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Calibration framework: Determining optimal parameter values
The calibration approach based on Bellprat et al. 2012, 2016: 
Relies on a statistical approximation of a climate model (i.e. metamodel) that 
predicts the model response to parameter configurations. 

TABLE 2. Perturbed parameters in (top) SHORT and (bottom) LONG. The bold entries denote the default value in CCLM. For all
parameters a minimum and maximum bound is tested, while some individual parameters have been tested more extensively in addition to
that. SHORT is designed to identify important model parameters. In LONG multiple parameters are changed at a time, summarized in
the second part of the table.

Parameter/property Acronym Value

SHORT
Turbulence

Minimal diffusion coefficients for heat (m2 s21) Tkhmin [0, 1, 2]
Minimal diffusion coefficients for momentum (m2 s21) Tkmmin [0, 1, 2]
Turbulent length scale (m) turb_len [100, 500, 1000]
Factor for turbulent heat dissipation d_heat [12, 15, 10.1]
Factor for turbulent momentum dissipation d_mom [12, 15, 16.6]
Factor for turbulent diffusion of TKE c_diff [0.01, 0.2, 10]

Land surface
Scalar for laminar boundary layer roughness rlam_heat [0.1, 1, 3, 5, 10]
Scalar for laminar boundary layer roughness sea rat_sea [1, 10, 20, 50, 100]
Factor for canopy height rat_can [0, 1, 10]
Ratio of laminar boundary layer thickness for q and h rat_lam [0.1, 1, 10]
Surface area index of the waves over sea c_sea [1, 1.5, 5, 10]
Surface area index of the (evaporative) soil c_soil [0, 1, 10]
Surface area index of grid points over land c_lnd [1, 2, 10]
Roughness length of a typical synoptic station (m) z0m_dia [0.001, 0.1, 10]
Length scale of subscale surface patterns over land (m) patlen [10, 100, 500, 1000]
Exponent to get the effective surface area e_surf [0.1, 1.5, 10]
Stomata resistance crsmin [50, 200, 300]

Convection
Fractional mass flux for downdrafts at LFS rmfdeps [0.2, 0.35, 0.5]
Assumed convective cloud cover (%) rcucov [0.01, 0.05, 0.5]
Factor for the time scale for cape closure rtau [0.5, 1, 1.5]
Coefficient for determining conversion from cloud water to rain rprcon [0.000 15, 0.001, 0.0015, 0.002, 0.015]
Penetrative entrainment rate (1 m21) entrpen [4e-5, 8e-5, 12e-5]
Midlevel entrainment rate (1 m21) entrmid [4e-5, 8e-5, 12e-5]
Entrainment rate for shallow convection (1 m21) entrsc [5e-5, 1e-4, 3e-4, 1e-3, 2e-3]

Microphysics
Cloud droplet concentration (1 m23) cloud_num [5e7, 5e8, 1e9]
Cloud water threshold for autoconversion qi0 [0, 0.000 01, 0.0001, 0.001, 0.01]
Separating mass between cloud and rain (kg) zxstar [3.36e-11, 2.6e-10, 7.25e-09]
Factor for fall velocity of snow zv0s [10, 15, 30]

Radiation
Subgrid-scale cloud height scalar uc1 [0.2, 0.5, 0.8]
Critical value for normalized oversaturation q_crit [1, 4, 7, 10]
Cloud cover at saturation in statistical cloud diagnostic clc_diag [0.2, 0.5, 0.8]
Interval (in time steps) between two calls of the radiation scheme hincrad [0.5, 0.75, 1]
Convective subgrid cloud scalar conv_clc [0.7, 1, 1.3]

LONG
Physics

Convection scheme type iconv_type IFS, Tiedtke
Subgrid-scale orography lsso On, off
Transport of rain and snow ltrans_prec On, off
Prognostic rain and snow lprogprec On, off
Cloud water and cloud ice itype_gscp On, off
Stomata resistance (s m21) crsmin [150, 300]
Length scale of subscale surface patterns over land (m) patlen [200, 500]

Numerics
Numerical scheme LF, RK Leapfrog or Runge–Kutta
Asselin filter alphaass [0.5, 0.7, 1.0]
Correction factor for horizontal diffusion of moisture hd_corr_q [0, 0.25, 0.5]
Correction factor for horizontal diffusion of temperature hd_corr_t [0, 0.25, 0.375, 0.75]
Correction factor for horizontal diffusion of u, y, w hd_corr_u [0.25, 0.375, 0.75, 1]
Interval running the convection scheme nincconv [1, 2]
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has been applied to coarse-resolution global model
simulations (Bracco et al. 2013) and high-resolution re-
gional model simulations over Europe (B12). For both
types of applications, the metamodel proved to reproduce
with high accuracy the response of the climatemodelwhen
model parameters were altered. The number of model
simulations required to estimate the metamodel is small,
which makes this emulator suitable for computationally
demanding climate models such as RCMs. More specifi-
cally, for each parameter two simulations using aminimum
and maximum value have to be carried out to sample the
boarders of the multidimensional parameter space (see
Fig. 3 for illustration of simulation design). Parameter in-
teractions are accounted for by changing two parameter
values to either theminimum value or themaximum value
at the same time for all possible parameter pairs. This
gives a total number of 2N 1 N(N 2 1)/2 5 44 simu-
lations, each 5-yr long, which are required to estimate
the metamodel with eight model parameters (N 5 8,
the number of parameters considered).
The interactions of parameters can hence be sampled

with four different experiments capturing all four corners
in the pairwise plane. To increase the accuracy of the pa-
rameter interaction terms, additional simulations ac-
counting for all different combinations have been carried
out as described in B12. This leads to an additional 84
simulations for the eight parameters considered in this
study. The effect of the parameter interactions is, however,

small (B12; Bracco et al. 2013) and thus additional simu-
lations have only been carriedout for the calibrationofEU.
Finally, one million parameter configurations are

evaluated with the metamodel to determine the optimal
parameter configuration. The parameter configurations
are sampled using a Latin hypercube design (McKay
et al. 2000; Gregoire et al. 2011). The verification of the
calibration is based on a long RCM simulation using the
OPT settings. This simulation spans the same period as
REF (1990–2008). It includes the 5-yr calibration period
but also 14 additional and independent years.

