

Andrzej Mazur, Joanna Linkowska
Institute of Meteorology and Water Management – National Research Institute

1. Introduction

2. Done

3. Examples

4. Conclusions

Introduction

"Discrete" (1-3) vs. "Continuous" (4) verification

1. SAL (Structure-Amplitude-Location) approach

- S structure compare the volume of the normalized objects.
- A- amplitude corresponds to the normalized difference of the domain-averaged values
- L- location –Combinations of a difference of mass centers of fields and averaged distance between the total mass center and individual objects
- The perfect forecast S = A = L = 0

2. Fraction Skill Scores (FSS) assessment

Direct comparison of the forecast and of observed fractional coverage of grid-box events in spatial windows of increasing size. Most sensitive to rare events.

- FSS = 0 no correspondence between observations and forecasts
- FSS = 1 perfect match
- FSS >= FSS uniform "useful" forecast.
- 3. Contingency tables analysis.
- 4. ME, MAE, RMSE which metric is better?
 - RMSE has the benefit of penalizing large errors more so can be more appropriate in some cases
 - RMSE does not describe average error alone as MAE does
 - Distinct advantage of RMSE over MAE RMSE doesn't use the absolute value
 which is good in many mathematical calculations

Done (1)

Observations: lightnings (C2G, C2C) from the Polish lightning detection network PERUN, covering Poland + parts of neighbouring countries

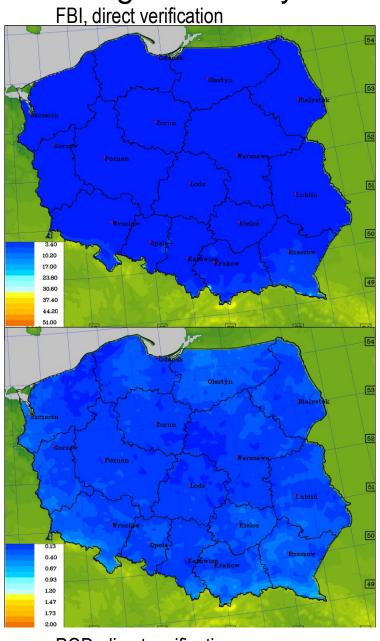
Forecast: CAPE-based FLR (Flash Rates) as follows:

$$FR = \left(\frac{W}{14.66}\right)^{4.54}$$

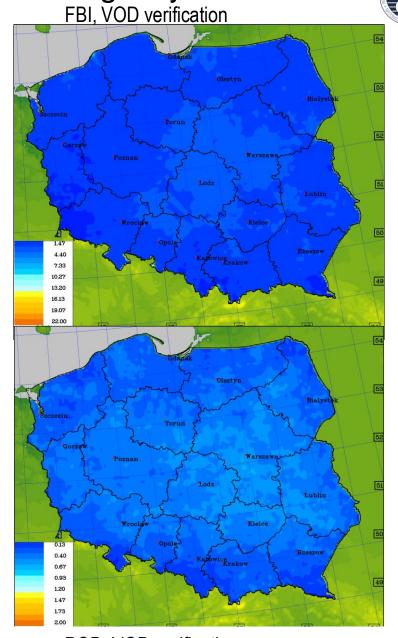
$$if \quad CTT > -15^{\circ}C \quad FR = FR \cdot \left[\max\left(\frac{-CTT}{15}, 0.01\right)\right]$$

$$if \quad CBT < -5^{\circ}C \quad FR = FR \cdot \left[\max\left(\frac{CBT + 15}{10}, 0.01\right)\right]$$

Archive observations vs. forecasts (2011-2017)

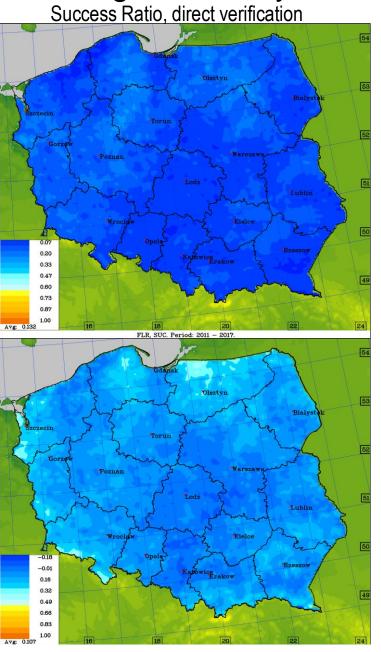

Cases selection:

