Improving existing post-processing methods: Use of MLR, adaptive/recursive LMS and/or ANN techniques

> Andrzej Mazur, Grzegorz Duniec Institute of Meteorology and Water Management – National Research Institute





## **1. Introduction**

## 2. Done

## 3. Examples

## 4. To-dos & conclusions



Differences...

- 1. In Sub-task 3.1 verification of **DMO** against observations
- 2. In Sub-task 4.2 verification against observations of various **post-processed results** (In parameterization we trust...)
- 3. The quality of (any) post-processing is assessed via <u>continuous</u> <u>verification</u> MAE, RMSE <u>only</u>.



### Various methods of post-processing

- 1. Multi-Linear Regression (MLR) class of LMS method with multidimensional input data vector, yet constant over time
- 2. Adaptive/Recursive LMS methods
- 3. ANN transferring the problem from EPS- to deterministic forecasts
- Various set-ups of post-processing of various methods have been tested over the seven-years period.

## Improving existing post-processing methods: Use of MLR, A/R-LS and/or ANN techniques Introduction (3)



09-03-2020

Improving existing post-processing methods: Use of MLR, A/R-LS and/or ANN techniques



Observations: lightnings (C2G, C2C) from the Polish lightning detection network PERUN, covering Poland + parts of neighbouring countries

Forecast: CAPE-based FLR (Flash Rates) as follows:

$$W = 0.3 \cdot \sqrt{2 \cdot CAPE}$$

$$FR = \left(\frac{W}{14.66}\right)^{4.54}$$

$$if \quad CTT > -15^{\circ}C \quad FR = FR \cdot \left[\max\left(\frac{-CTT}{15}, 0.01\right)\right]$$

$$if \quad CBT < -5^{\circ}C \quad FR = FR \cdot \left[\max\left(\frac{CBT + 15}{10}, 0.01\right)\right]$$

Archive observations vs. forecasts (2011-2017) Learning/testing period: 2011-2016, verification: 2017

Again, VOD (cross-correlation) procedure was applied afterwards.

Improving existing post-processing methods: Use of MLR, A/R-LS and/or ANN techniques **Examples (1)** 

#### MAE/RMSE





### RMLS



GW

Improving existing post-processing methods: Use of MLR, A/R-LS and/or ANN techniques Examples (2)

# GW

#### MAE/RMSE with cross-correlation



#### ANN

#### RMLS

MLR

| mproving existing post-processing methods: Use of MILR, A/R-LS and/or ANN ter<br>Examples (3) |        |        | or ANN techniques |
|-----------------------------------------------------------------------------------------------|--------|--------|-------------------|
|                                                                                               | ME     | MAE    | RMSE              |
| ANN<br>4 hidden neurons                                                                       | 0.8406 | 1.6856 | 11.8038           |
| ANN<br>3 hidden neurons                                                                       | 0.4088 | 1.8395 | 11.8919           |
| RLS<br>λ=0.95                                                                                 | 0.1203 | 2.1109 | 12.3525           |
| RLS<br>λ=1.00                                                                                 | 0.0538 | 2.1911 | 12.7302           |
| MLR<br>6 predictors                                                                           | 0.5957 | 2.1503 | 13.0064           |
| MLR<br>3 predictors                                                                           | 1.0369 | 2.2140 | 13.4703           |

| mproving existing post-processing methods: Use of MLR, A/R-LS and/or ANN techniques<br>Examples (3) |         |        |         |
|-----------------------------------------------------------------------------------------------------|---------|--------|---------|
|                                                                                                     | ME      | MAE    | RMSE    |
| ANN<br>6 hidden neurons                                                                             | 0.0036  | 1.6283 | 11.5729 |
| ANN<br>3 hidden neurons                                                                             | -0.0775 | 1.6971 | 11.7552 |
| RLS<br>λ=0.95                                                                                       | 1.2364  | 2.0847 | 12.1510 |
| RLS<br>λ=1.00                                                                                       | -0.7295 | 2.1130 | 12.4476 |
| MLR<br>6 predictors                                                                                 | 0.6641  | 2.1769 | 12.9326 |
| MLR<br>4 predictors                                                                                 | 1.2260  | 2.1990 | 13.3877 |

#### Applied VOD

Improving existing post-processing methods: Use of MLR, A/R-LS and/or ANN techniques
Conclusions and to-dos (?)



1. Best method?



2. ... with VOD?



3. RLMS not necessarily works as good as expected, still, better than MLR...

4. Now what?