3. Results

a. Calibration results

1) EUROPE

We describe in this section the calibration results by
comparingREF, which has not previously been calibrated
using an objective approach (Rockel et al. 2008), with the
calibrated simulation (OPT) over both continents. The
simulation OPT is based on the calibration framework
over Europe andNorthAmerica (section 1) using the two
optimal parameter configurations that have been de-
termined. The two settings will be compared in section 3b.
The mean seasonal biases of REF and OPT are shown in
Figs. 4 and 5 for Europe and Figs. 6 and 7 for North
America, and the corresponding seasonal biases in in-
terannual temperature variability are shown in Figs. 8 and
9, respectively. The biases are related to the magnitude of
biases simulated by other RCMs and, when reported in
the literature they are accompanied with suggested rea-
sons leading to these biases.
The REF simulations over Europe show a large warm

bias in summer over the Mediterranean region, eastern
Europe, and the Iberian Peninsula (for regions refer to
definitions in Fig. 2). Suggested reasons are diverse, al-
though they have mainly been discussed in the context
of biases in land surface coupling (e.g., Rowell and Jones
2006; Vidale et al. 2007; Bellprat et al. 2013; Seneviratne
et al. 2013). The overestimation of temperature is ac-
companied by an underestimation of total precipitation
and cloud cover as shown in the middle and bottom
panels of Fig. 4 as well as by amoisture deficit in the soils
as discussed in Fischer et al. (2007). The correlation of
the pattern of these biases illustrates the complex in-
teractions of processes involved and disentangling these
has been the focus of several recent studies (Fischer
et al. 2007; Jaeger et al. 2008; Sutton et al. 2007; Davin
et al. 2011; Cattiaux et al. 2013; Boé and Terray 2014).
A large fraction of the summer temperature and

precipitation biases is reduced over the Mediterranean

FIG. 3. Illustration of design points required in order to estimate
the metamodel. The center is given by the REF simulation using
default parameter values. For each parameter a min and a max
value needs to be simulated to sample the borders (axial points) of
each pairwise parameter plane. The interaction of the two pa-
rameters is sampled by one of the four corner points.
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Example
1. Reference simulation with all parameter 

at the default value (1 simulation)
2. Sensitivity simulations with one of the 

parameters set to either extreme value 
(2*N simulations)

3. Sensitivity simulations where 2 different 
parameters are set to either extreme 
value  (N*(N-1)/2  pairs with 4 possible 
combinations => 2*N*(N-1) simulations)

4. A total of 1 + 2*N*N simulations 

for N=8: 129 simulations
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Example
Performance score (PS)
Same as in in Bellprat et al. 2012

Observations are used to assess the performance. 

Observations of 
• 2m temperature (T2M, E-OBS)
• Precipitation (PR, E-OBS) 
• total cloud cover (CLCT, CRU) 

the default Tiedtke convection scheme [Tiedtke, 1989]. In
addition the aerosol climatology has been changed from an
default climatology of Tanré et al. [1984] to the higher res-
olution AEROCOM climatology [Kinne et al., 2006], which
provides more realistic estimates of aerosol loadings over
Europe [Zubler et al., 2011]. Further changes include a sat-
ellite derived soil albedo field from the MODIS sensor and a
plant albedo field [Houldcroft et al., 2009].
[13] The domain of the RCM covers a greater European

region at a resolution of 0.44! as shown in Figure 1 with
contours representing the model topography. The black
boxes show climatic regions commonly termed PRUDENCE
regions on which the analysis for this study is based. In order
to be consistent with B11 we focus on the same time period
from 1990 to 2000. For this period a reference simulation
(REF) has been performed with model settings derived from
an expert tuning process for the Coordinated Regional cli-
mate Downscaling Experiment over Europe (CORDEX,
www.euro-cordex.net). Furthermore an initial condition
ensemble with of five simulations from 1990 to 2000 with 6
hourly shifts of the initialization time was conducted to
determine the model’s internal variability. Due to computa-
tional constraints, the number of simulations in this ensemble
is kept at a lower limit but is consistent with other studies
assessing the internal variability of RCMs [e.g., Roesch et al.,
2008]. The simulations used to find optimal parameter con-
figurations and to determine the accuracy of the metamodel
are restricted to the 5-year period from 1994 to 1998 which is
a sufficient integration length to reach convergence of the

adopted skill metrics (see B11). These experiments were
initialized with the equilibrium state as obtained from the
reference simulation.

2.2. Validation Framework
[14] The parameter optimization of requires a framework to

objectively assess model performance against observations.
There are many ways how to measure the performance of a
climate model, with choices regarding the metrics, model
variables and data sets. Although there is some guidance for
the validation climate models different approaches often lead
to controversial outcomes [Gleckler et al., 2008]. The perfor-
mance of models is typically assessed with some distance
measure between the model and observations [Perkins et al.,
2007; Christensen et al., 2010]. Since one variable might be
improved at the expense of some other [Jones et al., 2005;
Vidale et al., 2003], several studies use a multivariate frame-
work including several variables which represent dominant
climate processes, as e.g. top of the atmosphere radiation,
surface radiation balance, mean sea level pressure and total
cloud cover [Gleckler et al., 2008].
[15] In this study we use the validation framework pre-

sented in B11. Model performance is expressed as a function
of 2 m temperature (T2M), precipitation (PR) and total cloud
cover (CLCT). This allows to validate the variables that are
often of primary interest (T2M, PR) and an additional pro-
cess variable (CLCT) which plays an important role in the
interaction of the three variables [Jaeger et al., 2008] and
which is one of the major sources of uncertainty in climate
change projections [Intergovernmental Panel on Climate
Change (IPCC), 2007]. The variables are validated using
interannual time series of monthly means, averaged spatially
for eight distinct climatic regions in Europe (PRUDENCE
regions, see Figure 1). The error of these time series is
measured using a performance index (PI ),
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which is a least squares estimation scaled by the interannual
variability and including two sources of uncertainty, namely
the internal variability and the observational uncertainty. The
brackets in (1) denote the mean of monthly time series from
1994 to 1998 (T = 60 monthly averages), averaged over each
PRUDENCE region (R = 8 regions), and for the three model
variables (T2M, PR, CLCT, V = 3). PI is therefore the mean
of R ' T ' V = 1440 least squares errors between the model (m)
and the observations (o), scaled by the interannual variability
(so) expressed as the standard deviations of the observations
(1990–2000), the observational uncertainty (so!) derived
from different reference data sets, and the internal variability
(siv) of the regional model derived from the initial condition
ensemble. The uncertainty terms in the denominator of PI
have the same dimensions as the spatiotemporal means.
Further details about PI, including information about the
choice of the observational data sets, can be found in B11.
[16] The error PI is consequently transformed into a pos-

itive defined performance score (PS), which is an approxi-
mation of the Gaussian likelihood:

