

Status report of

WG 2 – Numerical aspects

COSMO General meeting, Rome, Italy 09-12 Sept. 2019

Michael Baldauf, Daniel Reinert, Günther Zängl (DWD)

- PP EX-CELO → Zbigniew Piotrowski
- PT CCE final report → Damian Wójcik

Addendum to the Priority Project ,Comparison between the dynamical cores of COSMO and ICON' (CDIC)

- PP CDIC officially finished in Aug. 2018
- however, the Straka et al. case did not work correctly this is now solved (thanks to D. Reinert (DWD))
 → all relevant idealized test cases are working correctly with ICON
- The code for all the new test cases is available in the icon-nwp-dev-branch
- Final report is still overdue (until now, only contribution by D. Wójcik, (thank you!) received)

Test case 3: cold bubble

R. Dumitrache, A. Iriza (NMA), M. Baldauf (DWD)

Testsetup by Straka et al (1993)

Test properties:

- test of dry Euler equations (without Coriolis force)
- unstationary
- strongly nonlinear
- comparison with reference solution from paper

D. Reinert (DWD)

Explore a more advanced vertical discretization for ho , θ_v , and π

- Replace the 2nd order (linear)
 - vertical interpolation operator (cell to face)
 - vertical advective flux operator

by 3rd order operators based on reconstructed parabolic splines (Zerroukat et al., 2006)

- Why parabolic splines?
 - successfully tested and used for tracer transport in ICON (vertical PSM-scheme)
 - Operators are already available in ICON and ,only' have to be applied within the dynamical core

Old vs. new vertical discretization

DWD **Deutscher Wetterdienst** 6 Wetter und Klima aus einer Hand

Example: dycore-like reconstruction of an irregular 1D test signal D. Reinert (DWD)

2D nonlinear density current

Deutscher Wetterdienst Wetter und Klima aus einer Hand

D. Reinert (DWD)

DWD

6

- similarity of the (almost) converged solution at 50m suggests that the 3rd order operators are implemented correctly.
- > Unfortunately, only small improvements in simulation quality (if any) are noticeable (see e.g. middle rotor at $\Delta x = \Delta z = 200$ m).

Implementation of the supercell detection index (SDI) into ICON

Wicker et al. (2005):

 $SDI_1(x,y) = \rho_{w\zeta}(x,y) \cdot \overline{\zeta}(x,y)$ (SDI₂ similar)

with the velocity-vorticity correlation:

 $\rho_{w\zeta}(x,y) = \frac{\langle w'\zeta' \rangle_{(x,y)}}{\sqrt{\langle w'^2 \rangle_{(x,y)}}} \sqrt{\langle \zeta'^2 \rangle_{(x,y)}},$

<...> = volume average

= horiz. average of vertical averages

use the parent grid for a larger horiz. averaging area!

- 1. calc. values on fine grid
- 2. average to parent grid
- 3. exchange parent cells
- 4. average on parent grid
- 5. write back to fine grid

M. Baldauf, G. Zängl (DWD)

Similar averaging method is used for the lightning potential index (LPI)

Case study 18 Aug. 2019, SDI2 for a heavy storm event in the vicinity of Frankfurt

ICON-D2 (init. by ICON-EU)

ICON-D2 (urstart) 10647

Start time: 18.08.2019 00:00 UTC Forecast time: 18.08.2019 16:00 UTC SDI 2 [0.001 1/s]

Sigma: 0.026618: SDI_2; Mean: 0.000988631 Min: -0.916585 Max: 2.85591

operat. COSMO-D2

18.08.2019 00:00 UTC Start time: Forecast time: 18.08.2019 16:00 UTC SDI 2 [0.001 1/s]

COSMO-D2_Routine

Case study 18 Aug. 2019, SDI2 for a heavy storm event in the vicinity of Frankfurt

ICON-D2 (init. by ICON-EU)

