New operational ICON-LAM over South East Europe and preliminary tests of its shallow convection schemes

Pavel Khain, Alon Shtivelman, Anat Baharad, Yoav Levi, Nir Stav Israel Meteorological Service

Thanks to: Daniel Rieger, Maike Ahlgrimm, Daniel Reinert, Florian Prill, Frank Helmut, Bojan Kasic, Cristian Simarro

COSMO General Meeting, September 2020

Outline

- 1. New operational ICON-LAM over South East Europe, verification
- 2. Why would we like to focus on the Shallow Convection Parametrization (SCP)?
- 3. Preliminary tests of ICON SCPs
- 4. Plans

New operational ICON-LAM over South East Europe

Goal: For our own needs and encouraged by WMO SEE-MHEWS-A
(Multi-Hazard Early Warning Advisory System for South-East Europe)

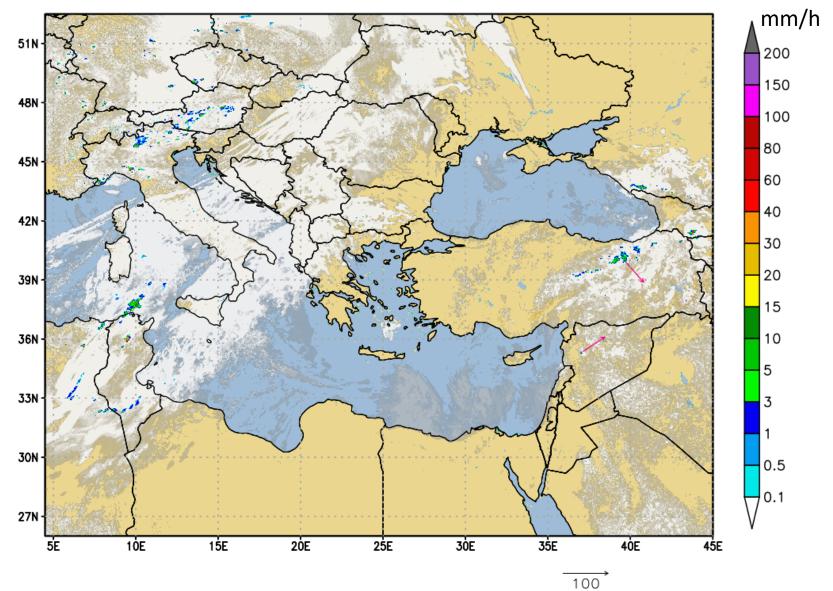
- Platform: The "Time Critical Suite" for running ICON-LAM ("ICON-IL-IFS") model was prepared on the ECMWF HPC
- Model setup: Domain: 4-45.5E/25.5-53N

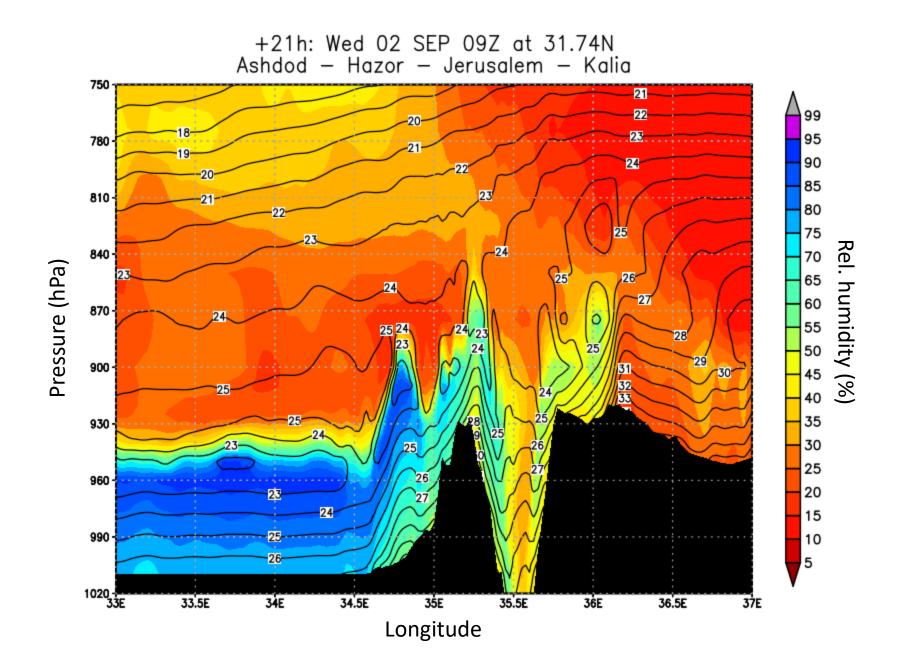
Resolution: ~2.5km horizontal, 65 levels vertical

Range: 78h

IC/BC: det. IFS

- Oper. runs: 2 runs/day since June 2020
- Data assimilation: Not yet


ICON-IL domain



Some precipitation in Frankfurt area today afternoon?