PS ¼ exp #0:5PI2
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Figure 1. Model domain and PRUDENCE analysis
regions: BI = British Isles, FR = France, IP = Iberian Penin-
sula, MD = Mediterranean, AL = Alps, ME = Mid-Europe,
EA = Eastern Europe. The domain has a rotated pole and a
resolution of 0.44! ((50 km).
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the default Tiedtke convection scheme [Tiedtke, 1989]. In
addition the aerosol climatology has been changed from an
default climatology of Tanré et al. [1984] to the higher res-
olution AEROCOM climatology [Kinne et al., 2006], which
provides more realistic estimates of aerosol loadings over
Europe [Zubler et al., 2011]. Further changes include a sat-
ellite derived soil albedo field from the MODIS sensor and a
plant albedo field [Houldcroft et al., 2009].
[13] The domain of the RCM covers a greater European

region at a resolution of 0.44! as shown in Figure 1 with
contours representing the model topography. The black
boxes show climatic regions commonly termed PRUDENCE
regions on which the analysis for this study is based. In order
to be consistent with B11 we focus on the same time period
from 1990 to 2000. For this period a reference simulation
(REF) has been performed with model settings derived from
an expert tuning process for the Coordinated Regional cli-
mate Downscaling Experiment over Europe (CORDEX,
www.euro-cordex.net). Furthermore an initial condition
ensemble with of five simulations from 1990 to 2000 with 6
hourly shifts of the initialization time was conducted to
determine the model’s internal variability. Due to computa-
tional constraints, the number of simulations in this ensemble
is kept at a lower limit but is consistent with other studies
assessing the internal variability of RCMs [e.g., Roesch et al.,
2008]. The simulations used to find optimal parameter con-
figurations and to determine the accuracy of the metamodel
are restricted to the 5-year period from 1994 to 1998 which is
a sufficient integration length to reach convergence of the

adopted skill metrics (see B11). These experiments were
initialized with the equilibrium state as obtained from the
reference simulation.
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climate model, with choices regarding the metrics, model
variables and data sets. Although there is some guidance for
the validation climate models different approaches often lead
to controversial outcomes [Gleckler et al., 2008]. The perfor-
mance of models is typically assessed with some distance
measure between the model and observations [Perkins et al.,
2007; Christensen et al., 2010]. Since one variable might be
improved at the expense of some other [Jones et al., 2005;
Vidale et al., 2003], several studies use a multivariate frame-
work including several variables which represent dominant
climate processes, as e.g. top of the atmosphere radiation,
surface radiation balance, mean sea level pressure and total
cloud cover [Gleckler et al., 2008].
[15] In this study we use the validation framework pre-

sented in B11. Model performance is expressed as a function
of 2 m temperature (T2M), precipitation (PR) and total cloud
cover (CLCT). This allows to validate the variables that are
often of primary interest (T2M, PR) and an additional pro-
cess variable (CLCT) which plays an important role in the
interaction of the three variables [Jaeger et al., 2008] and
which is one of the major sources of uncertainty in climate
change projections [Intergovernmental Panel on Climate
Change (IPCC), 2007]. The variables are validated using
interannual time series of monthly means, averaged spatially
for eight distinct climatic regions in Europe (PRUDENCE
regions, see Figure 1). The error of these time series is
measured using a performance index (PI ),
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which is a least squares estimation scaled by the interannual
variability and including two sources of uncertainty, namely
the internal variability and the observational uncertainty. The
brackets in (1) denote the mean of monthly time series from
1994 to 1998 (T = 60 monthly averages), averaged over each
PRUDENCE region (R = 8 regions), and for the three model
variables (T2M, PR, CLCT, V = 3). PI is therefore the mean
of R ' T ' V = 1440 least squares errors between the model (m)
and the observations (o), scaled by the interannual variability
(so) expressed as the standard deviations of the observations
(1990–2000), the observational uncertainty (so!) derived
from different reference data sets, and the internal variability
(siv) of the regional model derived from the initial condition
ensemble. The uncertainty terms in the denominator of PI
have the same dimensions as the spatiotemporal means.
Further details about PI, including information about the
choice of the observational data sets, can be found in B11.
[16] The error PI is consequently transformed into a pos-
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1. Reference simulation with all parameter 
at the default value (1 simulation)

2. Sensitivity simulations with one of the 
parameters set to either extreme value 
(2*N simulations)

3. Sensitivity simulations where 2 different 
parameters are set to either extreme 
value  (N*(N-1)/2  pairs with 4 possible 
combinations => 2*N*(N-1) simulations)

4. A total of 1 + 2*N*N simulations 

for N=8: 129 simulations



the default Tiedtke convection scheme [Tiedtke, 1989]. In
addition the aerosol climatology has been changed from an
default climatology of Tanré et al. [1984] to the higher res-
olution AEROCOM climatology [Kinne et al., 2006], which
provides more realistic estimates of aerosol loadings over
Europe [Zubler et al., 2011]. Further changes include a sat-
ellite derived soil albedo field from the MODIS sensor and a
plant albedo field [Houldcroft et al., 2009].
[13] The domain of the RCM covers a greater European

region at a resolution of 0.44! as shown in Figure 1 with
contours representing the model topography. The black
boxes show climatic regions commonly termed PRUDENCE
regions on which the analysis for this study is based. In order
to be consistent with B11 we focus on the same time period
from 1990 to 2000. For this period a reference simulation
(REF) has been performed with model settings derived from
an expert tuning process for the Coordinated Regional cli-
mate Downscaling Experiment over Europe (CORDEX,
www.euro-cordex.net). Furthermore an initial condition
ensemble with of five simulations from 1990 to 2000 with 6
hourly shifts of the initialization time was conducted to
determine the model’s internal variability. Due to computa-
tional constraints, the number of simulations in this ensemble
is kept at a lower limit but is consistent with other studies
assessing the internal variability of RCMs [e.g., Roesch et al.,
2008]. The simulations used to find optimal parameter con-
figurations and to determine the accuracy of the metamodel
are restricted to the 5-year period from 1994 to 1998 which is
a sufficient integration length to reach convergence of the

adopted skill metrics (see B11). These experiments were
initialized with the equilibrium state as obtained from the
reference simulation.

2.2. Validation Framework
[14] The parameter optimization of requires a framework to

objectively assess model performance against observations.
There are many ways how to measure the performance of a
climate model, with choices regarding the metrics, model
variables and data sets. Although there is some guidance for
the validation climate models different approaches often lead
to controversial outcomes [Gleckler et al., 2008]. The perfor-
mance of models is typically assessed with some distance
measure between the model and observations [Perkins et al.,
2007; Christensen et al., 2010]. Since one variable might be
improved at the expense of some other [Jones et al., 2005;
Vidale et al., 2003], several studies use a multivariate frame-
work including several variables which represent dominant
climate processes, as e.g. top of the atmosphere radiation,
surface radiation balance, mean sea level pressure and total
cloud cover [Gleckler et al., 2008].
[15] In this study we use the validation framework pre-

