U N I K A S S E L V E R S I T A T

PT VAINT (changes and results)

Evgenii Churiulin, Merja Tölle, Vladimir Kopeykin, Markus Übel, Juergen Helmert and Jean-Marie Bettems

Why is VAINT important?

Temperatures evapotranspiration

Seasonal phenology

Extreme events

Seasonal phenological cycle of summer/winter crops

Biogeophysical/chemical processes

Energy and water cycle

Seasonal cycle of the albedo and water availability

Increase in frequency

Increase in the need for modelling

Relevance of PT VAINT

Current version of COSMO model:

- \succ uses the Jarvis-Stewart stomatal resistance approach with the BATS parametrization
- ➤ the "one-big leaf" approach
- the phenology cycle based on a 6-year climatology and follows the same sinusoidal fitted curve between its max and min values

COSMO model

Current version of COSMO model:

- neglects any influence or feedback on the environmental conditions (no connection to the biogeochemical cycle via photosynthesis, no plant growth, etc...)
- \succ applies in Jarvis approach the functions which are independent of each other
- \succ does not consider the influence of atmospheric CO₂ concentration
- applies highly simplified dependencies, for which the leaf photosynthesis and CO₂ uptake cannot be calculated

PT VAINT

SubTask1: Implementation of new photosynthesis/phenology scheme:

- a) The canopy photosynthesis and stomatal regulation module (done)
- b) The carbon allocation and plant growth module (testing)
- c) The heterotrophic respiration and litter/soil carbon module (testing)

SubTask2: Validation of new photosynthesis/phenology scheme:

- a) Run *COSMO_CLM_v5.16* with and without updates (done for SubTask 1a, in progress for Subtask 1b, 1c);
- b) Run *COSMO_v5.0.8* with and without updates (in progress);

SubTask3: Validation of implementation:

- a) Validation of the new implementations from the SubTask 1a (done);
- b) Validation of the new implementations from the SubTask 1b and 1c (in progress);

SubTask4: Documentation:

- a) The first version of the documentation + block schemes for CLM 3.5 and COSMO-CLM (done);
- b) The first article (in progress)

More information about project: <u>https://github.com/users/merajtoelle/projects/</u>

Research domains

COSMO-CLM parameters:

- Time increment: 25 s
- Spatial resolution: 0.0275° ~ 3 km
- Grid size: 25 * 25
- Numbers of vertical layers: 50
- Numbers of soil layers: 9

Verification parameters:

- **0** AEVAP, ALHFL_{PL}, ALHFL_S, ASHFL_S, QV_{2M} , QV_S , T_{2m} , T_S , T_{max}
- $\mathbf{0}~~T_{min},$ PS, RELHUM $_{2M}$, ZTRALEAV, ZVERBO, RSTOM

Data for comparisons:

- □ HYRAS, E-OBS, GLEAM datasets (T_{2m}, T_s, T_{max}, T_{min}, AEVAP, ZVERBO)
- EURONET, FLUXNET web-projects
- Linden and Lindenberg sites information (requests)

6

Community Land Model [] CLM 3.5, CLM 4.5

		· · · · · · · · · · · · · · · · · · ·
Experiments:	Differences between experiments:	Research period:
CCLMref Terra-ML without changes	The original code of COSMO-CLM based on v5.16 (stomatal resistance based on Jarvis approach, no leaf photosynthesis, one-big leaf approach)	from 1999 to 2017
CCLMv3.5 Terra-ML + CLM 3.5	The code of COSMO-CLM_v5.16 with the new implementations (stomatal resistance, leaf photosynthesis, two-big leaf approach) based on <i>CLM 3.5 algorithms</i>	from 2010 to 2015
CCLMv4.5 Terra-ML + CLM 4.5	The code of COSMO-CLM_v5.16 with the new implementations (stomatal resistance, leaf photosynthesis, two-big leaf approach) based on <i>CLM 4.5 algorithms</i>	from 2010 to 2015