20200901:12Z + 26h:15m

We currently have ~28°C here in Jerusalem

Verification: winter rainy events

Wintertime rain events:

2016121200, 2016122300, 2017021100, 2017021400, 2017041200, 2017112000, 2017120500, 2018010500, 2018011800, 2018021600, 2018042500, 2018042600, 2020010200, 2020010300, 2020010700, 2020010800

	FSS 54 FSS 60	0.37 0.44	0.38	0.3
	FSS 48	0.48	0.39	0.43
(1-FSS)	FSS 42	0.46	0.36	0.38
•	< FSS 36	0.36	0.36	0.36
Precipitation	FSS 30	0.31	0.24	0.28
	FSS 24	0.37	0.3	0.32
	FSS 18	0.33	0.33	0.35
	FSS 12	0.43	0.45	0.4
	FSS 6	0.42	0.41	0.37
		2.47	2.67	2.74
Wind vector profile	✓ PW 24_48_72	2.62	2.56	2.59
	C FQ 12_50_00	0.62	0.64	0.63
Mixing ratio profiles	✓ PQ 24_48_72	0.56	0.59	0.55
remperature prome.		0.68	0.64	0.66
Temperature profiles	✓ PT 24_48_72	0.71	0.68	0.72
	WD pl_rmse_d	1.36	1.34	1.44
	WD pl_mse_m	0.99	1.13	1.02
10m wind directior	WD or_rmse_d	1.16	1.2	1.29
	WD or_rmse_n	0.85	0.93	0.89
	WS pl_rmse_d	1.92	2.04	2.09
Tour wind speed	wspi_mse_m	1.76	1.79	1.78
10m wind speed	WS or_rmse_d	2	2.14	2.24
	WS or_rmse_n	1.92	1.88	1.9
	RH pl_rmse_d	10.74	11.13	11.42
Zin rei. nurhalty	RH pl_rmse_n	9.75	10.38	11.01
2m rel. humidity	RH or_rmse_d	11.52	11.16	12.87
	<pre></pre>	10.79	10.68	11.44
	TT pl_rmse_d	1.57	1.38	1.49
Zintemperature	i pi_iiise_ii	1.62	1.47	1.55
2m temperature	TT or_rmse_d	1.92	1.58	1.95
	TT or_rmse_n	1.79	1.48	1.61

---> Better score vs. IFS

Verification: winter dry events

2017043000, 2017102100, 2017120200, 2017122000, 2018010800, 2018011100, 2018020900, 2018022000, 2018022300, 2018030600, 2018040100						
ſ	TT or_rmse_n	2.11	1.87	1.97		
	TT or_rmse_d	1.87	1.83	1.82		
2m temperature {	TT pl_rmse_n	2.3	2.04	2.04		
	TT pl_rmse_d	1.67	1.61	1.64		
ſ	RH or_rmse_n	14.42	12.98	13.42		
2m rol humidity	RH or_rmse_d	9.14	12.45	8.96		
2m rel. humidity {	RH pl_rmse_n	12.05	11.09	10.17		
	RH pl_rmse_d	9.8	10.56	9.66		
ſ	WS or_rmse_n	1.61	1.56	1.52		
10m wind speed	WS or_rmse_d	1.43	1.41	1.63		
10m wind speed \leq	WS pl_rmse_n	1.3	1.27	1.2		
	WS pl_rmse_d	1.2	1.29	1.38		
ſ	WD or_rmse_n	0.85	0.82	0.78		
10m wind direction	WD or_rmse_d	0.93	0.84	0.96		
tom wind direction	WD pl_rmse_n	0.75	0.63	0.69		
	WD pl_rmse_d	0.84	0.84	0.96		
Tf :	PT 24_48_72	1.09	0.99	1.06		
Temperature profiles {	PT 12_36_60	0.91	0.91	0.91		
Naiving notic profiles	PQ 24_48_72	1.06	1.07	1.04		
Mixing ratio profiles \langle	PQ 12_36_60	1	1	1.01		
Wind vector profiles \langle	PW 24_48_72	2.32	2.4	2.47		
	PW 12_36_60	2.3	2.26	2.43		
Winter-dry	SUMMARY	0	0.0169	0.0098		
events: ICON is better		ECMWF	ICON-IL	COSMO-IL		

Wintertime dry events:

2017043000, 2017102100, 2017120200, 2017122000, 2018010800, 2018011100, 2018020900, 2018022000, 2018022300, 2018030600, 2018040100

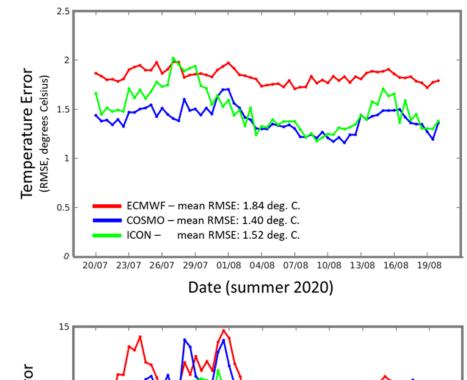
IFS

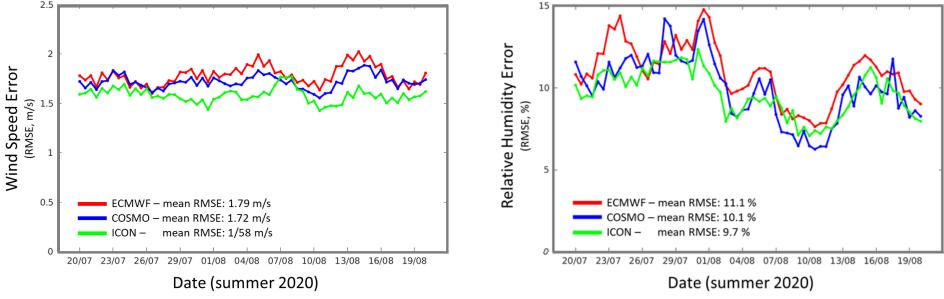
Better score vs.