For both observations and forecasts –

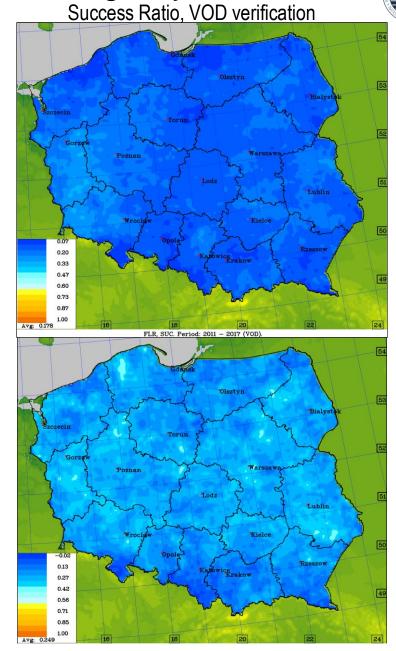

FLR max_value_{domain}> 20 strikes/hour

The duration of the storm must be > 6 hours

Categorical analysis based on contingency tables



POD, direct verification



POD, VOD verification

Categorical analysis based on contingency tables

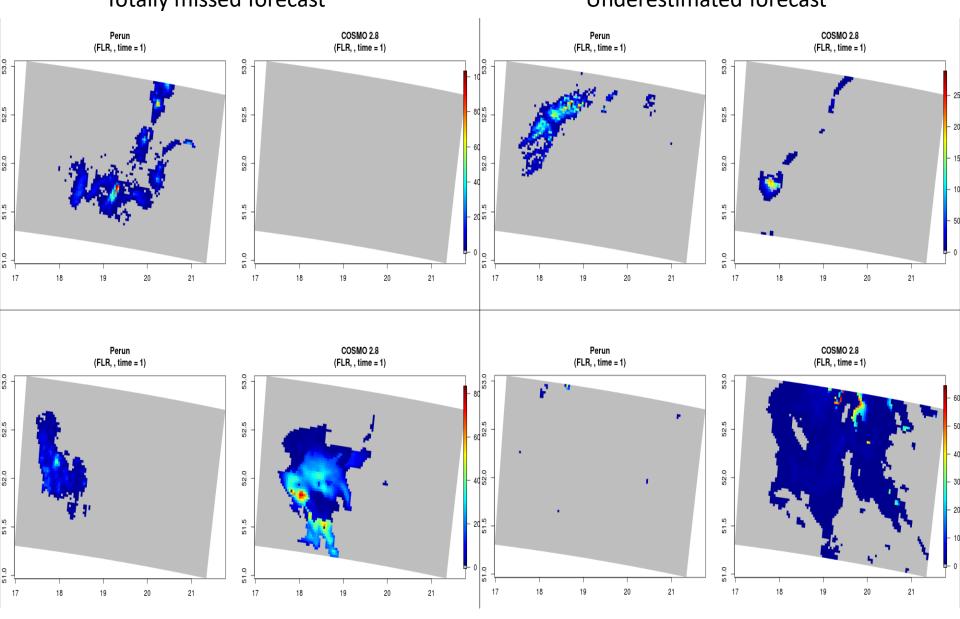
Threat Score, direct verification

Threat Score, VOD verification

Categorical analysis based on contingency tables

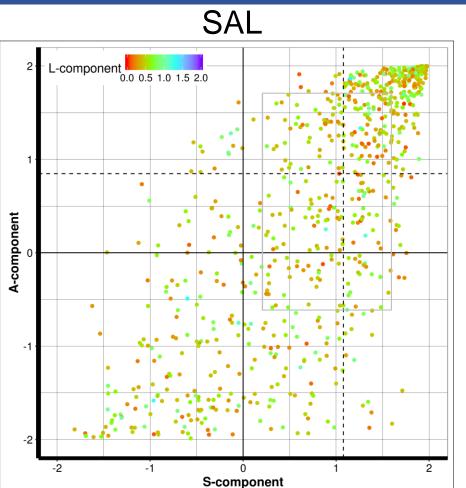
	EQS		FAR		FBI		PFD	
	Direct	VOD	Direct	VOD	Direct	VOD	Direct	VOD
2012	0.0302	0.0842	0.8832	0.8240	2.7196	2.3366	0.1736	0.1611
2013	0.0773	0.1140	0.8254	0.7920	2.4679	2.1431	0.1483	0.1232
2014	0.0299	0.0671	0.9060	0.8632	3.4946	2.6446	0.1550	0.1258
2015	0.0263	0.1022	0.8785	0.7970	2.1706	1.8439	0.1311	0.1120
2016	0.0555	0.0751	0.8532	0.8370	2.7295	2.4354	0.1592	0.1344
2017	0.0505	0.0954	0.8296	0.7976	1.9107	1.6072	0.1180	0.0978
Mean	0.0420	0.0867	0.8676	0.8221	2.3164	1.9426	0.1499	0.1283
	POD		SUC		THS		TRS	
	Direct	VOD	Direct	VOD	Direct	VOD	Direct	VOD
2012	0.2366	0.4287	0.1169	0.1760	0.0826	0.1398	0.0754	0.2551
2013	0.3245	0.4685	0.1747	0.2081	0.1249	0.1667	0.2012	0.3202
2014	0.2193	0.3863	0.0940	0.1368	0.0681	0.1096	0.0935	0.2313
2015	0.1659	0.3890	0.1215	0.2030	0.0704	0.1543	0.0538	0.2579
2016	0.2644	0.3750	0.1469	0.1630	0.1030	0.1274	0.1299	0.2157
2017	0.1981	0.3433	0.1704	0.2025	0.0925	0.1452	0.1002	0.2253
Mean	0.2349	0.3987	0.1324	0.1779	0.0898	0.1390	0.1066	0.2489

