Survey for assessment of proper verification of phenomena

Andrzej Mazur, Joanna Linkowska Institute of Meteorology and Water Management – National Research Institute

1. Introduction

2. Done

3. Examples

4. To-dos

Every weather has its impact!

Since every weather has its impact, each weather element can be treated as an impact source. It's just a question of scale and intensity.

- 1. "regular" elements temperature, precipitation, windspeed...
- 2. "specific elements" visibility limitations, thunderstorms, tornadoes, ...

The verification method may be/could be/should be adapted (and specific) for each element.

To be done in this task:

- Brief researches (case studies) to assess applicability of particular method(s) (in progress/partially done);
- Comparison and judgment whether continuous or discrete methods may/should be applied (in progress...)
- Overall final recommendations (2-b done...)

- Survey on (basic) methods applicable to the problem:
- 1. Neighborhood-based approaches *)
- 2. Coverage–Distance–Intensity (CDI) verification*)
- 3. SAL (Structure/Amplitude/Location) Verification**)
- 4. FSS (Fraction Skill Score) verification***)
- 5. Standard evaluation at the grid scale
- 6. Categorical analysis (Contingency tables and predictands)
- 7. Cross- (space-lag) correlation approach and verification

^{*)} Wilkinson, 2017: A technique for verification of convection-permitting NWP model deterministic forecasts of lightning activity. Wea. Forecasting, 32, 97–115

^{**)} Wernli *et al.*, 2008, SAL – a Novel Quality Measure for the Verification of Quantitative Precipitation Forecasts, Mon.Wea.Rev.136(11):4470–4487,https://doi.org/10.1175/2008MWR2415.1

^{***)} Blaylock and Horel, 2020: Comparison of Lightning Forecasts from the High-Resolution Rapid Refresh Model to Geostationary Lightning Mapper Observations, Wea. Forecasting 35, 402-416 Survey for assessment of proper verification of phenomena Categorical analysis based on contingency tables

Contingency tables:	Forecast	Event observed			
	given	Yes		No	
	Yes	Hit (a)		False alarm (c)	
	No	Miss (c)		Correct non event (d)	
Basic predictands used:	def. n=a+b·	f. n=a+b+c+d		range	perfect
Frequency Bias Index	(a+b)/(a+c)		-inf to +inf		1
False Alarm Ratio	b/(a+b)		0 to 1		0
Probability Of Detection	a/(a+c)			0 to 1	1
Probability Of False Detection	b/(b+d)			0 to 1	0
Threat Score	a/(a+b+c)			0 to 1	1
True Skill Statistics	(ad-bc)/((a+c)(b+d))			-1 to 1	1
Equitable Skill Score	(a-ar)/(a+b+c-ar); ar=(a+b)(a+c)/n		-1/3 to 1		1
Proportion Correct	(a+d)/(a+b+	(a+d)/(a+b+c+d)		0 to 1	1
Success Ratio	a/(a+b)	a/(a+b)		0 to 1	1

Survey for assessment of proper verification of phenomena

Space lag (cross-) correlation (reminder)

Survey for assessment of proper verification of phenomena

Space lag (cross-) correlation (reminder)

Calculate coordinates of "centres of mass" for both distribution patterns (obs. vs. fcst)

Compute vector of displacement of fcst to obs. as a difference of the two above

Space lag (cross-) correlation

Forecast – observation; lightning frequency

Raw FLR

VOD FLR

Space lag (cross-) correlation

Forecast – observation; Visibility Range

Raw VIS

VOD VIS

- 1. Test period for direct- and VOD-verification extended to 2011-2017
- 2. SAL and/or FSS and/or categorical verification for the above period has been applied (both for direct and VOD approach).
- 3. Continuous and discrete verification done, to be in details compared with each other.
- 4. Connect the results appropriately to subtasks 3.1 and 4.2
- Results will be shown. Very soon. And further conclusions to be drawn. Soon...