۸ ¦

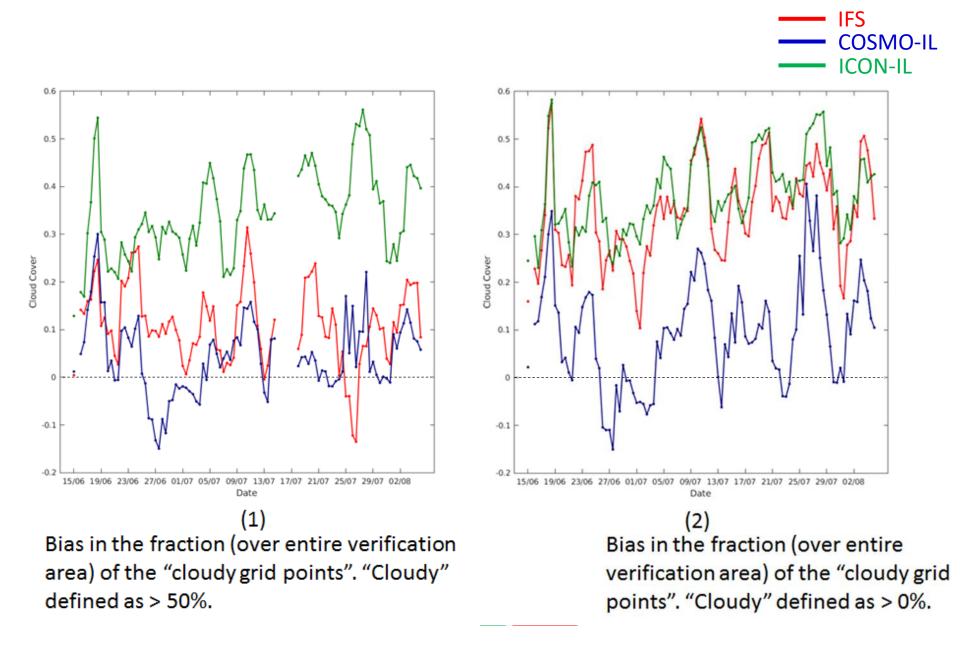
Verification: summer dry events

Summer events:	SUMMARY	₀ ECMWF	ICON-IL	COSMO-IL
Temperature profiles { PT 24_48_72 PT 12_36_60 Mixing ratio profiles { PQ 24_48_72 PQ 12_36_60 Wind vector profiles { PW 24_48_72 PW 12_36_60				
		1.86 1.87		1.98
		1.89	1.95	2.07
		1.39	1.6	1.47
		1.6	1.51	1.55
		0.75	0.83	0.8
		0.99	1.12	0.96
	WD pl_rmse_d	0.49	0.49	0.45
10m wind direction	WD pl_rmse_n	0.68	0.72	0.7
	MD or mco.d	0.84	0.79	0.76
	WD or_rmse_n	0.57	0.62	0.5
10m wind speed	WS pl_rmse_d	1.03	1.24	1.21
	WS pl_rmse_n	0.98	0.97	0.98
	WS or_rmse_n WS or_rmse_d	1.43	1.46	1.43
	RH pl_rmse_d	1.7	1.54	1.77
	RH pl_rmse_n	9.4 7.96	6.26	6.29
2m rel. humidity	RH or_rmse_d	6.95	6.89	6.11
	RH or_rmse_n	12.06	10.03	11.45
	TT pl_rmse_d	1.29	1.17	0.98
	TT pl_rmse_n	1.78	1.76	1.55
2m temperature -	e { TT or_rmse_d	1.62	1.4	1.17
	TT or_rmse_n	1.86	1.6	1.53

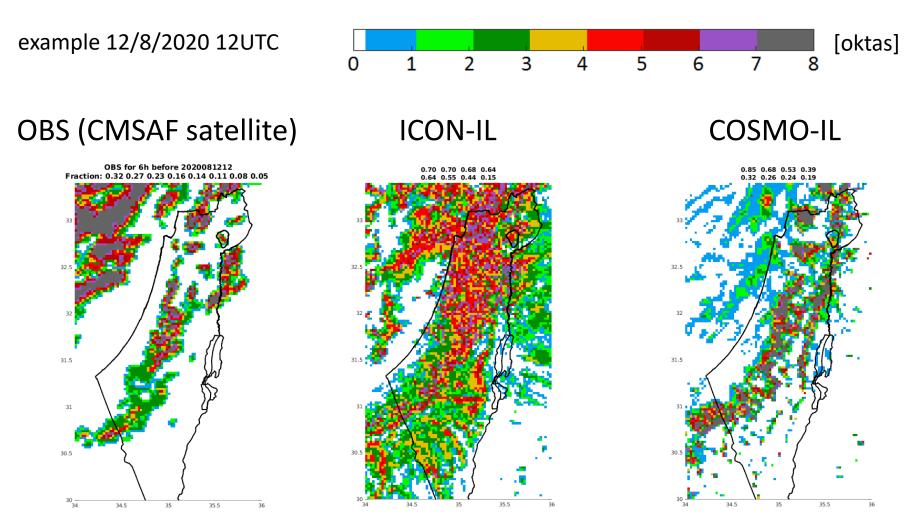

Summertime events:


