

Allsky Assimilation of SEVIRI-WV channels in ICON-D2 - status September 2021-

Annika Schomburg

and many many others (Liselotte Bach, Christina Stumpf, Christoph Schraff, Roland Potthast, Robin Faulwetter, Christina Köpken-Watts, Thorsten Steinert, Hendrik Reich, Thomas Deppisch, Felix Fundel, etc etc....)

COSMO – GM 2021

- Characteristics of SEVIRI WV channels
- First guess statistics
- Localization and height assignment
- Assimilation settings
- Results
 - Baseline experiment
 - Experiment without vertical localization
 - Experiment with transmission for height assignment
- Observation error modeling
 - Approach
 - Results
- Summary, open issues and next steps

- Characteristics of SEVIRI WV channels
- First guess statistics
- Localization and height assignment
- Assimilation settings
- Results
 - Baseline experiment
 - Experiment without vertical localization
 - Experiment with transmission for height assignment
- Observation error modeling
 - Approach
 - Results
- Summary, open issues and next steps

Sensitivities of SEVIRI channels

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Standard Mid-Latitude Summer Nadir

Sensitivities of SEVIRI IR channels

Cloud classification at 1 June 2011, 18:00 UTC

WV6.2

IR10.8

緣

- Characteristics of SEVIRI WV channels
- First guess statistics
- Localization and height assignment
- Assimilation settings
- Results
 - Baseline experiment
 - Experiment without vertical localization
 - Experiment with transmission for height assignment
- Observation error modeling
 - Approach
 - Results
- Summary, open issues and next steps

緣

- Characteristics of SEVIRI WV channels
- First guess statistics
- Localization and height assignment
- Assimilation settings
- Results
 - Baseline experiment
 - Experiment without vertical localization
 - Experiment with transmission for height assignment
- Observation error modeling
 - Approach
 - Results
- Summary, open issues and next steps

 $plev = \frac{\sum w(l) \cdot p(l)}{\sum v(l)}$

depth

9

- Horizontal localization radius: 35km
- Vertical localization: satellite radiances are integral measurements over the whole vertical column → Two options:
 - Do not localize vertically, assign the same weight in the LETKF for the whole vertical column of the members
 - Assign a height where the satellite radiance is most sensitive, localize around this height.
 - Based on the Jacobians (output of RTTOV-k-Module, but expensive!)

$$w(l) = \underbrace{\frac{\partial H}{\partial T}(l) \cdot STD(T) + abs(\frac{\partial H}{\partial q}(l) \cdot STD(q))}_{p_{thick}(l)}$$

- Based on the transmission (output of RTTOV): $t(s_1, s_2) = \exp(-\tau(s_1, s_2))$
 - Assign to height where the transmission as seen by the satellite has dropped to 0.5
 Optical

Deutscher Wetterdienst Wetter und Klima aus einer Hand

DWD

- By these approaches one gets a different height for each member...
 - → Within the LETKF the highest plevel of all members is chosen

- Characteristics of SEVIRI WV channels
- First guess statistics
- Localization and height assignment
- Assimilation settings
- Results
 - Baseline experiment
 - Experiment without vertical localization
 - Experiment with transmission for height assignment
- Observation error modeling
 - Approach
 - Results
- Summary, open issues and next steps

- Assimilated data: Conventional data, 2mT&RH, 3D Radar radial winds and reflectivity, Latent Heat Nudging, SEVIRI WV channels
- **Reference experiment: Identical but no SEVIRI**
- Period: 23days: 3 25 August 2020
- Observation operator RTTOV13
 - Via MEC-light (datool)
- Allsky
- No bias correction
- Observation error: constant error of 6K for both channels
- Thinning: take every 4th pixel (in both directions)
- Height assignment dependent on Jacobians, vertical localization radius 0.25-0.35 in ln(p), horizontal localization 35km

- Characteristics of SEVIRI WV channels
- First guess statistics
- Localization and height assignment
- Assimilation settings
- Results
 - Baseline experiment
 - Experiment without vertical localization
 - Experiment with transmission for height assignment
- Observation error modeling
 - Approach
 - Results
- Summary, open issues and next steps

Forecast verification: upper air (TEMPS)

Forecast verification: Surface

Deutscher Wetterdienst

Wetter und Klima aus einer Hand

Surface verification (leadtime plots)

SEVIRI Ref

Precipitation verification

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Fractional skill score for 10km area and RR>0.1mm

- Characteristics of SEVIRI WV channels
- First guess statistics
- Localization and height assignment
- Assimilation settings
- Results
 - Baseline experiment
 - Experiment without vertical localization
 - Experiment with transmission for height assignment
- Observation error modeling
 - Approach
 - Results
- Summary, open issues and next steps

Experiment without vertical localization: Increments

Experiment without vertical localization: Analysis and first guess verification

Wetter und Klima aus einer Hand

- Characteristics of SEVIRI WV channels
- First guess statistics
- Localization and height assignment
- Assimilation settings
- Results
 - Baseline experiment
 - Experiment without vertical localization
 - Experiment with transmission for height assignment
- Observation error modeling
 - Approach
 - Results
- Summary, open issues and next steps

Experiment based on transmission for height assignment

- Gave mostly neutral impact, but sometimes negative impact
 - Reason: Many observations were set to passive because their plevel was now higher than 200 hPa (KENDA does not assimilate observations that high, due to upper boundary relaxation zone to ICON-EU)

Why bad performance of transmissionbased height assignment experiment?

Deutscher Wetterdienst Wetter und Klima aus einer Hand

 \rightarrow Next test: set plevel to 201hPa if between 150 and 200 hPa²⁸

latitude

- Characteristics of SEVIRI WV channels
- First guess statistics
- Localization and height assignment
- Assimilation settings
- Results
 - Baseline experiment
 - Experiment without vertical localization
 - Experiment with transmission for height assignment
- Observation error modeling
 - Approach
 - Results
- Summary, open issues and next steps

Inflated error model

Deutscher Wetterdienst Wetter und Klima aus einer Hand

• Error model based on symmetric cloud impact (fit to standard deviation of first guess departure), see Okamoto et al.(2014)

$$\Delta TB_{sym} = \frac{\left(|TB_{allsky}^{sim} - TB_{clearsky}^{sim}|\right) + \left(|TB^{obs} - TB_{clearsky}^{sim}|\right)}{2}$$

- Characteristics of SEVIRI WV channels
- First guess statistics
- Localization and height assignment
- Assimilation settings
- Results
 - Baseline experiment
 - Experiment without vertical localization
 - Experiment with transmission for height assignment
- Observation error modeling
 - Approach
 - Results
- Summary, open issues and next steps

Verification period: 2020/08/03 - 2020/08/24 Data selection by initial-date Reduction of RMSE [%]

Deutscher Wetterdienst

Forecast verification

redOfVar

- Characteristics of SEVIRI WV channels
- First guess statistics
- Localization and height assignment
- Assimilation settings
- Results
 - Baseline experiment
 - Experiment without vertical localization
 - Experiment with transmission for height assignment
- Observation error modeling
 - Approach
 - Results
- Summary, open issues and next steps

- The allsky assimilation of SEVIRI WV channels in ICON-D2 gives good results, esp. for upper air humidity
 - Mostly because of a systematic high-cloud overestimation in first forecast hours, which is corrected by SEVIRI radiances

- Run more periods
- Bias correction
- Combined experiment with SEVIRI VIS
 - Technical adapations necessary to set localization and superobbing options channel dependent
- Slant path
- Super"m"odding
- Test in Online System

