

42

đ,

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Achievement and learnings from the PP POMPA Submission of a new HPC project

"Xávier Lapillonne, MeteoSwiss V Clement? O Fuhrer1, C Osuna1, K Osterried3, H. 42 Walser1 C Charpilloz1 P. Spoerri³ T. Wicky, P. Marti³ R 4545454545 Scatamacchia. U. Schaettler[®] and all PP POMPA contributors 666666666666666666 *************** 44 604406666666666666666666666 ¹MeteoSwiss, ²CSCS, ³C2SM ETH, ⁴COMET, ⁵DWD ******** **** 6.6 농작은 석은 석은 석은 석은석과 작은 석은 작은 작은 작은 작은 석은 석은 석은 석은 수는 수는 것을 수는 수는 것을 수는 것을 수는 것을 수는 것을 수는 것을 수 있다.

PP POMPA main achievements

- Project duration 2010-2018
- GPU capable version of the COSMO model (official release Q4 2018)
- Support for single and double precision
- Performance portable implementation of the Dynamical core using STELLA library
- OpenACC port of Physics, Assimilation and organization code (7500 directives)

• 7 publications

! Thanks to all contributors !

52

러노

Speed up with respect to reference code on CPU

Results for 1 COSMO-E member 2h simulation using 8 GPU sockets (Nvidia P100) or 8 CPU sockets (8 Intel Haswell CPUs with 12 cores each = 96 cores). Measured on the Piz Daint system at CSCS with COSMO 5.5-prerelease, branch full_gpu3

		~p ((~					-0				2		
	岱 🗘		C12		c5-				5		° &		4
	÷ ÷	÷		늰	5		-tt-	÷			45		
-5 G			r <mark>u</mark> n		·	-h %		÷.	r ^{re} r		- <u>6</u> 0	5 G	53
		- 순 - 년	ኑ ቆ ቆ		÷		52 ÷	÷	-55-	\$ \$ A	2 C		
47					÷ ÷	÷ ÷	÷	÷				6 8 8	
순	5				· \$\$ d	þ		윤	- + + + + + + + + + + + + + + + + + + +	- 슈 - 슌_	승 승 승		문
55	÷ ÷ ÷	- Me	eteoSwiss		÷ ÷ ÷	승규	÷÷÷		xavier.lapillo	nne@meteos	🕸 iss.ch 🕀 🕐	÷З	÷
- n-	a rEarta	n, V		~ ~ ~ ~~	· · · · · · · · · · · · · · · · · · ·	-CC-	-EE-	-rh -rh -rh			공장 성	i ritr	rn rn
	유유 승운 숙	우수 승수	-tt-		-CCC-	÷ ÷	- ÷	45	÷ ÷	윤 윤		6 Æ	÷
중중중중	· 666	준순준석	ነ ቍቍ ቍቍው	· * * * * * * * * * * * * * * * * * * *	· 윤 윤충 훈 đ	ት ቴቲቲቲ	- 유운 유운식	ት ት ት		6 6 6 6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	* *	순
		-11-11-11-1	r u.e. arurar		· · · · · · · ·	с <u>пс-л-п-</u>			-u-uu		ч. п. п.	-uu-	-11

One application : quasi-global simulation on Piz Daint

Configuration

- 80°S to 80°N covering 98.4% of Earth's surface
- Regular lat/lon grid
- Idealized baroclinic wave test (Jablonowski and Williamson, 2006)
- 10 day simulation
- Minimal I/O
- Metric : SYPD = Simulated years per wallclock day

Piz Daint

~5000 hybrid nodes with P100
 GPUs (#6 Top500 6.2018)

MeteoSwiss

Visualization by Tarun Chadha (C2SM): clouds > 10^{-3} g/kg (white) and precipitation > 4 10^{-2} g/kg (blue) Fuhrer et al., GMD 2018

Strong scaling

• Near-global simulations at a fixed horizontal resolution

Some learnings (1/2)

- Increased complexity :
 - GPU support
 - Single and double precision capability
- Improve software development process : code review with dedicated tool (Github Pull Request – thanks to the SCA for using this!), design review …
- Automatic on demand and nightly build and tests (Jenkins)

Jenkins → POMPA → dycore_trur	ik_build →								
🛧 Back to Dashboard		-							
🔍 Status		Project dycore_trunk_build							
📂 Changes		Daily builds and tests of DYCORE trunk on all target machines at CSC tringered as well (on a bourdy basis)							
Workspace				(0.1.0.1					
Build Now									
		Configuration N		latrix release		debug			
S Delete Multi-comiguration project		daint	double	сри	0	0			
💥 Configure				gpu	0	0			
Email Template Testing			float	сри					
				gpu	0	•			
Build History	trend 📼	kesch	double	сри	0	•			
				qpu					

- **Moving target** : we ported COSMO to GPU 3 times (4.18, 5.0 and 5.5)
- Synchorinization with model developer and incremental step is key

Some learnings (2/2)

OpenACC directives

- Incremental insertion in existing code, ideal for porting large components
- Not always performance portable, only for GPUs

C++ embeded DSL

- Separation of concerns between user code and optimized backend
- Performance portable, future proof : can be extended to new architecture
- Steep learning curve, domain scientist did not like the language : we now have 2 dynamical cores!

Laplacian with Stella-DSL

template < typename TEnv>
struct Divergence {
 STENCIL_STAGE(TEnv)
 STAGE_PARAMETER(FullDomain, phi)
 STAGE_PARAMETER(FullDomain, lap)
 STAGE_PARAMETER(FullDomain, flx)
 static void Do(Context ctx, FullDomain) {
 ctx[div::Center()] = ctx[phi::Center()] ctx[alpha::Center()] * (ctx[flx::Center()]
 ctx[flx::At(iminus1)] + ctx[fly::Center()]
 ctx[fly::At(jminus1)])
}

};

Future plans with COSMO on GPU

- MeteoSwiss will switch to the official COSMO version in Q4 2018
- Complete GridTools implementation of the C++ Dynamic Q4 2018, proposition to integration in official code Q1 2019
- COMET : ENS COSMO-ME (40 members), and ENS COSMO-IT (20 members) Q4 2018

Why investing a new HPC project ? O

Physical limits, Moore's law is over

- 2004 end of frequency scaling
- 2012 end of rapid cost decline
- 2019 heat dissipation constraints
- 2021 end of reduction in feature size \rightarrow ?

K. Flamm 2017, IEEE Computing in Science & Engineering

- \rightarrow multi-core
- \rightarrow constant \$/transistor
- \rightarrow massively parallel architecture

COSMO PP IMPACT (submitted) ICON on Massively Parallel ArChiTecture

- Build on Know-How from the POMPA project
- Implement baseline GPU capable version with OpenACC directives
- Investigate OpenMP 4.5 for accelerator (currently not compilers)
- Improve modularity of the model structure

Low risk, known technologies

High risk High potential Future proof

- Achieve performance portability on all architectures
 - Develop new DSL approach
 - Implement ICON Dycore based on DSL (Domain Specific Language)
 - Evaluate use of CLAW-DSL abstractions for the physical parameterisation
- A province task parallelism
 A province ta