The structure component S investigates the size and shape of event objects. It is defined in the range $[-2 \cdots + 2]$, where negative values correspond to too small and/or too peaked objects, while **positive values indicate too large and/or too flat simulated objects**.

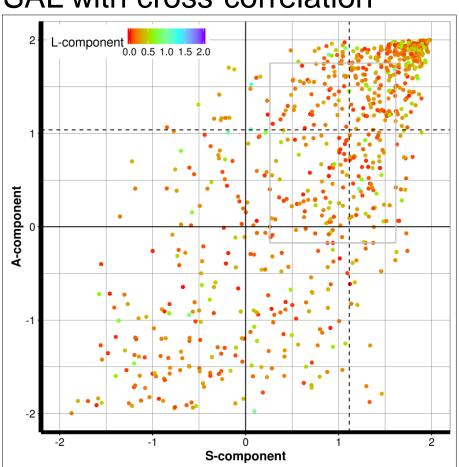

- Corresponding to SAL, a value S = 0 indicates a perfect structure.
- The amplitude component A evaluates the total amount of event occurrence in a predefined region.
- The values of A are within $[-2\cdots + 2]$, where 0 represents again the perfect value.
- Negative values of A correspond to too little and **positive values to too much predicted event occurrence**, respectively.
- The location component L quantifies the displacement of observed and simulated precipitation objects, relative to their overall centers of mass.
- The values of L are within [0..+2] and also here 0 denotes the perfect value.

SAL input

Underestimated forecast

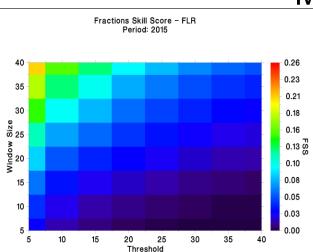


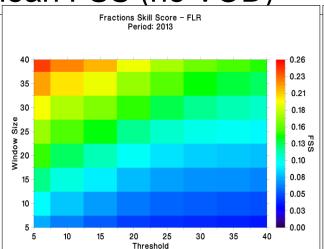
Overestimated forecast

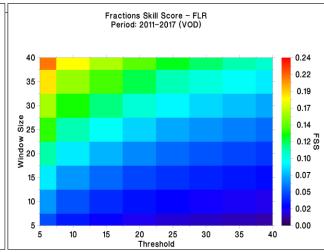

Totally false alarm

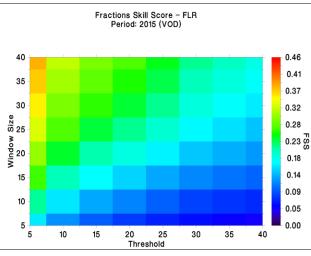
Examples (1)

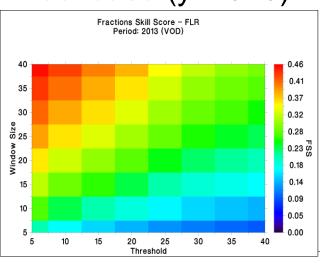
SAL with cross-correlation

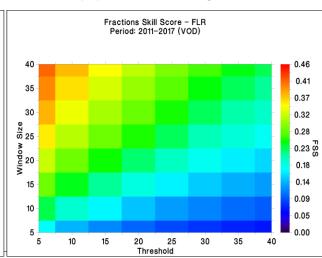

All selected cases (2011-2017)


Dotted lines denote the median Structure- and Amplitude-component scores, resp. The box corresponds to the 25 and 75 quartiles of S (x-axis) and A (y-axis) components.