sented in B11. Model performance is expressed as a function
of 2 m temperature (T2M), precipitation (PR) and total cloud
cover (CLCT). This allows to validate the variables that are
often of primary interest (T2M, PR) and an additional pro-
cess variable (CLCT) which plays an important role in the
interaction of the three variables [Jaeger et al., 2008] and
which is one of the major sources of uncertainty in climate
change projections [Intergovernmental Panel on Climate
Change (IPCC), 2007]. The variables are validated using
interannual time series of monthly means, averaged spatially
for eight distinct climatic regions in Europe (PRUDENCE
regions, see Figure 1). The error of these time series is
measured using a performance index (PI ),
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which is a least squares estimation scaled by the interannual
variability and including two sources of uncertainty, namely
the internal variability and the observational uncertainty. The
brackets in (1) denote the mean of monthly time series from
1994 to 1998 (T = 60 monthly averages), averaged over each
PRUDENCE region (R = 8 regions), and for the three model
variables (T2M, PR, CLCT, V = 3). PI is therefore the mean
of R ' T ' V = 1440 least squares errors between the model (m)
and the observations (o), scaled by the interannual variability
(so) expressed as the standard deviations of the observations
(1990–2000), the observational uncertainty (so!) derived
from different reference data sets, and the internal variability
(siv) of the regional model derived from the initial condition
ensemble. The uncertainty terms in the denominator of PI
have the same dimensions as the spatiotemporal means.
Further details about PI, including information about the
choice of the observational data sets, can be found in B11.
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Calibration framework: Determining optimal parameter values
The calibration approach: 
Relies on a statistical approximation of a climate model (i.e. metamodel) that 
predicts the model response to parameter configurations. 

The metamodel is a multivariate quadratic regression model (Neelin et al. 
2010, Bellprat et al. 2012, 2016), that takes into account none-linear 
behavior and parameter interaction.

To build the metamodel requires RCM simulations that sample the edges 
and the centre of the dimensional parameter space, where the size of the 
dimension depends on the number of tuning parameters.

TABLE 2. Perturbed parameters in (top) SHORT and (bottom) LONG. The bold entries denote the default value in CCLM. For all
parameters a minimum and maximum bound is tested, while some individual parameters have been tested more extensively in addition to
that. SHORT is designed to identify important model parameters. In LONG multiple parameters are changed at a time, summarized in
the second part of the table.

Parameter/property Acronym Value

SHORT
Turbulence

Minimal diffusion coefficients for heat (m2 s21) Tkhmin [0, 1, 2]
Minimal diffusion coefficients for momentum (m2 s21) Tkmmin [0, 1, 2]
Turbulent length scale (m) turb_len [100, 500, 1000]
Factor for turbulent heat dissipation d_heat [12, 15, 10.1]
Factor for turbulent momentum dissipation d_mom [12, 15, 16.6]
Factor for turbulent diffusion of TKE c_diff [0.01, 0.2, 10]

Land surface
Scalar for laminar boundary layer roughness rlam_heat [0.1, 1, 3, 5, 10]
Scalar for laminar boundary layer roughness sea rat_sea [1, 10, 20, 50, 100]
Factor for canopy height rat_can [0, 1, 10]
Ratio of laminar boundary layer thickness for q and h rat_lam [0.1, 1, 10]
Surface area index of the waves over sea c_sea [1, 1.5, 5, 10]
Surface area index of the (evaporative) soil c_soil [0, 1, 10]
Surface area index of grid points over land c_lnd [1, 2, 10]
Roughness length of a typical synoptic station (m) z0m_dia [0.001, 0.1, 10]
Length scale of subscale surface patterns over land (m) patlen [10, 100, 500, 1000]
Exponent to get the effective surface area e_surf [0.1, 1.5, 10]
Stomata resistance crsmin [50, 200, 300]

Convection
Fractional mass flux for downdrafts at LFS rmfdeps [0.2, 0.35, 0.5]
Assumed convective cloud cover (%) rcucov [0.01, 0.05, 0.5]
Factor for the time scale for cape closure rtau [0.5, 1, 1.5]
Coefficient for determining conversion from cloud water to rain rprcon [0.000 15, 0.001, 0.0015, 0.002, 0.015]
Penetrative entrainment rate (1 m21) entrpen [4e-5, 8e-5, 12e-5]
Midlevel entrainment rate (1 m21) entrmid [4e-5, 8e-5, 12e-5]
Entrainment rate for shallow convection (1 m21) entrsc [5e-5, 1e-4, 3e-4, 1e-3, 2e-3]

Microphysics
Cloud droplet concentration (1 m23) cloud_num [5e7, 5e8, 1e9]
Cloud water threshold for autoconversion qi0 [0, 0.000 01, 0.0001, 0.001, 0.01]
Separating mass between cloud and rain (kg) zxstar [3.36e-11, 2.6e-10, 7.25e-09]
Factor for fall velocity of snow zv0s [10, 15, 30]

Radiation
Subgrid-scale cloud height scalar uc1 [0.2, 0.5, 0.8]
Critical value for normalized oversaturation q_crit [1, 4, 7, 10]
Cloud cover at saturation in statistical cloud diagnostic clc_diag [0.2, 0.5, 0.8]
Interval (in time steps) between two calls of the radiation scheme hincrad [0.5, 0.75, 1]
Convective subgrid cloud scalar conv_clc [0.7, 1, 1.3]

LONG
Physics

Convection scheme type iconv_type IFS, Tiedtke
Subgrid-scale orography lsso On, off
Transport of rain and snow ltrans_prec On, off
Prognostic rain and snow lprogprec On, off
Cloud water and cloud ice itype_gscp On, off
Stomata resistance (s m21) crsmin [150, 300]
Length scale of subscale surface patterns over land (m) patlen [200, 500]

Numerics
Numerical scheme LF, RK Leapfrog or Runge–Kutta
Asselin filter alphaass [0.5, 0.7, 1.0]
Correction factor for horizontal diffusion of moisture hd_corr_q [0, 0.25, 0.5]
Correction factor for horizontal diffusion of temperature hd_corr_t [0, 0.25, 0.375, 0.75]
Correction factor for horizontal diffusion of u, y, w hd_corr_u [0.25, 0.375, 0.75, 1]
Interval running the convection scheme nincconv [1, 2]
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has been applied to coarse-resolution global model
simulations (Bracco et al. 2013) and high-resolution re-
gional model simulations over Europe (B12). For both
types of applications, the metamodel proved to reproduce
with high accuracy the response of the climatemodelwhen
model parameters were altered. The number of model
simulations required to estimate the metamodel is small,
which makes this emulator suitable for computationally
demanding climate models such as RCMs. More specifi-
cally, for each parameter two simulations using aminimum
and maximum value have to be carried out to sample the
boarders of the multidimensional parameter space (see
Fig. 3 for illustration of simulation design). Parameter in-
teractions are accounted for by changing two parameter
values to either theminimum value or themaximum value
at the same time for all possible parameter pairs. This
gives a total number of 2N 1 N(N 2 1)/2 5 44 simu-
lations, each 5-yr long, which are required to estimate
the metamodel with eight model parameters (N 5 8,
the number of parameters considered).
The interactions of parameters can hence be sampled

