

All-sky DA of visible channels of SEVIRI in ICON-D2-KENDA

COSMO General Meeting, KENDAScope Session

Liselotte Bach & Thomas Deppisch

with C. Stumpf, L. Scheck R. Faulwetter, M. Bender A. Schomburg C. Köpken-Watts, C. Schraff A. de Lozar

Observations

- \rightarrow Imager channel in the visible spectral range (0.6 µm)
- → SEVIRI instrument on geostationary MSG (0°/0°)
 - → Horizontal resolution: 6 km x 3 km (Central Europe)

What is reflectance?

 Percentage of infalling solar radiation that is reflected by clouds and the earth's surface

Important characteristics

- → Availability limited to day time
- → Also sensitive to snow (alps!), volcanic ash, Saharan dust

All-sky data assimilation

Clouds reside in meteorologically interesting regions

- → Tropical cyclones, fronts, convection, low stratus
- → Clouds cover roughly 67 % of the earth's surface

Traditional all-sky satellite data assimilation

→ Gain of vast amounts of temperature- and humidity-sensitive satellite data

But what is our goal?

- → Assimilate visible channels directly sensitive to
 - Cloud water mass
 - ➔ Cloud optical properties
 - Cloud positions
 - → Water vapour
 - ➔ Surface albedo

Why visible satellite data?

How does VIS differ from IR?

- → Sensitive to cloud properties (VIS) rather than to temperature-humidity mixture (IR)
- → Sees *also* boundary layer clouds (convective initiation, low stratus)
- → Sensitive to a much larger range of LWP / IWP than IR
- → Except for very small LWP / IWP (thin cirrus)

Which forecast impact can we expect?

- Cloud positions ~ precipitation
- Cloud optical depth ~ solar radiation
- Processes related to solar radiation, e.g. surface fluxes

- 1. Warnings high impact weather
- 2. Solar power forecasting
- 3. Flight meteorology (visibility)

Data assimilation methodology

Simulation of visible satellite pictures

RTTOV-MFASIS forward operator

- → Fast & accurate radiative transfer method MFASIS (Scheck, 2016)
- → DA in operations conceivable for the first time
- → Look-Up Table Approach; vertical integrals instead of vertical distribution
- → Treatment of cloud variables: avoid interpolation (nearest neighbor)
- ➔ Ongoing developments: NIR-channel, aerosol, neural networks

Micro- and macro-physical assumptions

Cloud properties based on parameterization of effective radii (Reff):

- Deff-scheme: Martin 1994 (cloud water)
- Baum-scheme: Mc Farquhar 2003 (cloud ice)
- Or use of Reff from ICON

Cloud overlap: maximum random overlap, no horizontal inhomogeneity

Quality control

		100
Parameter	Reason for rejection	
Sun zenith angle (> 75°)	Missing 3D-effects in MFASIS Night	t.
Model orography > 1100 m Cloud mask = "SNOW"	Misinterpretation of snow as clouds	
Obs > 1.5	Missing 3D-effects in MFASIS	Mark 3
Saharan dust / volcanic ash Cloud mask = "DUST"	Misinterpretation as clouds	
MFASIS operator flags	Magnitude of effective radius	Destri

Mixture of snow and clouds

Saharan dust outbreak

NWC-SAF cloud mask

Use flags for snow, aerosol, volcanic ash as part of satellite preprocessing QC (satpp)

Full satellite picture to observations

Data reduction (superobbing) to

- → Balance remote sensing data and conventional observations
- → Reduce representativity error and double penalty problems
- Account for assumption of spatially uncorrelated observation error →
- \rightarrow Applied to both y and H(x) after nearest neighbor interpolation of model columns to satellite grid

Vertical localization

Problem

- Reflectance represents vertical integral over model column **>**
- No height information, no information about vertical extent of clouds ->
- Attempts with vertical localization based on cloud products (cloud type, NWC-SAF) >

How do we deal with that?

- Currently no vertical localization of vertical intervariable correlations \rightarrow
- Future: visible + infrared channels \rightarrow

Does it work?

- Mainly directly cloud-dependent processes → are improved
- By tendency little impact through intervariable \rightarrow correlations (e.g. rho(T,REFL))

What can be possible predictors of obs error?

- Nonlinearity →
- Sun zenith angle >
- First guess departure ~ displacement error →

Inflate obs error depending on first guess departure

→
$$\sigma_o^2 = \max(e_c^2, (o - b)^2)$$

Account for spread

$$\Rightarrow \quad \sigma_o^2 = \max(e_c^2, (o-b)^2 - \sigma_b^2)$$

$$Var(o-b) = Var(o) + Var(b) - 2 * Cov(o, b)$$

$$\sigma_o = \frac{1}{N} \sum_{i=1}^{N} (o_i - a_i)(o_i - b_i)$$

Calibration of observed satellite pictures

Pure observation bias

 SEVIRI visible channels ~ 8-10% too dark compared to the moon, MODIS satellite data (EUMETSAT)

How do we fix that problem?

- → Calibrate satelite observations by fixed factor of 1.08
- → Better agreement of histograms

What about remaining bias of first guess departures?