ICON-D2 (urstart) 10647

Start time: 18.08.2019 00:00 UTC Forecast time: 18,08,2019 17:00 UTC SDI 2 [0.001 1/s]

Mean: 0.00125222 Min: -2.00685 Sigma: 0.036014 SDI_2; Max: 2.62741

operat. COSMO-D2

18.08.2019 00:00 UTC Start time: Forecast time: 18.08.2019 17:00 UTC SDI 2 [0.001 1/s]

COSMO-D2_Routine

Higher order discretization for COSMO

A. Will (Univ. Cottbus)

- currently: migration of the code from v5.0 to v5.6 • unfortunately still bugs present in v5.6 (slow progress due to other tasks at BTU Cottbus)
- testing in hindcast mode and in the NUMEX-system for a COSMO-D2 setup (summer case) must be done.
- However, expectations are: • max $w \sim twice$ as large; more sound wave activity; stronger diffusion properties (stronger PBL growth, ...) \rightarrow probably no succesful simulation without adaptation at least of the turbulence scheme

DWF

A possible alternative dynamical core for ICON based on **Discontinuous Galerkin Discretisation**

Michael Baldauf (FE13)

Discontinuous Galerkin (DG) methods in a nutshell

 $dx v(\mathbf{x})$

$$\frac{\partial q^{(k)}}{\partial t} + \nabla \cdot \mathbf{f}^{(k)}(q) = S^{(k)}(q), \qquad k = 1, ..., K$$

weak formulation

Finite-element ingredient

Finite-volume ingredient

$$q^{(k)}(x,t) = \sum_{l=0}^{p} q_{j,l}^{(k)}(t) \ p_l(x - x_j)$$

e.g. Legendre-Polynomials

From Nair et al. (2011) in ,Numerical techniques for global atm. models'

e.g.

Cockburn, Shu (1989) Math. Comput. Cockburn et al. (1989) JCP Hesthaven, Warburton (2008): Nodal DG Methods

$$\mathbf{f}(q) \to \mathbf{f}^{num}(q^+, q^-) = \frac{1}{2} \left(\mathbf{f}(q^+) + \mathbf{f}(q^-) - \alpha(q^+ - q^-) \right)$$

Lax-Friedrichs flux

Gaussian quadrature for the integrals of the weak formulation

 \rightarrow ODE-system for $q^{(k)}_{il}$

DG – Pros and Cons

local conservation

- any order of convergence possible
- flexible application on unstructured grids (also dynamic adaptation is possible, h-/p-adaptivity)
- very good scalability
- **explicit** schemes are easy to build and are quite well understood
- higher accuracy helps to avoid several awkward approaches of standard 2nd order schemes: staggered grids (on triangles/hexagons, vertically heavily stretched), numerical hydrostatic balancing, grid imprints by pentagon points or along cubed sphere lines,

- high computational costs due to
 - (apparently) small Courant
 numbers
 - higher number of DOFs
- **well-balancing** (hydrostatic, perhaps also geostrophic?) in Euler equations is an issue (can be solved!)
- basically ,only' an A-grid-method, however, the ,spurious pressure mode' is very selectively damped!

Target system: ICON model

(Zängl et al. (2015) QJRMS)
operational at DWD since Jan. 2015 (global (13km) and nest over Europe (6.5km))

- convection-permitting (2.2km): Q4/2020

but currently far away from this, only a toy model for 2D problems exists with:

- explicit time integration DG-RK (with Runge-Kutta schemes) or horizontally explicit-vertically implicit (DG-HEVI) (with IMEX-Runge-Kutta)
- ,local DG' (LDG) option for PDEs with higher spatial derivatives
- use of a triangle grid (also on the sphere) is optional

