

LHN in ICON-LAM

06.09.2021

Klaus Stephan

Outline

- Motivation and brief description of LHN
- ➔ Technical aspects for applying LHN
- ➔ Pro & Cons of LHN concerning ICON-LAM
- → (OPERA)

Motivation

➔ Apart from assimilation of 3d radar reflectivity and radial winds a 2d composite of radar derived precipitation is assimilated via latent heat nudging.

→ Pro:

- → not all 3d volume data are available yet, at least for German model domain
- → LHN triggers cells in the entire ensemble and therefore helps assimilating 3d volume data
- → LHN corrects amount of precipitation within the model, avoiding a drying out
- ➔ Cons:
 - → LHN adopts the dynamical structure during assimilation, but may lead to imbalances which may lead to spin down effects and different model bias
 - → Radar observation error are almost not accounted for

* If model has no suitable precipitation at the target grid point, a more suitable nearby grid point is searched (COSMO).

If no point can be found, an artificial temperature profile is used for the scaling.

Basic Assumptions:

- → vertically integrated latent heat release ∞ vertically integrated precipitation flux within each model column
- ➔ relation is similar in model and nature
- → relation is linear and constant in any meteorological situation

$$T_{LH,obs} = RR_{obs} \frac{T_{LH,mod}}{RR_{mod}} = \frac{RR_{obs}}{RR_{mod}} T_{LH,mod} = \beta T_{LH,mod}$$

$$\frac{\partial T}{\partial t} = F(X,t) + \alpha \left(T_{LH,obs} - T_{LH,mod} \right) = F(X,t) + \alpha \left(RR_{obs} - RR_{mod} \right) \frac{T_{LH,mod}}{RR_{mod}}$$

In addition increments of specific humidity are added (optionally but recommended) to remain relative humidity constant (*Ihn_hum_adj*)

- LHN is applied at any integration step between (*nlhn_start* and *nlhn_end*)
- → T_{LH,mod} is collected from all processes associated with latent heat release within every integration time step, separately.
- A: nudging coefficient (*Ihn_coef*), which decides how much of the increment is added. Setting to "0" means no increment is added, but all monitoring is available
- → β: ratio between observed precipitation and a model equivalent (RR_{mod}). RR_{mod} can be surface precipitation or a vertical mean of the precipitation flux (*Ihn_qrs*). This accounted for temporal evolution of precipitation within model column. The extent of the vertical average is a tuning property (*rqrsgmax*). We have to avoid a bias between this equivalent and the model precipitation itself.
- → β will be limited by *fac_lhn_up* and *fac_lhn_down*. As closer β is limited too 1 as lower an increment will be.
- We recommend to restrict increments to model levels, showing a positive latent heat release (*Ihn_incloud*)
- The increment itself can also be limited by abs_Ihn_Iim and Ihn_Iimit.

- In case of too little precipitation simulated, an artificial temperature profile can be applied (*Ihn_artif, tt_artif_max, zlev_artif_max, std_artif_max*).
 - In COSMO still a searching for a more suitable neighbouring grid point will be applied first (*Ihn_search*)
- Take into account only moisture increments (*Ihn_no_ttemp*)
- Take into account only artificial temperature profile (*Ihn_artif_only*)
- Scale abs_Ihn_Iim with height using a Gaussian function (same function as defined for artificial temperature profile) by Ihn_Iimitp instead of Ihn_Iimit
- LHN routine may provide more diagnostic output (*Ihn_diag*) within YULHN (COSMO) or Ihn.log (ICON). Herein also an online verification against the radar data can be provided between *nIhnverif_start* and *nIhnverif_end*.

- Radar data has to be interpolated to model grid (i.e. aggregation in space). Both radar and model can be smoothed spatially (*Ihn_relax, nIhn_relax*)
- Radar data are interpolated in time between observations (observation frequency has to be specified by *lhn_dt_obs*)
- A detection for bright band can be applied, when a radar height information is given. (*Ihn_bright, height_file*)
- → A blacklist file can be applied (*Ihn_black, blacklist_file*). This blacklist can be obtained by comparision against satellite products
- → A spatial quality index can be applied (*Ihn_squal*, not tested yet in ICON). The quality index has to be included within the *radardata_file* and is prepared in pre processing quality control

→ Pro:

- LHN corrects amount of precipitation within the model, avoiding a drying out of the soil
- not all 3d volume data are applicable yet, at least for German model domain
- → LHN triggers cells in the entire ensemble and therefore helps assimilating 3d volume data
- → Cons:
 - → LHN adopts the dynamical structure during assimilation, but may lead to imbalances which may lead to spin down effects and different model bias
 - → Radar observation error are almost not accounted for

Comparison of two experiments, with and without LHN for June 2021

 \rightarrow Other setup very close to operational setup.

Improvement in FSS (11 grid points)

Benefit on 3d radar data assimilation

- Evaluation of model state can be done in different ways. \rightarrow
 - Verification of analyses or forecasts against observations
 - \rightarrow Investigation temporal and spatial averages of meteorological parameter.
 - \rightarrow In terms of LETKF, this are Ensemble mean, ensemble spread and analysis increments

Assimilation cycle against Observations

DWD

Conclusion

- LHN in ICON LAM does improve precipitation during assimilation and within the first hours of free forecast. Socres remains longer than improvements in amount
- Effects on soil moisture less pronounced due to the relaxation to ICON-EU (every day at 3 UTC)
- → LHN leads to cooling and drying within the boundary layer, a warming and moistinging further above.
- LHN leads to a reduction in spread
- Scores against observations are slightly negative for assimilation cycle but neutral too slightly positive for forecasts.
- Interaction with 2 moment scheme under development (too much graupel high) above, stronger bias in surface precipitation and vertical precipitation flux.
- → If you consider to apply LHN, you may think about using OPERA rain rate composite ...

Here some facts

- → Consists of about 150 radar stations all over Europe
 - → Differ in age, manufacture, maintenance, post processings
 - → Inhomogeneous quality
- Precipitation product is calculated from the best as possible reflectivity volume data. Data are weighted according to distance to composite grid point. So mainly the lowest elevation will win. Z is transformed to R be standard relation.
- \rightarrow Product available every 15 minutes and with 2x2 km² grid. A more frequent production is envisaged.
- ECMWF do not recommend using the data without further adjustments. DWD is using it in the almost outer areas of ICON-D2 domain, applying blacklisting and bright band detection

Forecast quality vs. data quality