- Conditional bias in cloudy part of the histogram leads to detrimental forecast impact
- → New histogram-based bias correction to stabilize impact

How to do bias correction?

What is our goal?

 Apply locally conservative corrections to every pixel of the simulated satellite picture such that histogram error vs. observed reflectances is reduced

Methodology

 Correction function: polynomial in reflectance weighted by sun zenith angle

$$f(r,\theta) = \sum_{ij} c_{ij} T_i(r) U_j(\theta)$$

→ Estimate coefficients c bei minimizing the following cost function

$$J[c^{a}] = \alpha \|c^{a} - c^{b}\|_{B_{1}^{-1}}^{2} + \beta \|c^{a} - c^{0}\|_{B_{2}^{-1}}^{2} + \|hist(fg) - hist(obs \|_{R^{-1}}^{2} (Kalman Update))$$
Prior Relaxation

Issues

- ➔ How adaptive should the bias correction be?
- → How strongly does reflectance histogram bias vary depending on diurnal cycle / weather regime?

Used in ICON microphysics, ICON radiation, MFASIS forward operator →

NWP framework

- 1. Interface from ICON to DACE that calls forward operators during model run
- 2. Interface from dace to rttov

Program structure

Impact experiments with ICON-D2

Experiments

General Settings	Observations	
 ICON-D2, cpcv-bugfix, 1MOM Offline interface to RTTOV-MFASIS 2.August 2020 – 26.August 2020 DA of 0.6 µm (LB) DA of water vapour channels (AS) 	 1 satellite picture / hour [@60min] Conv. obs AIREP, TEMP, SYNOP, MODES Latent Heat Nudging 3D radar reflectivities + radial winds Calibration of observations 1.08 	
DA settings	Observations are rejected if	
 12 km superobbing scale 35 km horizontal localization Observation error 0.2 No vertical localization No bias correction 	 Sun zenith angle > 75° (3D-effects) Model orography > 1100 m (snow) Obs > 1.5 (missing 3D-effects) Boundary of domain Saharan dust, snow, nonlinearities 	

Results in DA cycle

Reflectance statistics in DA cycle

On superobbing scale

DA allows to better understand model error

Error reduction in reflectance in DA cycle

Threshold

time [UTC]

Ambigious	reasons	for errors
-----------	---------	------------

Ambigious reasons f	or errors
Clear Sky	: Erroneous BRDF-climatology, missing aerosol in LUT, water vapour erroneous
oo dark	: Missing 3D effects, too little water mass, wrong water phase (ice), too big particles, too few particles
oo bright	: Too much water mass, too small particles, wrong water phase (water), too many particles
Cloud is missing	: Cloud position error, model cloud is missing, threshold error
alse alarm cloud	: Cloud position error, cloud number overestimation, threshold error

Percentage of first guess error

: REFL=0.25

REFL < 0.25 : Clear-sky

REFI > 0.25 : Cloudy

Error reduction in reflectance categories

DA allows to better understand model error

Clear sky error Cloud too dark Cloud too bright Cloud is missing Cloud is false alarm

Forecast impact

CONV + RADAR + SEVIRI-VIS CONV + RADAR + SEVIRI-WV CONV + RADAR

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Reflectance (Fraction skill score)

FSS, 7 satellite pixels Initialized at 12 UTC 24 days

REFL > 0.3 : all clouds REFL > 0.5 : optically medium thick and thick clouds REFL < 0.7 : optically thick clouds

CONV + RADAR + SEVIRI-VIS CONV + RADAR + SEVIRI-WV CONV + RADAR

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Reflectance (Frequency bias)

FBI Initialized at 12 UTC 24 days

REFL > 0.3 : all clouds REFL > 0.5 : optically medium thick and thick clouds REFL < 0.7 : optically thick clouds

CONV + RADAR CONV + RADAR + SEVIR-VIS CONV + RADAR + SEVIRI-IR

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Precipitation

Upper Air Verification

CONV + RADAR + SEVIRI-VIS better CONV + RADAR better

CONV + RADAR + SEVIRI-WV CONV + RADAR + SEVIRI-VIS CONV + RADAR

Deutscher Wetterdienst Wetter und Klima aus einer Hand

CONV + RADAR + SEVIRI-VIS better

Short-wave radiation and surface variables

- Improvement of radiation through improved cloud cover / cloud optical depth \checkmark
- Through better radiation better screen-level temperature and humidity \checkmark

The impact is very dependent on the model version

Initialization 12 UTC

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Conclusion

- → SEVIRI-VIS shows to have impact on reflectance, precipitation, global radiation and surface variables
- Results are highly different between different model versions
- > New experiments run with technically mature 4D-LETKF, i.e. RTTOV is called during ICON run
- → Parallel-operations in SINFONY-RUC and ICON-D2 are pursued in the near future
- → Preparations for data bank arrival times, satellite preprocessing (satpp), NUMEX finished

Final requirements

- → Understanding differences in simulated satellite pictures (ICON, VISOP, offline interface)
- ➔ Final model tuning for 2-Moment-Scheme
- → Working bias correction (for ICON-D2) and alert system
- → Experiments