with four different experiments capturing all four corners
in the pairwise plane. To increase the accuracy of the pa-
rameter interaction terms, additional simulations ac-
counting for all different combinations have been carried
out as described in B12. This leads to an additional 84
simulations for the eight parameters considered in this
study. The effect of the parameter interactions is, however,

small (B12; Bracco et al. 2013) and thus additional simu-
lations have only been carriedout for the calibrationofEU.
Finally, one million parameter configurations are

evaluated with the metamodel to determine the optimal
parameter configuration. The parameter configurations
are sampled using a Latin hypercube design (McKay
et al. 2000; Gregoire et al. 2011). The verification of the
calibration is based on a long RCM simulation using the
OPT settings. This simulation spans the same period as
REF (1990–2008). It includes the 5-yr calibration period
but also 14 additional and independent years.

3. Results

a. Calibration results

1) EUROPE

We describe in this section the calibration results by
comparingREF, which has not previously been calibrated
using an objective approach (Rockel et al. 2008), with the
calibrated simulation (OPT) over both continents. The
simulation OPT is based on the calibration framework
over Europe andNorthAmerica (section 1) using the two
optimal parameter configurations that have been de-
termined. The two settings will be compared in section 3b.
The mean seasonal biases of REF and OPT are shown in
Figs. 4 and 5 for Europe and Figs. 6 and 7 for North
America, and the corresponding seasonal biases in in-
terannual temperature variability are shown in Figs. 8 and
9, respectively. The biases are related to the magnitude of
biases simulated by other RCMs and, when reported in
the literature they are accompanied with suggested rea-
sons leading to these biases.
The REF simulations over Europe show a large warm

bias in summer over the Mediterranean region, eastern
Europe, and the Iberian Peninsula (for regions refer to
definitions in Fig. 2). Suggested reasons are diverse, al-
though they have mainly been discussed in the context
of biases in land surface coupling (e.g., Rowell and Jones
2006; Vidale et al. 2007; Bellprat et al. 2013; Seneviratne
et al. 2013). The overestimation of temperature is ac-
companied by an underestimation of total precipitation
and cloud cover as shown in the middle and bottom
panels of Fig. 4 as well as by amoisture deficit in the soils
as discussed in Fischer et al. (2007). The correlation of
the pattern of these biases illustrates the complex in-
teractions of processes involved and disentangling these
has been the focus of several recent studies (Fischer
et al. 2007; Jaeger et al. 2008; Sutton et al. 2007; Davin
et al. 2011; Cattiaux et al. 2013; Boé and Terray 2014).
A large fraction of the summer temperature and

precipitation biases is reduced over the Mediterranean

FIG. 3. Illustration of design points required in order to estimate
the metamodel. The center is given by the REF simulation using
default parameter values. For each parameter a min and a max
value needs to be simulated to sample the borders (axial points) of
each pairwise parameter plane. The interaction of the two pa-
rameters is sampled by one of the four corner points.
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Example Performance score (PS)
Same as in in Bellprat et al. 2012
Observations are used to assess the 
performance. 

Observations of 
• 2m temperature (T2M, E-OBS)
• Precipitation (PR, E-OBS) 
• total cloud cover (CLCT, CRU) 

the default Tiedtke convection scheme [Tiedtke, 1989]. In
addition the aerosol climatology has been changed from an
default climatology of Tanré et al. [1984] to the higher res-
olution AEROCOM climatology [Kinne et al., 2006], which
provides more realistic estimates of aerosol loadings over
Europe [Zubler et al., 2011]. Further changes include a sat-
ellite derived soil albedo field from the MODIS sensor and a
plant albedo field [Houldcroft et al., 2009].
[13] The domain of the RCM covers a greater European

region at a resolution of 0.44! as shown in Figure 1 with
contours representing the model topography. The black
boxes show climatic regions commonly termed PRUDENCE
regions on which the analysis for this study is based. In order
to be consistent with B11 we focus on the same time period
from 1990 to 2000. For this period a reference simulation
(REF) has been performed with model settings derived from
an expert tuning process for the Coordinated Regional cli-
mate Downscaling Experiment over Europe (CORDEX,
www.euro-cordex.net). Furthermore an initial condition
ensemble with of five simulations from 1990 to 2000 with 6
hourly shifts of the initialization time was conducted to
determine the model’s internal variability. Due to computa-
tional constraints, the number of simulations in this ensemble
is kept at a lower limit but is consistent with other studies
assessing the internal variability of RCMs [e.g., Roesch et al.,
2008]. The simulations used to find optimal parameter con-
figurations and to determine the accuracy of the metamodel
are restricted to the 5-year period from 1994 to 1998 which is
a sufficient integration length to reach convergence of the

adopted skill metrics (see B11). These experiments were
initialized with the equilibrium state as obtained from the
reference simulation.

2.2. Validation Framework
[14] The parameter optimization of requires a framework to

objectively assess model performance against observations.
There are many ways how to measure the performance of a
climate model, with choices regarding the metrics, model
variables and data sets. Although there is some guidance for
the validation climate models different approaches often lead
to controversial outcomes [Gleckler et al., 2008]. The perfor-
mance of models is typically assessed with some distance
measure between the model and observations [Perkins et al.,
2007; Christensen et al., 2010]. Since one variable might be
improved at the expense of some other [Jones et al., 2005;
Vidale et al., 2003], several studies use a multivariate frame-
work including several variables which represent dominant
climate processes, as e.g. top of the atmosphere radiation,
surface radiation balance, mean sea level pressure and total
cloud cover [Gleckler et al., 2008].
[15] In this study we use the validation framework pre-

sented in B11. Model performance is expressed as a function
of 2 m temperature (T2M), precipitation (PR) and total cloud
cover (CLCT). This allows to validate the variables that are
often of primary interest (T2M, PR) and an additional pro-
cess variable (CLCT) which plays an important role in the
interaction of the three variables [Jaeger et al., 2008] and
which is one of the major sources of uncertainty in climate
change projections [Intergovernmental Panel on Climate
Change (IPCC), 2007]. The variables are validated using
interannual time series of monthly means, averaged spatially
for eight distinct climatic regions in Europe (PRUDENCE
regions, see Figure 1). The error of these time series is
measured using a performance index (PI ),
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which is a least squares estimation scaled by the interannual
variability and including two sources of uncertainty, namely
the internal variability and the observational uncertainty. The
brackets in (1) denote the mean of monthly time series from
1994 to 1998 (T = 60 monthly averages), averaged over each
PRUDENCE region (R = 8 regions), and for the three model
variables (T2M, PR, CLCT, V = 3). PI is therefore the mean
of R ' T ' V = 1440 least squares errors between the model (m)
and the observations (o), scaled by the interannual variability
(so) expressed as the standard deviations of the observations
(1990–2000), the observational uncertainty (so!) derived
from different reference data sets, and the internal variability
(siv) of the regional model derived from the initial condition
ensemble. The uncertainty terms in the denominator of PI
have the same dimensions as the spatiotemporal means.
Further details about PI, including information about the
choice of the observational data sets, can be found in B11.
[16] The error PI is consequently transformed into a pos-

