopy Parameters (UCPs) sensitivity tests
- Case week 2020 for urban geometry parameters (UG)
- Case week 2017 for thermal parameters (T)
- Some fluxes for the most relevant cases (week 2017)
- Conclusions

SETUP, DOMAIN and MODEL VERSION

SETUP

- Initial and boundary conditions from the Integrated Forecast System (IFS, grid resolution: 9km)
- Domain size 350x350 km centered around Turin \rightarrow final grid spacing: 1km
- Namelist switches from Garbero et al., 2021¹:

.loldtur.=F .lterra_urb.=T itype_canopy=2

MODEL VERSION

- int2lm 2.10
- cosmo20210721

TEST WEEKS:

- 22-29 October 2017
- 16-23 March 2020

¹ Garbero, V.; Milelli, et al. Evaluating the Urban Canopy Scheme TERRA_URB in the COSMO Model for Selected European Cities. *Atmosphere* **2021**, *12*, 237.

Local Climate Zones (LCZ)

In all simulations the Impervious Surface Area (ISA) and the Anthropogenic Heat Flux (AHF) are provided by the Local Climate Zones Classification System²

SENSITIVITY TESTS

WHAT IS THE IMPACT OF SETTING LOW AND HIGH VALUES OF EACH UCP?

	parameter	legend	default value (LCZ)	LOW	HIGH	
JCPs –	building height (H_BLD)	hb	15	3	30	Urban Geometry param. (UG) Thermal param. (T)
	roof fraction (FR_BLD)	fr	0.667	0.3	0.8	
	height to width ratio (H/W)	hw	1.5	0.5	2	
	surface albedo (ALB_SO)	as	0.101	0.05	0.25	
	emissivity (1-ALB_TH)	at	0.86	0.75	0.95	
	heat capacity (HCAP)	са	1.25 E6	0.3 E6	2 E6	
	heat conductivity (HCON)	CO	0.767	0.2	1.3	

- They are all compared with the control case, which has default values (LCZ)
 → to check that UCPs work physically correct
- All simulations are labeled: LCZ_[legend column]_[H or L]
 → e.g., LCZ_hb_L for the LOW value of the building height

RESULTS case study March 2020 – T2m

Bauducchi (rural station) \rightarrow NO differences among all UG (as expected)

Case study: 16-23 March 2020

LCZ

15

lgd hb LOW

3

HIGH

RESULTS case study October 2017 – T2m

lgd

LCZ

LOW

HIGH

RESULTS case study March 2020 – UHI and RH

Case study: 16-23 March 2020

RESULTS case study October 2017 – UHI and RH

Case study: 22-29 October 2017

lgd

LCZ

LOW

HIGH

RESULTS case study October 2017 – fluxes

RESULTS case study October 2017 – fluxes

- Overall, the sensitivity tests provide good results: switching from LOW to HIGH parameters is coherent with the default value of each parameter
 → The UCPs work physically correct for Turin
- As already shown @ICCARUS21, the Urban Geometry parameter which has more impact over Turin is the **building fraction**:
 - in particular, the **LOW** value seems inappropriate to describe the city (most deviation from the default for all variables analyzed)
- Another important impact is given by the LOW values of heat capacity and heat conductivity:
 - the amplitude of T2m variation is out of phase with respect to the default one
 - by varying the thermal properties, the fluxes respond accordingly \rightarrow as expected