2017060700, 2017063000, 2017071700, 2017080100, 2017082500, 2017090500, 2018060300, 2018071100, 2018072000

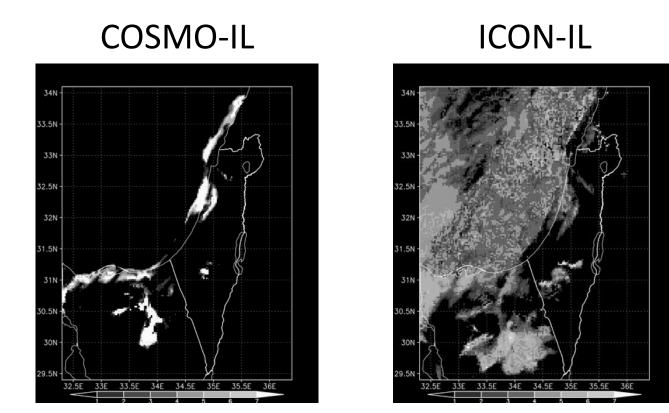
*Old turbulence


Verification: last month (all stations, all times)

- Even in summer ICON is better in RH_{2m} and WS_{10m}
- All this without tuning for our region



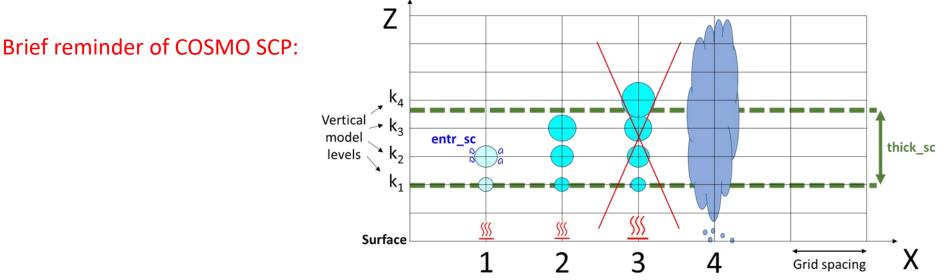
Cloudiness overestimation: verification vs CMSAF satellite


Cloudiness overestimation – of SGS low (water) cloud cover

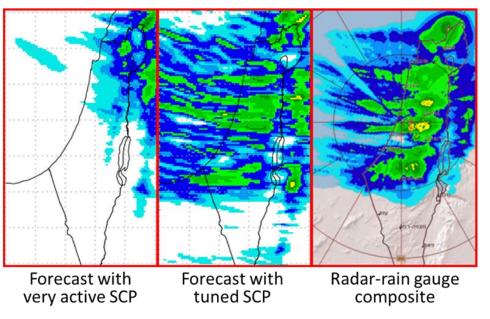
Over estimation

good

Cloudiness overestimation – of SGS low (water) cloud cover



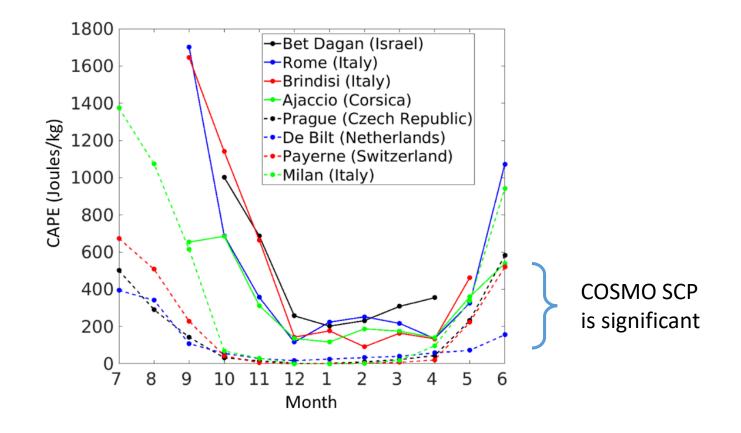
Low cloudiness example (20200829:00UTC)


Outline

- 1. New operational ICON-LAM over South East Europe, verification
- 2. Why would we like to focus on the Shallow Convection Parametrization (SCP)?
- 3. Preliminary tests of ICON SCPs
- 4. Plans

Why focus on the Shallow Convection Parametrization (SCP)?