itive defined performance score (PS), which is an approxi-
mation of the Gaussian likelihood:
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Figure 1. Model domain and PRUDENCE analysis
regions: BI = British Isles, FR = France, IP = Iberian Penin-
sula, MD = Mediterranean, AL = Alps, ME = Mid-Europe,
EA = Eastern Europe. The domain has a rotated pole and a
resolution of 0.44! ((50 km).
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the default Tiedtke convection scheme [Tiedtke, 1989]. In
addition the aerosol climatology has been changed from an
default climatology of Tanré et al. [1984] to the higher res-
olution AEROCOM climatology [Kinne et al., 2006], which
provides more realistic estimates of aerosol loadings over
Europe [Zubler et al., 2011]. Further changes include a sat-
ellite derived soil albedo field from the MODIS sensor and a
plant albedo field [Houldcroft et al., 2009].
[13] The domain of the RCM covers a greater European

region at a resolution of 0.44! as shown in Figure 1 with
contours representing the model topography. The black
boxes show climatic regions commonly termed PRUDENCE
regions on which the analysis for this study is based. In order
to be consistent with B11 we focus on the same time period
from 1990 to 2000. For this period a reference simulation
(REF) has been performed with model settings derived from
an expert tuning process for the Coordinated Regional cli-
mate Downscaling Experiment over Europe (CORDEX,
www.euro-cordex.net). Furthermore an initial condition
ensemble with of five simulations from 1990 to 2000 with 6
hourly shifts of the initialization time was conducted to
determine the model’s internal variability. Due to computa-
tional constraints, the number of simulations in this ensemble
is kept at a lower limit but is consistent with other studies
assessing the internal variability of RCMs [e.g., Roesch et al.,
2008]. The simulations used to find optimal parameter con-
figurations and to determine the accuracy of the metamodel
are restricted to the 5-year period from 1994 to 1998 which is
a sufficient integration length to reach convergence of the

adopted skill metrics (see B11). These experiments were
initialized with the equilibrium state as obtained from the
reference simulation.

2.2. Validation Framework
[14] The parameter optimization of requires a framework to

objectively assess model performance against observations.
There are many ways how to measure the performance of a
climate model, with choices regarding the metrics, model
variables and data sets. Although there is some guidance for
the validation climate models different approaches often lead
to controversial outcomes [Gleckler et al., 2008]. The perfor-
mance of models is typically assessed with some distance
measure between the model and observations [Perkins et al.,
2007; Christensen et al., 2010]. Since one variable might be
improved at the expense of some other [Jones et al., 2005;
Vidale et al., 2003], several studies use a multivariate frame-
work including several variables which represent dominant
climate processes, as e.g. top of the atmosphere radiation,
surface radiation balance, mean sea level pressure and total
cloud cover [Gleckler et al., 2008].
[15] In this study we use the validation framework pre-

sented in B11. Model performance is expressed as a function
of 2 m temperature (T2M), precipitation (PR) and total cloud
cover (CLCT). This allows to validate the variables that are
often of primary interest (T2M, PR) and an additional pro-
cess variable (CLCT) which plays an important role in the
interaction of the three variables [Jaeger et al., 2008] and
which is one of the major sources of uncertainty in climate
change projections [Intergovernmental Panel on Climate
Change (IPCC), 2007]. The variables are validated using
interannual time series of monthly means, averaged spatially
for eight distinct climatic regions in Europe (PRUDENCE
regions, see Figure 1). The error of these time series is
measured using a performance index (PI ),

PI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m# oð Þ2

q

so þ siv þ s!ð Þ

* +

; ð1Þ

which is a least squares estimation scaled by the interannual
variability and including two sources of uncertainty, namely
the internal variability and the observational uncertainty. The
brackets in (1) denote the mean of monthly time series from
1994 to 1998 (T = 60 monthly averages), averaged over each
PRUDENCE region (R = 8 regions), and for the three model
variables (T2M, PR, CLCT, V = 3). PI is therefore the mean
of R ' T ' V = 1440 least squares errors between the model (m)
and the observations (o), scaled by the interannual variability
(so) expressed as the standard deviations of the observations
(1990–2000), the observational uncertainty (so!) derived
from different reference data sets, and the internal variability
(siv) of the regional model derived from the initial condition
ensemble. The uncertainty terms in the denominator of PI
have the same dimensions as the spatiotemporal means.
Further details about PI, including information about the
choice of the observational data sets, can be found in B11.
[16] The error PI is consequently transformed into a pos-

itive defined performance score (PS), which is an approxi-
mation of the Gaussian likelihood:

PS ¼ exp #0:5PI2
" #

: ð2Þ

Figure 1. Model domain and PRUDENCE analysis
regions: BI = British Isles, FR = France, IP = Iberian Penin-
sula, MD = Mediterranean, AL = Alps, ME = Mid-Europe,
EA = Eastern Europe. The domain has a rotated pole and a
resolution of 0.44! ((50 km).

BELLPRAT ET AL.: OBJECTIVE CALIBRATION OF RCMS D23115D23115

3 of 13

1. Reference simulation with all parameter 
at the default value (1 simulation)

2. Sensitivity simulations with one of the 
parameters set to either extreme value 
(2*N simulations)

3. Sensitivity simulations where 2 different 
parameters are set to either extreme 
value  (N*(N-1)/2  pairs with 4 possible 
combinations => 2*N*(N-1) simulations)

4. A total of 1 + 2*N*N simulations 

for N=8: 129 simulations

The performance score is 
calculated as 

The code is available on github



the smoothness of the RCM response to parameter perturba-
tions by performing two additional simulations between the
design points for each parameter axis would increase the
confidence that a quadratic model captures well the induced
perturbations. Such a screening would also support the
selection of model parameters used to calibrate the model but
would also add additional expenses to the tuning process.
[35] The interaction terms shown in the off-diagonal of

matrix B in Figure 8 are overall relatively small for the set of
parameters considered in this study. Highest interaction are
obtained between the parameter affecting the sub-grid scale
cloud formation uc1 and the threshold for ice auto-conversion
qi0, which both strongly affect the total cloud cover. The weak
interaction between the parameters may be a result of the fact
that every parameter originates from a different model
parametrization. Since the parameter interactions are weak
one might consider to omit these terms as their estimation is
relatively expensive in comparison to the estimation of the
linear and quadratic terms. Omitting the interaction terms
may therefore be reasonable in case of low computational

resources and little indication of strong parameter interactions.
In the case of the five parameters selected for this study, setting
the interactions terms to zero increases the error when esti-
mating the model fields on average by about 20% for T2M,
20% for PR and 100% for CLCT. This decrease of the accu-
racy of MM shows that at least part of the parameter interac-
tions are well captured by MM and that the interaction terms
are particularly important to model the cloud cover fields for
the parameters considered. The most important interaction is
between qi0 and uc1, which both affect cloud cover CLCT.

