

ArpaP contributions in PT-CIAO

Valeria Garbero Massimo Milelli

04/09/2018 – 20th COSMO General Meeting, St. Petersburg

Task 1: benchmark

- Model version: 5.04e
- Domain: operational COSMO-I7
- Namelists: operational COSMO-I7
- Forecast time: +48h
- Boundary frequency: 3h, from IFS
- Output frequency: 1h
- Data assimilation: no (cold start)
- •<u>Case study:</u> 18 May 2017
- •Number of cores: 64 (8x8)
- •<u>Simulation 1:</u> ctrl (Tiedke scheme)
- •<u>Simulation 2:</u> becht (Bechtold scheme)
- •<u>Simulation 3:</u> ctrl_16 (ctrl with 16 cores, 4x4)
- Simulation 4: becht_16 (becht with 16 cores, 4x4)

	CTRL	BECHT	CTRL_16	BECHT_16
Run time (s)	1304	1507	4636	4835

Scaling Ratio CTRL: 3.5 Scaling Ratio BECHT: 3.2

Somputational time and scaling are comparable

Task 2: case studies

•Runs at 5 km and 7 km

- 3 case studies of heavy rain investigated: May 2017 and January 2018 in Piedmont, September 2017 in Tuscany
- •Runs with COSMO v5.04h (loldtur=true, itype_conv=?)
- Fuzzy verification over Italy (red rectangle, I-domain) or over a restricted area of interest (green rectangle, P-domain)

Task 2: May 2017 CSMO COSMO-I5-T

RADAR

COSMO-I5-B

Task 2: September 2017

COSMO-I5-T over I-domain

RADAR

7.5

tema Nazionale

dell'Ambiente

COSMO-I5-B over I-domain

Task 2: January 2018 COSMO-I5-T over I-domain

COSMO-I5-B over I-domain

mm

RADAR

tema Nazionale

per la Protezione dell'Ambiente

Task 2: conclusions

- both schemes have a quite good performance in term of FSS regarding the investigated case studies
- •the best values concern the verification over the domain which delimits the rain event, since the fuzzy method can be misleading in case of a large area not covered by precipitation
- the Bechtold convection schemes performs better in precipitation detection at very low intensity of precipitation (<0.5 mm/h), although it has more false alarms (not shown here)
- •the Tiedtke scheme shows an overall enhanced behavior, mostly for more intense precipitation (summer cases, less evident in winter case)
- the skill scores of both schemes remain quite unsatisfactory for high precipitation rate (>30mm/h), that means that models have not been able to accurately locate heavy rain events

To be done before December (end of the PT)

Check vertical profiles

otezione

•Still one more run with Bechtold shallow convection (only possible now with the latest version of COSMO)

Thank you for the attention