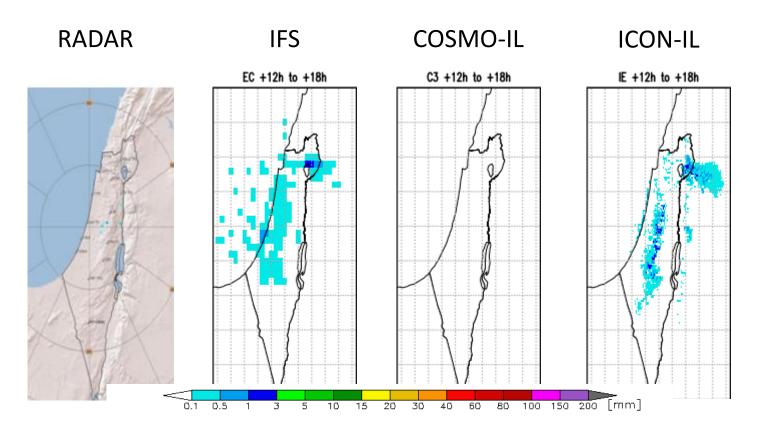
Influence of shallow convection parametrization on model forecast (Example of 6h precipitation forecast from 1/1/2016 00 UTC + 18h)



Khain P., Y. Levi, H. Muskatel, A. Shtivelman, E. Vadislavsky, N. Stav (2020): "Effect of shallow convection parametrization on cloud resolving NWP forecasts over the Eastern Mediterranean". Atmos. Res. 247, 105213.

https://doi.org/10.1016/j.atmosres.2020.105213

Why focus on the Shallow Convection Parametrization (SCP)?


Where and when COSMO SCP is significant? In areas/seasons with moderate CAPE

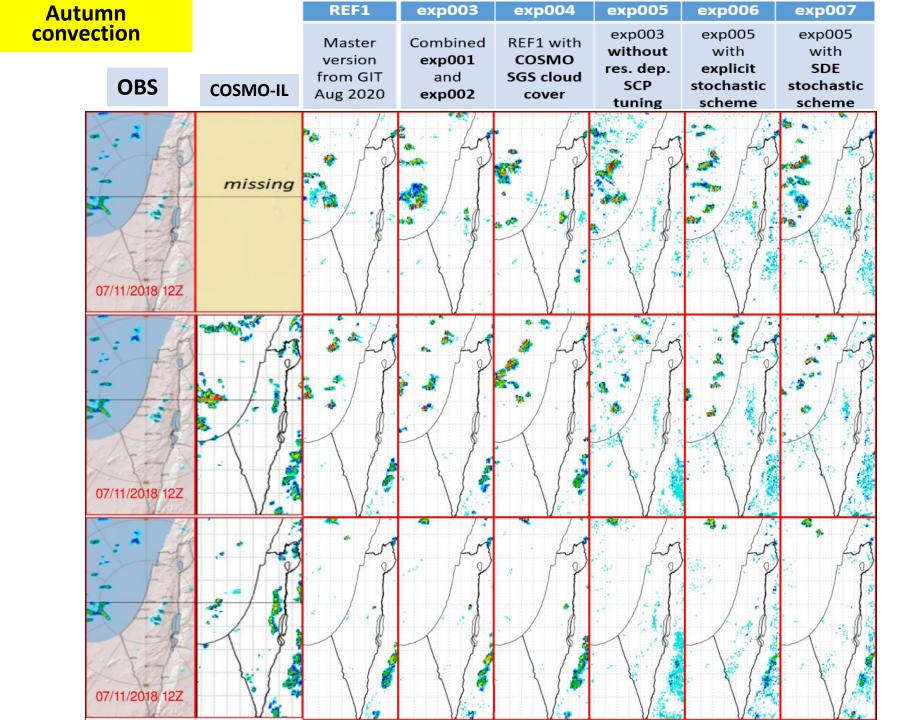
Why focus on the Shallow Convection Parametrization (SCP)?

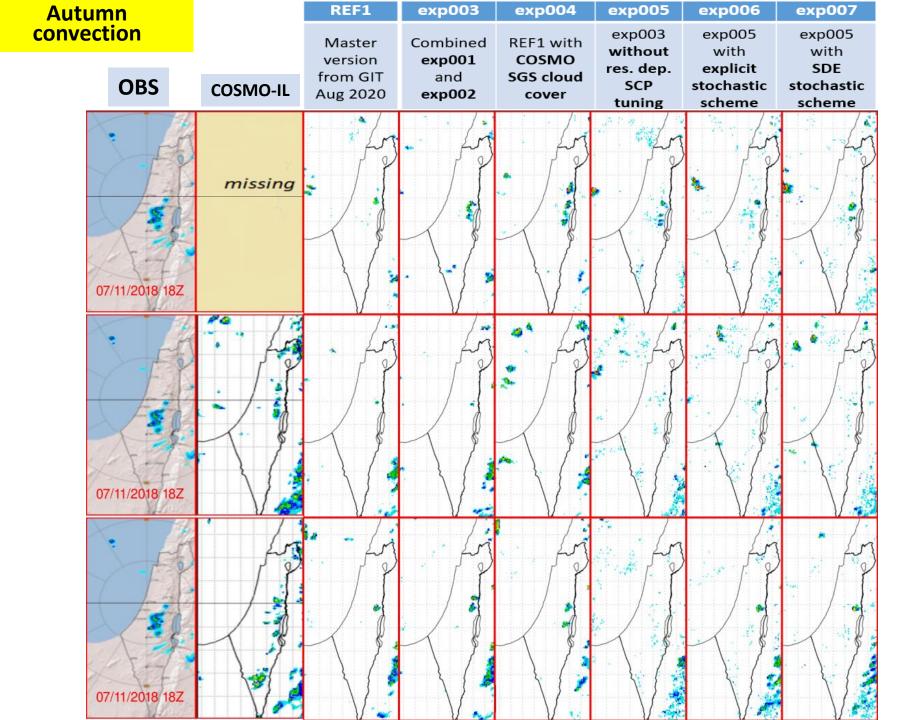
In COSMO SCP did not produce precipitation and in moderate CAPE spoiled grid scale precip.