Examples (1)

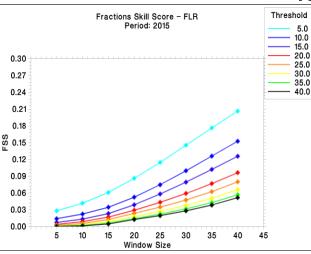


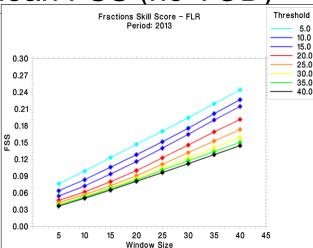


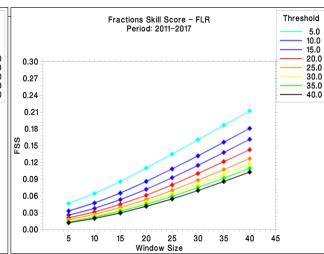

Worst case (y. 2015)

Best case (y. 2013)

Mean for 2011-17




Mean FSS with VOD


Examples (1)

Worst case (y. 2015)

Fractions Skill Score - FLR

Period: 2015 (VOD)

15 20 25 30 35 40

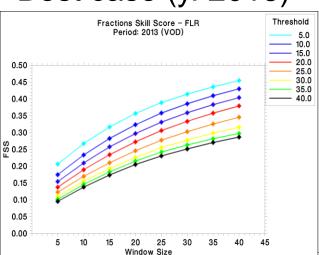
Window Size

Threshold

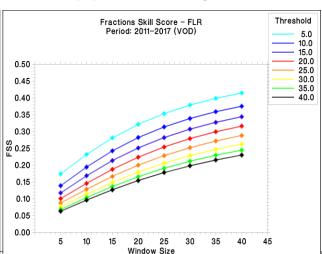
5.0

10.0

15.0


20.0

25.0


30.0

35.0

Best case (y. 2013)