3. Model Calibration Results

[36] Having established a computationally cheap surrogate
for the RCM, we proceed with the calibration and present
the respective results in comparison to previous versions of
CCLM. We choose to sample the parameter space with a
Latin hypercube as done for the independent ensemble (see
section 2.4.2) and as also done in Gregoire et al. [2011], but
using a much larger number of one million parameter

Figure 9. Response of T2M, PR and CLCT to changes in rlam_heat shown as black dots averaged for all
spatial means. Red dots denote the design points used to fit the metamodel and red crosses show indepen-
dent simulations. The black line shows the quadratic metamodel. The deviation from the simulated points
is denoted with error bars expressing the average regression error. The internal variability of the model is
shown as gray shade. The quadratic regression holds well for PR and CLCT but shows some deficiencies
for T2M.

Figure 10. Calibration range estimated with the quadratic metamodel (MM) when computing one mil-
lion parameter combinations from a Latin hypercube experiment. The blue area shows the empirical prob-
ability density of the performance assessed by the metamodel. The solid black line corresponds to the
reference simulation (REF), which at the same time is the optimal simulation resulted from the expert tun-
ing. The black dashed line shows the optimized simulation (OPT), where the black arrow shows the
improvement achieved which corresponds to a reduction of the model error of about 7%. The two red
bands show the spread of two sub-samples (S1,S2) with a range of 0.005 ! PS corresponding to the esti-
mated uncertainty (1s) of MM. The red lines denote the performance of the simulations of the expert-
tuned ensemble LONG.
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Exploration of the parameter space to find optimal settings 
The Matlab function lhsdesign with the criterion “correlation” was used to produce a set of 5 million 
combinations for the tuning parameters to sample the parameter space for the optimal combination 
of parameters. Figure 1 shows the distribution of the achieved PS score for all of the 5 million 
sampled combinations. As can be seen in Figure 1 only a relatively small fraction (0.15%) of the 
simulations achieve a better score than the reference simulation. The skill score of the reference 
simulation has a value of 0.8790, whereas the highest predicted value by the meta-model in the 
sample amounts to 0.9047. 

 

 

 

 

 

 

 

 

 

 

The sampled combination of tuning parameters which achieves the highest skill score, is as follows: 

Calibration parameter Optimized value 
rlam_heat 0.5249 
entr_sc 1.86e-4 
qi0 0.0 
uc1 0.0626 
tkhmin 0.35 
fac_rootdp2 0.9 
radfac 0.5 
soilhyd 1.62 
 

In Figure 2 the distribution of the values of the calibrated values with respect to the reference values 
can be seen. For qi0 and radfac the calibrated values coincide with the default values. For uc1 the 
default value seems to be at the high end of the range of values with high scores. The calibrated 
value of tkhmin is at the low end of the range of values with high scores.   

OP
T 

Figure 1: relative density of PS skill scores for all 5 million sampled calibration parameter combinations. The line labelled REF 
shows the value for the default setting of the parameters. The red line labelled OPT denotes the highest score achieved in the 
whole sample. 
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Objective calibration over Europe with different versions of the COSMO-CLM model
We now have good experience with the calibration method over Europe

Model 
version

Δx period Parameters

COSMO-
crCLIM-v1-1

50km 2005-
2010

7

rlam_heat, uc1, 
tur_len, fac_rootdp2, 

tkhmin &tkmmin, 
radfac, l_g, v0snow

COSMO5.0_
clm6

50km 1994 -
1998

8

rlam_heat, uc1, qi0, 
fac_rootdp2, entr_sh, 

tkhmin, radfac, 
soilhyd

COSMO4.8_
clm17

50km 1994 -
1998 

5

rlam_heat, uc1, qi0, 
fac_rootdp2, entr_sh



region and eastern Europe in the calibrated simulation
(OPT). This improved representation of the summer
climate to a colder and moister state is a notable result,
as it has persisted previous expert tuning efforts and
remains prominent in the majority of global and

regional climate models over semiarid continental re-
gions (Vidale et al. 2007; Christensen et al. 2008;
Mearns et al. 2012; Cattiaux et al. 2013; Bellprat et al.
2013; Kotlarski et al. 2014; Mueller and Seneviratne
2014). The achieved improvement is hence of wider

FIG. 4. Mean summer [June–August (JJA)] biases for the simulations (left) REF and
(right) OPT for the period 1991–2008 over Europe. The biases are shown for (top) temper-
ature, (middle) precipitation, and (bottom) total cloud cover.
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interest and is discussed in sections 3c and 3d in
more detail.
The too warm mean summer conditions in REF are

accompanied by an overestimation of the interannual
summer variability (IASV) of temperature shown over
large parts of the domain in Fig. 8. The highest bias occurs
over easternEurope, where the variability is overestimated
by approximately 100% (1K). This overestimation of

IASV, again common to many models over semiarid re-
gions (Vidale et al. 2007; Fischer et al. 2012), improves
strongly in OPT—particularly over eastern Europe, where
the variability is heavily overestimated in REF but also
over the Mediterranean region, where the variability is
reproduced much more realistically.
The overestimation of simulated mean seasonal tem-

perature and its interannual variability is of significant

FIG. 6. As in Fig. 4, but for North America and a different observational reference dataset (see Table 1).
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Performing Objective calibration over Europe and North-America

The calibration yields almost identical optimal values over the two domains. 

à This supports the robustness of the calibration methodology
à The method addresses uncertainties in the model physics that are 
common among different regions. 

performance of the model—from all parameter changes
considered. More specifically the calibration process
yields a substantial increase (by about a factor of 6) in
both model domains. This leads to higher availability of
soil moisture in the deeper soil layers and thereby in-
creases the evaporative fraction. Before discussing these
aspects in the next subsection in more detail, we here
address potential interpretations behind such an in-
crease of hydraulic conductivity. In particular, can it be
justified in terms of process understanding?