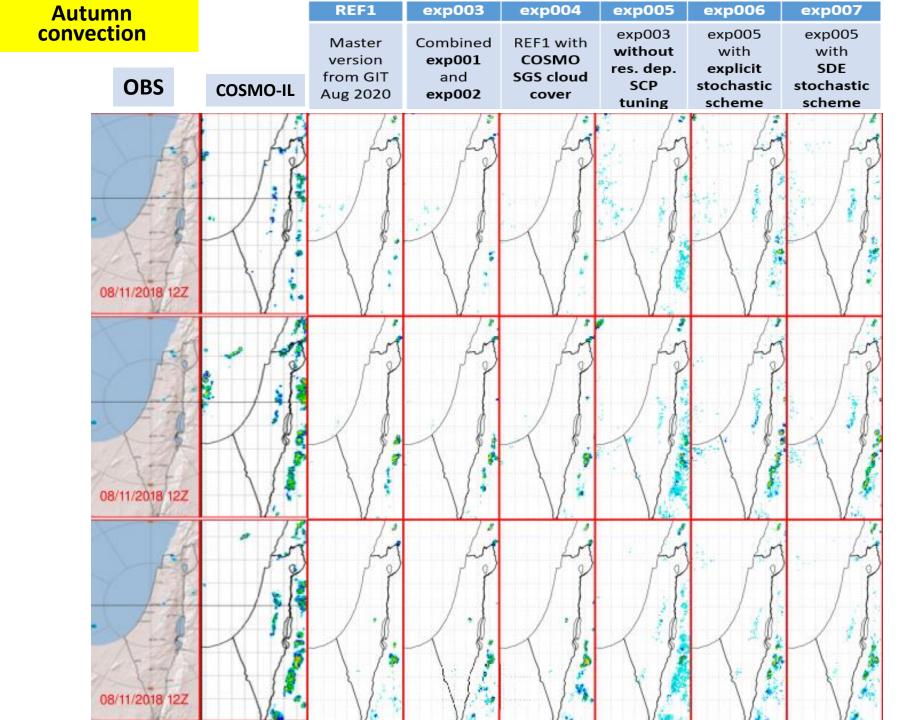
But in ICON SCP itself produces precipitation!

