

TERRA and EXTPAR at DWD

Jürgen Helmert and colleagues from FE1

- Reformulation of land-surface processes (implicit approach, skin layer, canopy)
- Revision of TERRA hydrology including new transport formulation \rightarrow EXTPAR
- Further steps towards land-use based physics (e.g. MIRES see later)
- Cooperation with **AEVUS** on urban model in ICON
- Cooperation with **SAINT** on implementation of a new snow pack model in ICON
- Cooperation with VAINT on implementation of a vegetation model in ICON
- Implementation of COSMO software for EXTPAR at DWD

ESA CCI* Land-use data in ICON

*climate change initiative

DWD 10101 0000 0-0 h surface 0 SOILTYP Numeric mean: 8.00 std: 0.00 min: 8.00 max: 8.00

ICON 0026_R03B07_G ESA CCI LU_CLASS_FRAC 32

Outcome from COSMO-D2 experiments with MIRE

parameterization:

• New land-use data (ESA CCI) can provide improved

representation of active mires compared to FAO

- Advantages of ESA CCI:
 - Higher resolution (compared to FAO soil)
 - Higher granularity compared to GlobCover2009 (38

vs. 23 land-use classes and full global coverage)

• Periodic updates (advantage in reanalysis projects)

ESA CCI for peatlands

Deutscher Wetterdienst Wetter und Klima aus einer Hand

- Implementation of ESA CCI in EXTPAR (Q1/2020)
- Global ICON R03B07 with ICON-EU Nest R03B08
- 3 months 2018-06-15 to 2018-09-15
- Free forecasts at 00 and 12 UTC, started from operational analysis
- Using the same code basis from gitlab (except for land-use adaptions)
- Experiment **11029** (**ESA CCI** with 38 land-use classes)
- Experiment **11079** Reference **Globcover/GLCC** (**GCV**) with 23 land-use classes

J. Helmert et al., COSMO GM 2020

ast time [h]

Difference in ETS:

• GUSTS

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Upper air verification Antarctica: Using ESA CCI: 11029

- Warming of boundary layer
- For reason see following slides

Surface albedo – EXTPAR GlobCover/GLCC

Surface albedo – EXTPAR ESA CCI

- Implementation of ESA CCI land-use data into EXTPAR and ICON
- Running global ICON free forecasts experiments for 3 months at 13 km with ICON-EU nest
- Verification showed for most parameters neutral impact of ESA CCI compared to GlobCover/GLCC
- Problems arised for Antarctica due to very different land-sea mask
- Main difference seen for temperature
- Could explain to some part upper air cold bias in ICON as

reported by G. Zängl, see following slides

First Summary &

Conclusions:

ICON retuning experiments

Deutscher Wetterdienst Wetter und Klima aus einer Hand

ICON retuning experiments

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Global distribution of radiosondes

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Antarctic sea ice extent in December 2013 (white) compared to the 1981-2010 median (orange line). Land is dark gray, and ice shelves—floating ice platforms connected to land—are light gray. Waters with sea ice concentration less than 15% are dark blue. Commonwealth Bay was unusually ice-choked.

Radiosondes stations close to shoreline, where polynyas reside

- WG3b projects at DWD on track
 - Reformulation of land-surface processes, Mires in ICON
 - Revision of TERRA hydrology including new transport formulation
- Cooperation with projects **AEVUS**, **SAINT**, **VAINT**
- Useful development benefits between EXTPAR and TERRA, e.g. ESA CCI
- More improvements to come soon (global hires orography by MERIT)
- Working on improvements of ICON for Antarctica (ESA CCI, Sea-Ice, Polynya)

- Working on improvements of ICON for Antarctica (ESA CCI, Sea-Ice, Polynya)
 - Experiments using ESA CCI created artificial polynyas
 - Warming of boundary layer observed compared to radiosondes near shoreline
 - Could explain in parts ICON's cold bias
 - Adaptions in sea-ice scheme and sea-ice analysis needed for consistent

treatment of land-sea mask in analysis and forecast

Thank you very much

Special acknowledgements to Günther Zängl, Christian Koziar, and Felix Fundel

