

Stochastic modelling of the model error

Recent developments and open questions

$$\frac{\partial \psi}{\partial t} = \left[\frac{\partial \psi}{\partial t}\right]_{\det} + \eta(t)$$
$$\frac{\partial \eta}{\partial t} = \dots \sigma \xi(t)$$

M. Sprengel, T. Heppelmann, E. Machulskaya, C. Gebhardt

Outline

- reminder: Ekaterina's scheme
- > alternative: Stochastic Pattern Generator (Tsyrulnikov & Gayfulin)
- comparison w.r.t. theoretical aspects and practical implementation
- parameter estimation for the error tendency model (COSMO-D2 and ICON)
- next steps and open questions

EM-scheme model for the model error (E. Machulskaya)

$$\frac{\partial \psi}{\partial t} = \left[\frac{\partial \psi}{\partial t}\right]_{\text{det}} + \eta(t) \qquad \qquad \frac{\partial \eta}{\partial t} = -\gamma \eta + \gamma \nabla (\lambda^2 \nabla \eta) + \sigma \xi(t)$$

 ψ : prognostic variables (T, QV, U, V)

 $\eta(t)$: noise field / model error, correlated in time and space

 $\xi(t)$: Gaussian noise

 σ , γ , λ : standard deviation and spatial and temporal correlation

 γ , λ and σ are weather-dependent and are derived from past data

Potential predictors are $\left|\frac{\mathrm{d}T}{\mathrm{d}t}\right|$, |U|, cl.cover, $\left|\frac{\mathrm{d}q}{\mathrm{d}t}\right|$

Deutscher Wetterdienst Wetter und Klima aus einer Hand

examples of parameter estimations

Important steps

> Generate a data set of model error and model tendencies to estimate the parameters γ , λ and σ .

How to estimate the model error (tendencies)?

Estimate the parameters of the error model.

Estimation of diffusion coefficient λ seems to be most challenging.

Solve the equation for model error tendency $\eta(t)$

Fast and stable solution!!

Approach I (EM-Scheme)

$$\frac{\partial \eta_{X}(x,t)}{\partial t} = -\gamma(\tau_{X})\eta_{X}(x,t) + \gamma(\tau_{X})\nabla \cdot \left(\lambda^{2}(\tau_{X})\nabla \eta_{X}(x,t)\right) + \sigma(\tau_{X})\xi(x,t)$$

 $\tau_X = \tau_X(x, t)$ is the tendency of the predictor variable X

$abla^2$ is a local operator \rightarrow numerically efficient

García-Ojalvo et al., Generation of spatiotemporal noise, Phys. Rev. A 1992

Approach II (SPG – Stochastic pattern generator)

$$\left(\frac{\partial}{\partial t} + \gamma(\tau)\sqrt{1 - \lambda^2(\tau)\nabla^2}\right)^3 \eta(x, t) = \sigma(\tau)\xi(x, t)$$

- fractional Laplacian for improved spatial characteristics
- finite variance of $\eta(t)$
- proportionality of scales
- non-local operator is numerically expensive for space-dependent coefficients γ , λ and σ

Tsyrulnikov & Gayfulin, A limited-area spatio-temporal stochastic pattern generator for simulation of uncertainties in ensemble applications, Met. Z. 2017

Deutscher Wetterdienst Wetter und Klima aus einer Hand

Proportionality of scales

temporal length scale T_k associated with spatial wavenumber (or vector) k

$$T_k \sim 1/k \text{ for } k \to \infty$$

modell error tendency field η for U (100m)

Comparison of the two approaches

	EM	SPG
Variance of η in <u>continuous</u> equation	infinite	finite
Proportionality of scales (strict)	no	yes
Diffusion operator	∇^2 local operator	Fractional Laplacian non-local operator
Computation on grid (physical space)	fast	(currently) expensive (ongoing task to find sufficiently accurate and affordable method)
Computation in Fourier Space		Fast for <u>constant</u> parameters γ , λ and σ

Parameter estimation for COSMO-D2-EPS

Use 1-hour forecasts and COSMO-D2 analysis to estimate model error tendency

Model error tendency field based on 1h-forecast and analysis for U(300m)

-2.5

2.5

5.0

0.0

longitude rotated/°

-5.0

-7.5

Parameter estimation for COSMO-D2-EPS

- Use 1-hour forecasts and COSMO-D2 analysis to estimate model error tendency
- > Binning of data according to forecast tendency τ and for each bin
 - fit theoretical function to empirical autocorrelation $\rightarrow \lambda$
 - given λ , determine γ and σ from linear regression

empirical autocorrelation in COSMO-D2 for different variables

COSMO General Meeting 03.-07.09.2018, St. Petersburg WG7 C. Gebhardt, DWD ¹³

empirical autocorrelation in COSMO-D2 for different heights

COSMO General Meeting 03.-07.09.2018, St. Petersburg WG7 C. Gebhardt, DWD ¹⁴

Fit of empirical autocorrelation to functional form

For each bin determine λ through fit:

Assume some functional form for $\lambda(\tau)$ and fit to this function

Estimation of γ and σ by regression

Then determine γ and σ for each bin and assume some functional form

Parameter estimation for COSMO-D2-EPS

- Use 1-hour forecasts and COSMO-D2 analysis to estimate model error tendency
- > Binning of data according to forecast tendency τ and for each bin
 - fit theoretical function to empirical autocorrelation $\rightarrow \lambda$
 - given λ , determine γ and σ from linear regression
- > However: estimation of λ is not stable against noise
 - Alternative: optimization with regularized cost function
 - this is computationally very expensive
 - result of first method can be used as initial guess for optimization

Parameter estimation for ICON-EPS

- Different options to estimate model error tendency
 - deterministic analysis as reference (13 km, coarse-grained to 40 km)
 - EDA mean as reference (40km as for ICON-EPS)
 - older ICON-EPS forecast run as reference (40km)

Parameter estimation for ICON-EPS

- Different options to estimate model error tendency
 - deterministic analysis as reference (13 km, coarse-grained to 40 km)
 - EDA mean as reference (40km as for ICON-EPS)
 - older ICON-EPS forecast run as reference (40/20km)
- Binning of data according to forecast tendency τ and for each bin
 - fit theoretical function to empirical autocorrelation $\rightarrow \lambda$
 - given λ , determine γ and σ from linear regression

empirical autocorrelation in ICON for different error reference fields

DWD

empirical autocorrelation in ICON for different variables & surface types

DWD

empirical autocorrelation in ICON for different model levels & surface types

empirical autocorrelation in ICON for different seasons & model levels

empirical autocorrelation in ICON for different lead times of error tendency estimation & surface types

empirical autocorrelation of model error tendency in ICON – summary

- Dependent on surface type, model height and variable (with interactions), less dependent on the season and the forecast lead time.
- Near the surface, model error tendency approximations of temperature have longer correlations lengths with analyses as reference than with forecasts as reference.
- With increasing model height, model error tendency approximation is less dependent on the reference dataset for error estimation.
- Higher dependence on surface type for temperature than for zonal wind.

OSMO-D

Open questions and next steps

- further research on SPG (fast computation for space-dependent parameters, use regionally constant parameters...)
- decide on approach for estimation of model parameters
- run first long period experiments
- further research on appropriate reference fields for the estimation of model error tendencies
- implementation of stochastic differential equation for the model error in ICON
- estimation of model parameters
- run experiments

Thank you for your attention!!

COSMO General Meeting 03.-07.09.2018, St. Petersburg WG7 C. Gebhardt, DWD ²⁸