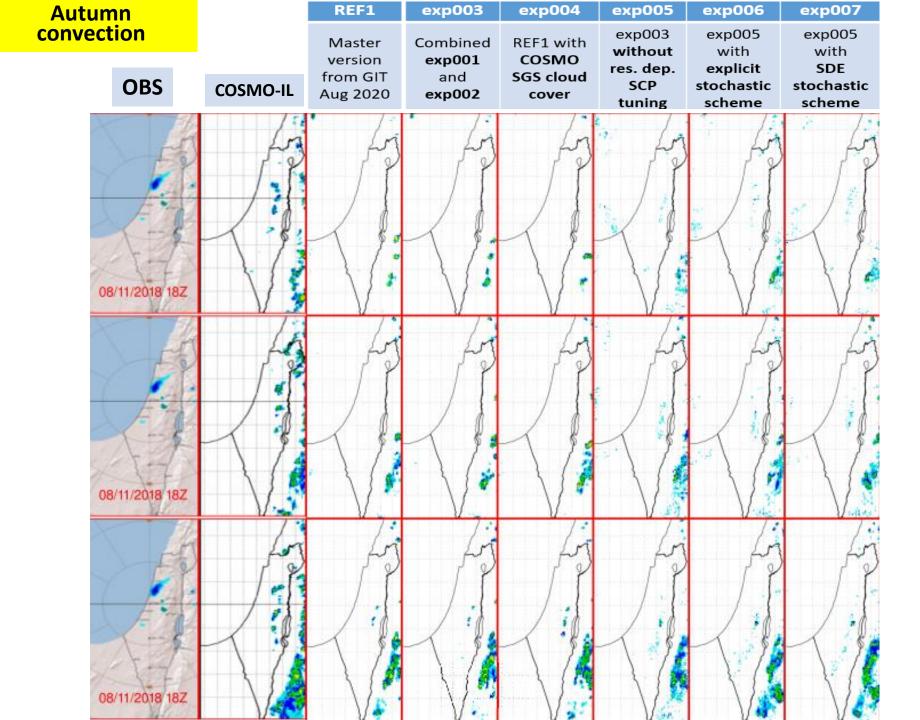
Example: Israeli summer 5/7/2020 06UTC

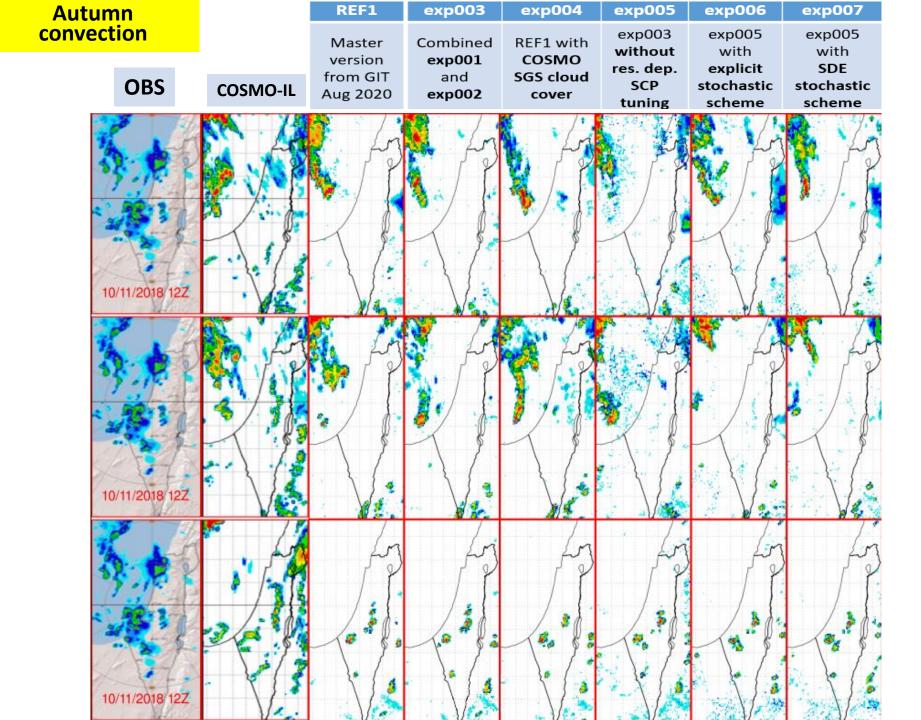

Outline

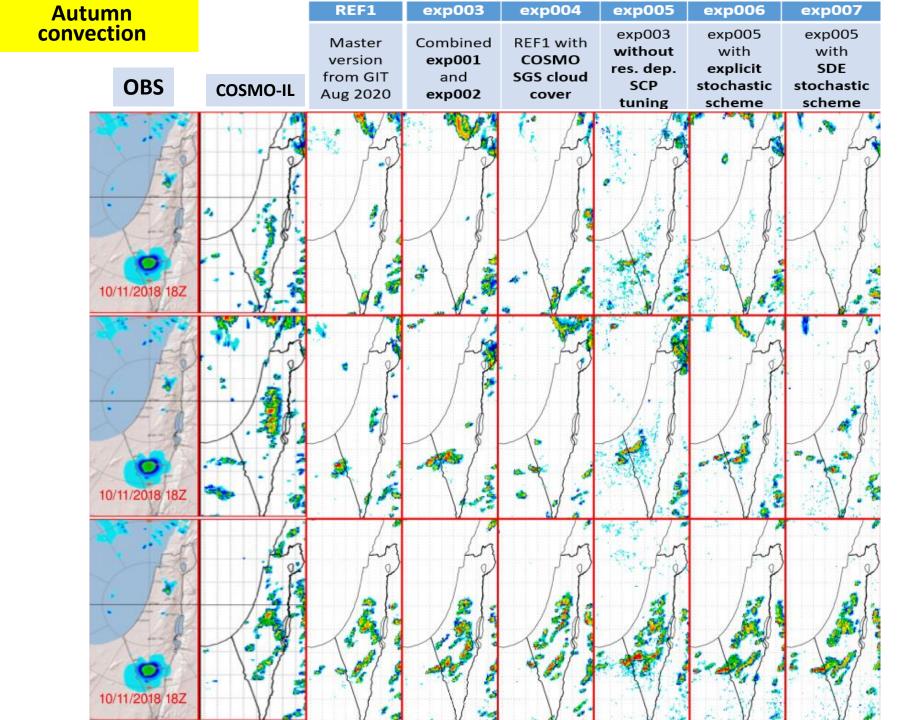

- 1. New operational ICON-LAM over South East Europe, verification
- 2. Why would we like to focus on the Shallow Convection Parametrization (SCP)?
- 3. Preliminary tests of ICON SCPs
- 4. Plans