Mean for 2011-17

Mean FSS with VOD

0.50

0.45

0.40

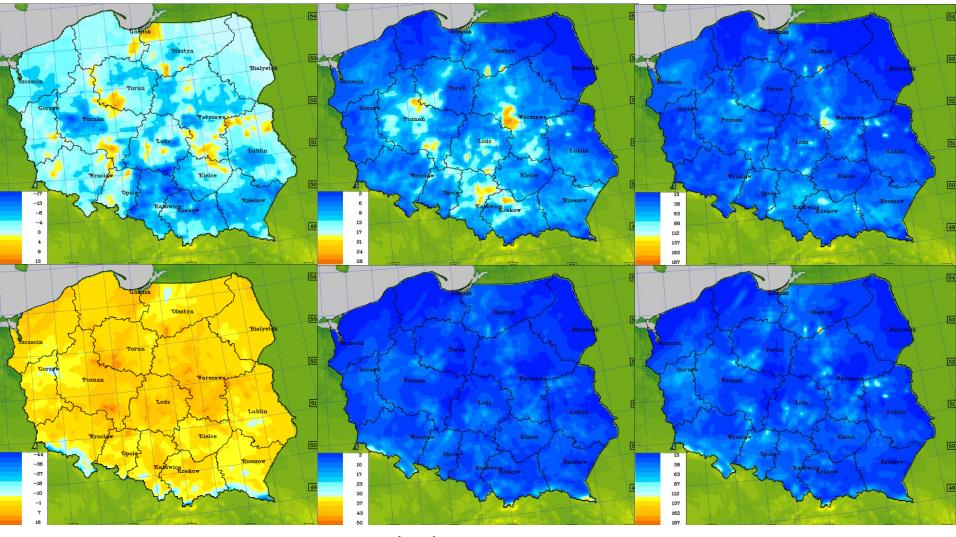
0.35

0.30 % 0.25

0.20

0.15

0.10


0.05

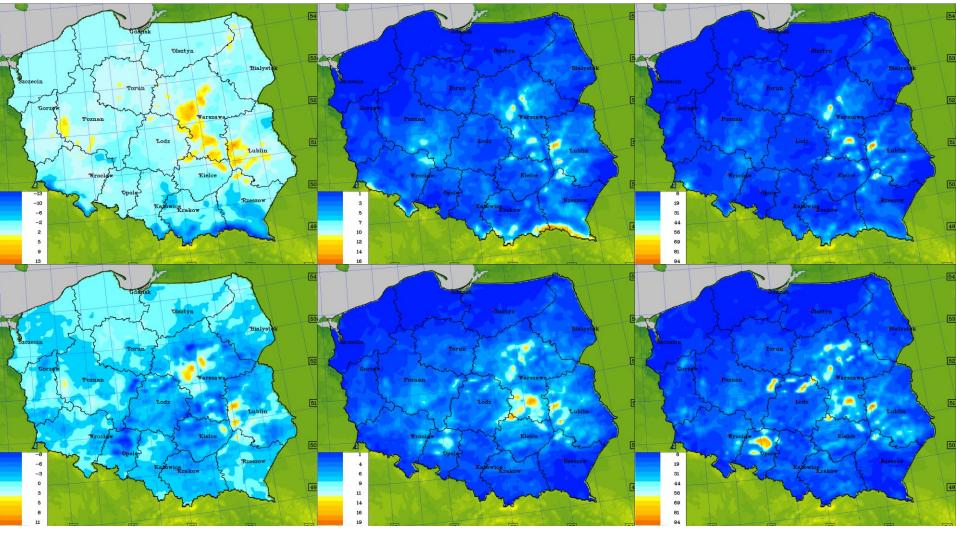
0.00

Examples (2)

GW

ME/MAE/RMSE 2013 (direct – upper, VOD – lower)

Mean Error

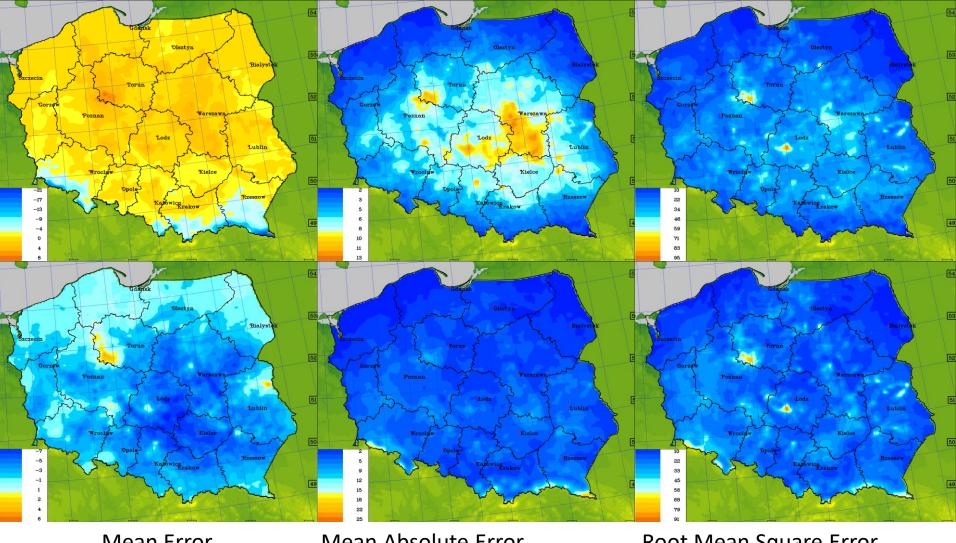

Mean Absolute Error

Root Mean Square Error

Examples (2)

GW

ME/MAE/RMSE 2017 (direct – upper, VOD – lower)


Mean Error

Mean Absolute Error

Root Mean Square Error

Examples (3)

ME/MAE/RMSE 2011-2017 (direct – upper, VOD – lower)

Mean Error

Mean Absolute Error

Root Mean Square Error

Examples (4)

ME/MAE/RMSE with vs. w/out cross-correlation

		Direct		VOD			
Year	ME	MAE	RMSE	ME	MAE	RMSE	
2011	2.128	4.712	18.904	1.887	4.213	18.051	
2012	-2.811	5.913	18.866	-3.681	5.027	17.482	
2013	-3.674	2.184	10.556	1.078	1.949	9.970	
2014	-3.712	1.516	9.186	-2.192	1.374	8.960	
2015	-2.023	2.025	11.871	-3.722	1.819	11.391	
2016	-2.291	3.360	14.695	-0.699	2.950	13.904	
2017	-1.286	2.817	12.761	-0.176	2.015	11.879	
2011-2017	-1.953	3.218	13.834	-1.071	2.764	13.091	

- 1. VOD improves categorical predictands (FBI, POD, THS...) by ~10 upto 45%.
- 2. SAL VOD forces some improvement in L-component and (to some extent) in A-component. S-component to a large extent remains unchanged. Forecasts are evidently overestimated. Smaller domain (SAL is more effective) and more cases selected no significant improvement...
- 3. FSS results are not very impressive. VOD, however, **significantly** improves it.
- 4. MAE/RMSE (direct comparison) The worst values in mountainous regions hard(er) to predict thunderstorms?
- 5. MAE/RMSE w. cross-correlation slight improvement compared to direct verification, maxima moved towards domain centre.
- 6. Discrete vs. continuous verification?