

Prediction of thunderstorms with COSMO-2I-EPS

Chiara Marsigli, Maria Stefania Tesini, Davide Cesari, Andrea Montani, Tiziana Paccagnella **Arpae SIMC, Bologna, Italy**

COSMO-2I-EPS: operational set-up

- COSMO 2.2 km, 65 levels
- 20 members
- BCs from the first 20 members of COSMO-ME-EPS
- ICs from KENDA (with LHN)
- No physics perturbations
- 1 run per day, 00 UTC, +48 h

COSMO-2I-EPS: operational set-up

Testing the prediction of thunderstorms

- Run of the ensemble for a period in summer 2016 characterised by thunderstorms (19/06/2016 – 07/07/2016)
- 7 runs for days of rain and 7 runs for days of no rain
- Objective verification against precipitation estimated by the Italian radar composite corrected with raingauges (adjustement)
- Impact of ICs from KENDA analyses
- Verification of structures (SAL)
- Verification over civil protection warning areas:
 - using radar data
 - using lightning data

Identification of the thunderstorm predictors from the ensemble

Verification of precipitation: quality of the ensemble forecasts

Probabilistic scores

6h total precipitation vs radar estimate adjusted with rangauges average precipitation over boxes 02

Probabilistic scores

6h total precipitation vs radar estimate adjusted with rangauges maximum precipitation over boxes 02

Verification of precipitation objects with SAL method

SAL method - radar adj – 25 June 2016

Verification of precipitation: quality of each ensemble member

forecast range (h)

Impact of perturbed ICs from LETKF (subjective evaluation)

Developing a method for verification on warning areas using radar data and lightning data

Data and method

- Measures form a lightning network over Italy:
 - Number of lightnings
 - Maximum intensity recorded in the area
 - Spatialized over the warning areas, hourly
- Radar estimate of precipitation, raingauge adjusted
 - Spatialized over the warning areas, hourly
 - Average, maximum ...
- Ensemble members
 - Precipitation forecasted over the warning areas, spatialized (average, maximum ...)
 - Probabilities are computed, of precipitation exceeding a threshold (e.g. Imm)

Data and method – some questions

- Lightnings:
 - What measure should we use? How many lightnings are needed to "catch" a thunderstorm?
- Radar estimate of precipitation:
 - Which threshold indicate a "significant" precipitation? Likely different from the one of the model
- Ensemble:
 - Which threshold indicate a "significant" precipitation?
 - Use of average or maximum or a percentile?
 - How to spatialize probabilities? And which probability threshold should we use?

Scatter plot: radar - lightnings

20.06.2016

Example of performance diagram

Prob >= 80%

Example of performance diagram

Scatter plot: radar - lightnings

02.07.2016

Example of performance diagram

Rad >= 1 mm Prob >= 80%

02.07.2016

Concluding remarks

- COSMO-2I-EPS is running as part of the operational chain of Arpae at CINECA but we are still not ready for operational usage (problems with DA and with timeliness)
- Forecass of thunderstorms on selected cases (experiments) shows encouraging result; positive impact of KENDA ICs
- new products for thunderstorms and fog
 => need to develop a suitable verification method
- Verification of precipitation against radar estimate
 - => problem of the estimate