≻ CCLMv4.5e

Terra-ML + CLM 4.5 + changes in Terra-ML The code of COSMO-CLM_v5.16 with *the CCLMv4.5 implementations* + additional *changes for dry leaf calculations* (transpiration from dry leaves) based on CLM 4.5 algorithm

from 2010 to 2015

Differences in approach

Algorithm for "2-leaf" canopy (sunlit and shaded leaves)

Son Sulfitr() and shaded () fradtfor tipe anopy:

$$f_{sawn} \equiv 1 - \frac{e^{-KL}}{KL} \qquad f_{sha} = 1 - f_{sun}$$

> Simis(Afit") and shaded () feat dreat indicinglices:

 $\boldsymbol{L}^{\text{soun}} = ff_{\text{sun}}\boldsymbol{L} \qquad \qquad \boldsymbol{L}^{\text{soun}} = ff_{\text{sun}}\boldsymbol{L}$

Sunlit (SLA^{sun}) and shaded (SLA^{sha}) specific LAI:

$$SLA^{\text{EM}} = -\frac{cSSLA_m KL + cSSLA_m + cSSLA_0 L - SSLA_m - SSLA_0 K}{K^2 I_L}$$

$$SLAA^{heba} = \frac{IL\left((SLA_{o} + \frac{SLA_{m}L}{2})\right) - SLA^{sum}L^{sum}}{L^{sha}}$$

- where: $e^{-the fractional times loss and fleck flow is horizontal plane between the less area index <math>-L$;
 - K the Higher examination coefficient;
 - **SLA** the specific leaf area indices
 - L, S the leaf and stem area indices
 - SLA_m the linear slope coefficient
 - SLA_{\odot} the value for SLA at the top of the canopy

Algorithm for photosynthesis (sunlit and shaded leaves)

 $A = A^{s_{A}} = A^{s_{A}} = A^{s_{A}} = A^{s_{A}} + A^{s_{A}} + A^{s_{A}} = A^{s_{A}} + A^{s_{A}} +$

where: A, A, A, A, the elfaportosynthesis for campy, ysummed and shadeded leaves

$$W_{C^{C}} \equiv \begin{cases} \frac{V_{CONDEX}(C_{i} = \Gamma_{**})}{C_{i} + K_{C}(1 + \frac{Q_{i}}{K_{0}})} \\ V_{CONDEX}^{**} \end{cases}$$

$$W_{jj} = \begin{cases} \underbrace{\left((c_i - \Gamma_{k}) \right) 44.6 \alpha \phi}_{c_i + 22 \Gamma_{k}} \\ 44.6 \alpha \phi \\ 44.6 \alpha \phi \\ 44.6 \alpha \phi \\ \end{array}$$

- V_{cmax} the maximum rate of carbox-ylation
- K_c ; K_o the Michaelis–Menten constants for CO₂ and O₂
- Γ_* the CO₂ compensation point
- cpartine Pires Hat leaf CO2 partial pressure
- partial pressure
- & oefficient antum efficiency coefficient
- ϕ the absorbed PAR

* equation of C_{1988}

TERRA_ML

VS

TERRA_ML (updated)

Stomatal behavior represented based on empirical *Jarvis approach (Jarvis et. al., 1976)*

$$\boldsymbol{g}_{st}^{can}_{st} = \frac{11}{\overline{r}_{r_{min}}} \left(\frac{11}{r_{min}} - \frac{11}{r_{max}} \right) \left[[F_{rad}F_{wav} E_{tem} E_{mum}]_{hum} \right]$$

Stomatal conductance explicitly related to photosynthetic assimilation model using *Ball-Berry approach (Collatz et. al., 1991)*

$$\mathbf{g}_{st}^{can} = \mathbf{g}_{st}^{cansus} \mathbf{L}^{susun} \mathbf{L}^{susun} \mathbf{g}_{st}^{sha} \mathbf{g}_{st}^{shashasha} \mathbf{L}^{sha}$$

$$\boldsymbol{g}_{st}^{sun,sha} \underbrace{\overset{sha}{\underline{sha}}}_{r_{s}} \underbrace{\frac{1}{r_{s}}}_{s} \underbrace{\frac$$

where: **COSMO=CLM v5:16:**

Fradiatien;

