[VERIMIP] Comparison of COSMO-TERRA and COSMO-CLM in weather mode for summer heat extremes

Verena Bessenbacher

Supervisors: Sonia Seneviratne, Edouard Davin, Jean-Marie Bettems (MCH) Collaborators: Yiftach Ziv, IMS (TERRA simulations), Matthieu Leclair, ETH (CLM simulations), Oliver Fuhrer, MCH, Pirmin Kaufmann, MCH, Anke Duguay-Tezlaff, MCH, ... Submission date: June 1st, 2018

Framework

introduction 1/18

adapted from Edouard Davin

TERRA

~ '2nd generation'

CLM

VS

~ '3rd generation'

adapted from Vogel et al 2015

TERRA

COSMOCOSMO TERRA 5.05COSMO TERRA 5.05TERRA 5.0standard settingsadvanced settings

VS

CLM

ults — conclusions — outlook

COSMO CLM

Evaluation Datasets

introduction -5/18

— methods

	EOBS	Satellite LST	GLEAM	WECANN	CERES	GHF estimate
type	gridded meteorological stations	thermal infrared from EUMETSAT	model fed with satellite and ground observations	solar-induced fluorescence, machine learning	satellite observation	compound product
time resolution	daily 1950-2015	hourly 1991 - 2015	daily 1980-2016	monthly 2007-2015	daily 2000-2017	daily 2015
spatial resolution	0.1° × 0.1° Europe	5 × 5 km Europe & Africa	0.25° x 0.25° global	1° x 1° global	1° x 1° global	resp. resolution
2m temperature [K]	daily 2m-temperature (min, max, mean) [K]					
ground temperature [K]		radiative ground temperature [K]				
SH [W m ⁻²]				daily sensible heat [Wm ⁻²] monthly average		
LH [W m ⁻²]			evapotranspiration [mm/day]	daily latent heat [Wm ⁻²], monthly average		
LW [W m ⁻²]					longwave radiation [Wm-2]	
SW [W m ⁻²]					shortwave radiation [Wm-2]	
Ground heat flux [W m ⁻²]						ground heat flux [Wm-2]

conclusions outlook - results

model resolution: 6.6km, hourly

Assessing LSM performance

introduction 6/18

------ methods

------ results --

Comparison	Evaluation	Benchmarking
Def: compare to other models	Def: compare to observations	Def: compare to benchmark
advantage: find where performance improvements are achieveable	advantage: compare to real measurements	advantage: a priori, non-relative, measure of information usage
challenges: making models more alike does not necessarily make them better	challenges: observations are not available / have gaps / have limitations / have uncertainties	challenges: finding a suitable benchmark

------ conclusions

outlook

Benchmark experiment

introduction — methods 7/18

(1) separate the domain in subdomains of similar points with kmeans algorithm

- (2) train a ridge regression on each subdomain (year 2006) $f(SW_{COSMO}, PRECIP_{COSMO}) = w_1 SW_{COSMO} + w_2 PRECIP_{COSMO} + w_0 = LH_{GLEAM}$
- (3) estimate latent heat from regression for test data (years 2015, 2003)

outlook results conclusions -

Evaluation of LH and SH

introduction 8/18

methods

results conclusions outlook

Evaporative fraction

results — outlook

 $EF = \frac{LH}{LH + SH}$

Soil moisture

10/18 introduction

methods

Southern Europe

outlook conclusions results

Evaluation against EOBS

-4

12/18 introduction

methods

results

-2

daily maximum 2m temperature

daily **mean** 2m temperature [K]

daily **minimum** 2m temperature

0

conclusions outlook

2

4

Evaluation against EOBS

12/18 introduction

— methods

TERRA - EOBS CLM - EOBS 2015-06 2015-08 2015-06 2015-08 2015-07 2015-07 mean diurnal cycle over Southern Europe daily maximum 2m 2015 temperature 2006 30.0 2003 MBE -0.28 RMSE 2.36 MBE -0.75 RMSE 3.93 TERRA 27.5 CLM EOBS daily **mean** 2m ູ ບ^{25.0+} atria 22.5 MBE 0.6 RMSE 1.64 MBE 0.25 RMSE 1.57 temp 23 17.5 MBE 1.83 RMSE 2.7 MBE 1.34 RMSE 2.81 15.0 model too cold 12.5 -4 12 18 6 hours

temperature [K]

daily **minimum** 2m temperature

model too warm

results conclusions outlook

RMSE

14/18 introduction — methods — results

JJA 2015 & 2003 (except WECANN)

ults — conclusions — outlook

Temperatures

Error dependency on LAI

methods

the more vegetation in COSMO-TERRA, the worse it performs in terms of latent heat

results conclusions outlook

JJA 2015

Conclusions

17/18 introduction

— methods

outlook results conclusions

- improved representation in fluxes in CLM ...
- ... did not translate into 2m temperature improvements
- error in latent heat estimation in TERRA scales with vegetation density

Outlook

18/18 introduction

methods

results conclusions outlook

4 months post-MSc in winter 2018/2019 :

- > experiments with more configurations (e.g. aerosols, COSMOv5.05)
- > apply MCH standard verification

References (Selection)

Davin, E. L., Maisonnave, E. and Seneviratne, S. I. (2016): Is land surface processes representation a possible weak link in current Regional Climate Models?, Environ Res Lett, 11:074027 Best, M. J., Abramowitz, G., Johnson, H. R. et al (2015): The Plumbing of Land Surface Models: Benchmarking Model Performance, Journal of Hydrometeorology, DOI: 10.1175/JHM-D-14-0158.1 Zubler, E. M., Lohmann, U., Lüthi, D., Schär, C. (2011): Intercomparison of aerosol climatologies for use in a regional climate model over Europe, Geophysical Research Letters, doi:10.1029/2011GL048081