Linear gravity/sound wave expansion in a channel

Deutscher Wetterdienst Wetter und Klima aus einer Hand

M. Baldauf (DWD)

Test case: flow over steep mountains, vertically stretched grid Schaer et al. (2002) MWR (case 5b: $U_0=10m/s$, N=0.01 1/s)

with vertical grid stretching ~1:20, Δz_{min} ~50m

Explicit DG simulation (3rd order) remains stable even for steeper slopes! (remark: diffusion switched off \rightarrow strong gravity wave breaking occurs)

HEVI-scheme with DG

Treatment of numerical diffusion in the local Lax-Friedrich flux:

$$\begin{pmatrix} \mathbf{f}_{slow}^{(s)} + \mathbf{f}_{fast}^{(s)} \end{pmatrix}^{(num)} \cdot \mathbf{n} = \frac{1}{2} \begin{pmatrix} \mathbf{f}_{slow,+}^{(s)} + \mathbf{f}_{slow,-}^{(s)} + \mathbf{f}_{fast,+}^{(s)} + \mathbf{f}_{fast,-}^{(s)} \end{pmatrix} \cdot \mathbf{n} \\ - \frac{\lambda_{slow}}{2} \begin{pmatrix} q_{+}^{(s)} - q_{-}^{(s)} \end{pmatrix} - \frac{\lambda_{fast}}{2} \begin{pmatrix} q_{+}^{(s)} - q_{-}^{(s)} \end{pmatrix} \\ Blaise et al. (2016) IJNMF$$
 implicit

Test case: falling cold bubble (Straka et al. (1993)

Comparison explicit vs. HEVI scheme

How to bring DG on the sphere ...

Idea to avoid pole problem and to keep high order discretization: use **local (rotated) coordinates** for every (triangle) grid cell,

- i.e. rotate every grid cell towards $\lambda \approx 0$, $\phi \approx 0$.
- \rightarrow geometry is treated exactly
- \rightarrow transform fluxes between neighbouring cells

shallow water equations covariant formulation (here: without bathymetry)

$$\begin{aligned} \frac{\partial \sqrt{G}H}{\partial t} + \frac{\partial}{\partial x^{i}} \sqrt{G}m^{i} &= 0\\ \frac{\partial \sqrt{G}m^{i}}{\partial t} + \frac{\partial}{\partial x^{j}} \sqrt{G}T^{ij} &= \sqrt{G}(F_{Cor}^{i} - \Gamma_{jk}^{i}T^{jk})\\ T^{ij} &= \frac{m^{i}m^{j}}{H} + \frac{1}{2}g^{ij}g_{grav}H^{2} \end{aligned}$$

Barotropic instability test

Galewsky et al. (2004)

4th order DG scheme

without additional diffusion $dx \sim 67$ km, dt=15 sec.

GrADS: COLA/IGES

2019-09-03-17:03

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Barotropic instability test Galewsky et al. (2004)

4th order DG scheme without additional diffusion dx~67 km, dt=15 sec.

80

75

70

65

60

55

50

45 40

35

30

25

20

15

relVort:

GrADS: COLA/IGES

Fig. 4 from Galewsky et al. (2004)

Summary

- 2D toy model for
 - explicit DG-RK (on arbitrary unstructured grids with triangle or quadrilateral grid cells) and

- HEVI DG-IMEX-RK

works for several idealized tests (also Euler equations with terrain-following coordinates), correct convergence behaviour, ...

• **DG on the sphere** by use of local (rotated gnomonial) coordinates

Outlook

- further design decisions: nodal vs. modal, local DG vs. interior penalty vs. ..., ..
- coupling of tracer advection (mass-consistency)?
- improve **efficiency** in the HEVI direct solver
- further **milestones** (for the next years!)
 - development of a 3D prototype DG-HEVI solver
 - choose optimal convergence order *p* and grid spacing estimated: *p*_{horiz} ~ 3 ... 6, *p*_{vert} ~ 3 ... 4 (*p*_{time} ~ 3...4)

S

Announcement:

The next

"Partial differential equations on the sphere" – workshop

will take place at DWD, Offenbach, Germany 5-9 October 2020