Fwat Watewager estitent;

 F_{tem} mbiento Femple at period peri

COSMO-CLM experiments:

 r_{s}^{nd} anstorstated sesistance for and shaded leaves; g_{s}^{nd} and g_{s}^{nd} and leaf photos shaded leaves and leaves of the test of the minimum g_{st} ; g_{s}^{nd} and δ_{a}^{n} appropriate set leaf leaves and the minimum g_{st} ;

 $e_s \in \mathbb{O}_{2}$ aptietist processnere;

_mpfPffarparaeee,ter;

Stomatal resistance (RSTOM)

Time period: from 01.06.2011 to 15.09.2011

Stomatal resistance (RSTOM)

W

Daily average values over 2010-2015 for June

Diurnal cycle over 2010-2015 from June to August

12

Model performance

At sites:

- Standard deviation (STD)
- Mean absolute error (MAE)
- Root mean square error (RMSE)
- Pearson correlation coefficient (PCC)

- Root mean square deviation (RMSD)
- Pearson correlation coefficient (PCC)
- Kling-Gupta Efficiency index (KGE)
- Distribution added value index (DAV)

$$KGEGE=11 + \sqrt{(\rho = 1)^{2} + (\frac{\sigma_{m}^{O} \mu^{2}}{\sigma_{obs}})^{2} + (\frac{\mu_{m}^{O} \mu_{m}^{2}}{\mu_{obs}^{O}})^{2} + (\frac{\mu_{m}^{O} \mu_{m}^{2}}{\mu_{obs}^{O}})^{2} + (\frac{\sigma_{m}^{O} \mu^{2}}{\mu_{obs}^{O}})^{2} + (\frac{\sigma_{m}^{O} \mu^{2}}{\mu^{2}})^{2} + (\frac{\sigma_{m}^{O} \mu^{2}}{\mu_{obs}^{O}})^{2} + (\frac{\sigma_{m}^{O} \mu^{2}}{\mu_{obs}^{O}})^{2} + (\frac{\sigma_{m}^{O} \mu^{2}}{\mu_{obs}^{O}})^{2} + (\frac{\sigma_{m}^{O} \mu^{2}}{\mu^{2}})^{2} + (\frac{\sigma_$$

$$DAV = \frac{\sum_{1}^{n} m(n(Z_{exp}, Z_{obs})) + \sum_{1}^{n} m(Z_{ctr}, Z_{obs})}{\sum_{1}^{n} m(Z_{ctr}, Z_{obs})} Z_{obs})$$

where: is inthe earson over a tion over fifticient,

is istatadadadededentintign,

15 inthe manaralatie,

is the frequency of values in a given bin for experiments, control runs and observations.

Total evapotrans piration (ZVERBO) and evaporation (AEVAP)

Surface (T_s), maximum (T_{max}) and minimum (T_{min}) temperatures

Conclusions

The new versions (CCLMv3.5, CCLMv4.5, CCLMv4.5e):

- Consider the difference of the physiological properties between sunlit and shaded leaves
- \succ use the modern physically based approach for stomatal resistance.
- ➤ apply the prognostic environmental parameters for calculations of stomatal resistance, which are connected to each other by leaf photosynthesis.
- \geq use stomatal resistance values, which are influenced by atmospheric CO₂ concentration
- \geq allow to calculate the leaf photosynthesis and CO₂ uptake

Didn't change in (CCLMv3.5, CCLMv4.5, CCLMv4.5e):

the phenological cycle of COSMO-CLM (yet), which is still based on a 6-year climatology and follows the same sinusoidal fitted curve between its maximum and minimum value each year neglecting any influence or feedback on the environmental conditions.

U N I K A S S E L V E R S I T A T

Our contacts:

GitHub page: https://github.com/users/merajtoelle/projects/1

Address: Universität Kassel - CESR

Wilhelmshöher Allee 47, 34117 Kassel

Email: evgenychur@uni-kassel.de

Total evapotranspiration – ZVERBO (a) and evaporation – AEVAP (b)