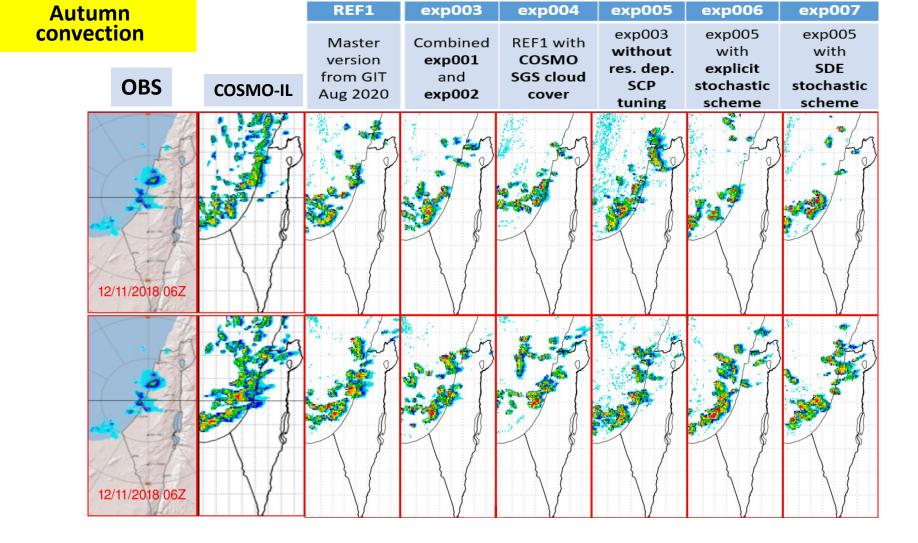

Preliminary tests of ICON Shallow Convection Parametrizations

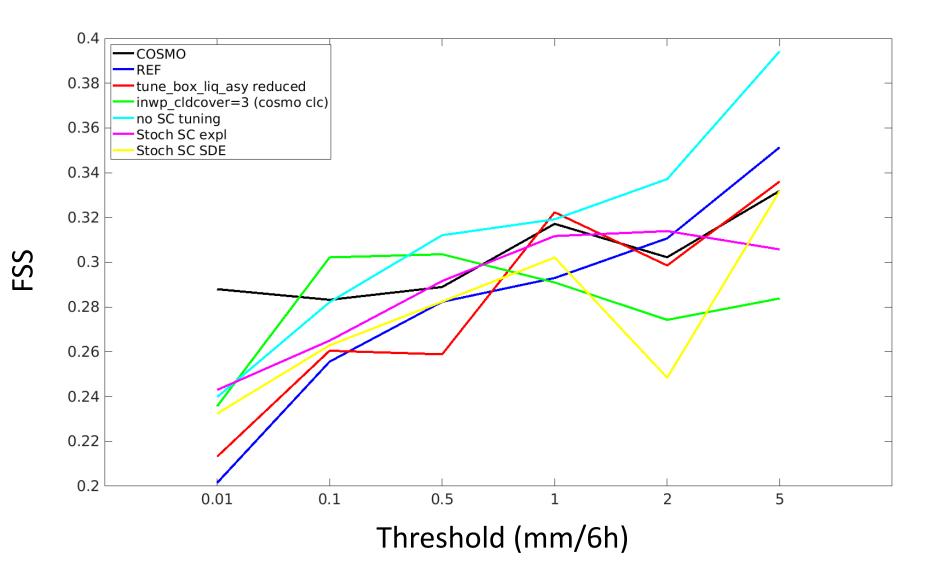

	REF1	exp001	exp002	exp003	exp004	exp005	exp006	exp007
	Master version from GIT Aug 2020	REF1 without lcalib_ clcov	REF1 reduced tune_box_ liq_asy	Combined exp001 and exp002	REF1 with COSMO SGS cloud cover	exp003 without res. dep. SCP tuning	exp005 with explicit stochastic scheme	exp005 with SDE stochastic scheme
lcalib_ clcov	TRUE	FALSE	TRUE	FALSE	FALSE	FALSE	FALSE	FALSE
tune_box _liq_asy	3.25	3.25	2.5	2.5	3.25	2.5	2.5	2.5
inwp_ cldcover	1	1	1	1	3	1	1	1
Irestune _off	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	TRUE	TRUE
lstoch _conv	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE	FALSE
lstoch _sde	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	FALSE	TRUE


Note! lcalib_clcov tunes cloud cover output without any effect on the rest of the model









Autumn convection verification (to few cases...)

Preliminary conclusions

- 1. Low (water) cloud cover spread overestimated in all vers.
- 2. But cloud cover high values are underestimated
- 3. Precipitation in Eastern Mediterranean winter (moderate CAPE) is good (not shown)
- Precipitation in Eastern Mediterranean autumn (high CAPE) is better (lower "cover") but too strong COSMO spots are still there!

Outline

- 1. New operational ICON-LAM over South East Europe, verification
- 2. Why would we like to focus on the Shallow Convection Parametrization (SCP)?
- 3. Preliminary tests of ICON SCPs
- 4. Plans

Plans

- 1. Investigation and testing ICON SCP schemes (and their cloud cover) vs. observations and LES BOMEX/RICO simulations
- 2. More realistic estimation of effective radius in SCP:

The formula $\overline{R_{eff}} = c_1 \left(\frac{LWC}{QNC}\right)^{c_2}$ is very problematic because both LWC and QNC are very noisy in horizontal (in cloud). However below the level of collisions (~12 micron) Reff is not noisy, and can be calculated by: $\overline{R_{eff}} = 1.15 \left(\frac{LWC_{ad}}{QNC}\right)^{1/3}$

Khain, P., R. Heiblum, U. Blahak, Y. Levi, H. Muskatel, E. Vadislavsky, O. Altaratz, I. Koren, G. Dagan, J. Shpund, and A. Khain, 2019: Parameterization of Vertical Profiles of Governing Microphysical Parameters of Shallow Cumulus Cloud Ensembles Using LES with Bin Microphysics. J. Atmos. Sci., 76, 533–560.

This is certainly valid for shallow convection, and should be implemented in SCP (it is implemented in COSMO v5.6 but not in ICON)

Thanks!