The hydraulic conductivity in CCLM is specified
depending upon soil type and soil water content, and
varies by several orders of magnitude (Doms et al.
2007). More specifically, the saturated hydraulic con-
ductivity covers a wide range, from 4.7 3 1025 to 1.7 3
1028m s21, between sand and peat soils. For un-
saturated soils the conductivity quickly drops by many
orders of magnitude with decreasing relative soil water
content. A comparison against the ECMWF Integrated
Forecast System (IFS) shows that the hydraulic

FIG. 10. Empirical densities (blue histograms) of the calibrated parameter values, which
perform equally well, given the uncertainty of the metamodel in predicting the model per-
formance. The calibration results for the eight calibrated parameters are shown for (top) Eu-
rope and (bottom) North America. In each panel, the dark blue lines show the parameter
uncertainty range, the red line the default parameter value (REF), and the black dashed line
the parameter combination of the best-performing simulation (OPT).
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JJA Temperature bias

Before the 
calibration 

After the 
calibration 

But how about 
uncertainties in model 
parameters for regions 
with very different 
climate from the 
European climate? 

Reduction of the biases with the OPT settings
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Figure 11. PS values calculated for Central Asia (left) and Europe (right), for different values of the parameters e_surf, rlam_heat, rat_sea

and entr_sc. The values of the parameters are the same in the two cases. Red dots represent the considered parameter values for the default

simulation.
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The sensitivity of the model 
to parameters perturbation 
for Central Asia is different 
than the one observed for 
Europe.

à The climate over Central 
Asia is very different than 
for Europe. 

à Thus an RCM should be 
re-tuned, and its 
parameter uncertainty 
properly investigated, 
when setting up model 
experiments to new 
domains

Perturbed physics experiment for Central Asia
Goal: Characterize the parameter uncertainty in COSMO-CLM for the Central Asia region (Russo et al. in review in GMD)

PS score (1 the best) combined for T2M, PR, CLCT calculated for different values of

The values of the parameters are the same in the two cases, and red dots represent the considered parameter values for the default simulation. 

• e_surf (land-surface scheme)
• rlam_heat (land-surface)
• rat_sea (and-surface) 
• entr_sc (convection) 



• Exploring alternative observations 
Lukas Joss, Jesus Vergara, Christoph Schär, ETHZ
• An Bsc thesis exploring the PS score by using alternative observation dataset, and 

systematically comparing 12km climate simulations with the convection on/off.

• Structural Behaviour of the COSMO-CLM Under Different Forcings
Emmanuele Russo, Uni Bern
• The sensitivity in COSMO-CLM to parameters perturbation is investigated under different 

climate forcings by performing the perturbed physics ensemble. 
• The results will be presented at the CLM-assembly on Thursday 17th September from 13:50 

to 14:40.

Ongoing work with the calibration framework



trCLIM: Exploiting km-resolution climate models in the tropics to constrain climate-
change uncertainties

Main objective: Investigate the Climate sensitivity and clouds in tropical Atlantic

(Schneider et al. 2017, Nature CC; see also Bony et al. 2015, NGS)

A SNF funded project (2020-2023)
Christoph Schär (PI, ETHZ), Xavier Lapillonne (CO-PI, 
MeteoSwiss), Silje Lund Sørland (ETHZ/NORCE) Jean-Marie 
Bettems (MeteoSwiss), Martin Wild (ETHZ), Roman Brogli 
(ETHZ)

• Two PhD-studens:
àChristoph Heim: Convection-Resolving Simulations of 

Marine Low Clouds in the subtropics of the Southern 
Atlantic

àShuchang Liu: Objective model calibration



Piz Daint: Linpac peak performance: 20x1015 Flop/s  

12 km

2 km

trCLIM: Exploiting km-resolution climate models in the tropics to constrain climate-
change uncertaintiesTools:

• GPU-version of COSMO model 
(Graphics Processing Units: faster and cheaper)
Rewritten code by MeteoSwiss, CSCS, ETH
- dynamical core rewritten in C++ and CUDA
- parameterizations use OpenACC
Also used for operational NWP (D=1 km)
Runs on Piz Daint (Cray XC50, CSCS)
Limited-area model with large computational domains

• Pseudo-Global Warming Approach
Control simulations driven by reanalysis,
PGW simulations using GCM changes
Previously used (Hentgen et al. 2019; Brogli et al 2020)

• Objective model calibration
Constrain uncertain parameters with objective calibration, 
using observational data. Based on Bellprat et al. (2012, 2016)



Objective model calibration in the trCLIM-
project
• Identify the most sensitive parameters:
What are the most sensitive semi-empirical 
parameters in a CRM modelling configuration 
over the subtropical and tropical Atlantic?
• The resolution effect: 
To what extent is the objective calibration 
method sensitive to the vertical and horizontal 
resolution and the definition of the 
performance score?
• Climate change response: 
How does the tropical climate-change response 
depends upon the model parameter 
configurations?

trCLIM: Exploiting km-resolution climate models in the tropics to constrain climate-
change uncertainties

A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y M A R C H  2 0 2 0 E581

seasonal precipitation are generally robust between convection-resolving and convection-
parameterizing models, significant differences occur for projections of heavy hourly precipi-
tation events (Ban et al. 2015; Kendon et al. 2017) and for changes in the vertical structure 
of clouds (Hentgen et al. 2019).

Convection-resolving and convection-parameterizing models often exhibit important dif-
ferences for subdaily variables, or when feedback effects are considered. Most of the analysis 
in current climate studies is done using two-dimensional daily and/or hourly output fields, 
which are currently feasible to store. Three-dimensional fields are usually not available over 
extended time periods, which limits detailed investigations of the flow dynamics. Convec-
tive clouds can grow, mature, and dissipate within an hour, and thus it is difficult to gain 
deeper understanding of convection and its characteristics in current and future climates if 
restricted to hourly output fields.

Refining the horizontal resolution of regional climate models is a key focus in a number of 
internationally coordinated projects, like the Coordinated Regional Downscaling Experiment 
(CORDEX; www.cordex.org) and the European Climate Prediction System (EUCP; www.eucp 
-project.eu). Within these two projects, several groups across Europe are conducting regional 

Fig. 7. (top right) Cloudiness in MODIS shortwave satellite observations, compared against (middle) mid- 
and (bottom) low-level cloudiness in simulations at different horizontal resolutions on 15 Dec 2013. The 
simulation snapshots show the cloud cover fractions from convection-parameterizing simulations at 50 
and 12 km resolutions, and a convection-resolving simulation at 2 km resolution. The results are from 
monthlong simulations driven by the ERA-Interim reanalysis initialized on 25 Nov 2013. Red and yellow 
circles pinpoint regions with large differences between simulations. (top left) The geographical charac-
teristics of the considered computational domains.

Schär et al.  BAMS, 2020

The 2 km simulation with explicit convection reproduce the 
characteristic cloud structures more realistically than convection-
parameterized simulations at 50 and 12 km
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