

COSMO-ART and ICON-ART at Rosshydromet

Alexander Kirsanov, Gdaly Rivin, Uliana Kostrova, Anastasia Revokatova

COSMO GM, 3-7 Sept 2018, Saint Petersburg

COSMO-Ru7-ART DOMAIN

COSMO-Ru7-ART

Small domain since June 2017

DAILY PRODUCTION

COSMO-Ru7-ART FORECAST EXAMPLE 01:00 05 APR 2017 (MSK): CO concentration, ppm

Forecast on 21 h COSMO-RU/ART km

 $MPC_{da} \sim 2,6 \text{ ppm}$

COSMO-Ru7-ART FORECAST EXAMPLE

MOSECOMONITORING

Wind **1.1 , E** Pressure 751 mm Hg. art.

Hum 26% Visibility range 51 km.

Home page Air qua

About us

BUDGETARY ENVIRONMENTAL PROTECTION INSTITUTION

"MOSECOMONITORING"

Budgetary institution of the Moscow city Government authorised to carry out state environmental monitoring

ONMENT

Air pollution index (annual) In 2017 : 2,7 (low) Dispersion conditions yesterday:good today: poor tomorrow night: good tomorrow day: good

AIR QUALITY

in Moscow

54 Automatic air quality monitoring stations SHOW ON THE MAP

16 Controlled pollutants SHOW ON THE MAP

http://www.mosecom.ru/home-page/

MOSECOMONITORING

http://www.mosecom.ru/map/

COMPARISON WITH MEASUREMENTS

Pollutant concentrations forecasted on 01.12.2016 - 07.12.2016

COSMO-ART SYSTEM

FORECAST USING "ACTUAL" CO EMISSIONS

FORECAST USING "ACTUAL" CO EMISSIONS

1 – TNO, 2 – "actual" emissions, 3 – measurements

A. Revokatova, G. Surkova and A. Kislov. Short-term forecast of carbon monoxide concentrations over Moscow region. Vol. 15, EGU General Assembly, 2013. Geophysical Research Abstracts - id. EGU2013-879.

FOREST FIRES OF SUMMER 2010

Moscow, Aivazovsky Street, 17.06.2010 (left) and 07.08.2010 (right)

DIFFERENT APPROACHES TO CALCULATE ¹⁵ EMISSIONS FROM BIOMASS BURNING

BIOMASS BURNING EMISSION ESTIMATION¹⁶ USING BURNT OUT AREA

DIFFERENT APPROACHES TO CALCULATE ¹⁷ EMISSIONS FROM BIOMASS BURNING

EMISSION OF POLLUTANTS FROM BIOMASS BURNING ¹⁹

The amount and type of emissions during combustion of biomass depends not only on the vegetation type, but also on its moisture content, ambient temperature, humidity, and wind velocity.

Emission of pollutants from biomass burning include primarily:

- CO₂
- CO
- NO_x
- CH₄
- NMVOC
- particulate matter

Operational forecast of the air pollution during forest fire episodes

COMPARISON WITH OBSERVATIONS

- 22 measuring CO stations
- nearest grid points
- average of all stations
- spatial resolution 1 hour

Calculated:

- ME mean error (forecast observation)
- RMSE root-mean-square error
- CORR correlation coefficient

For the cases of exceeding MPC*:

- POD Probability of Detection
- FAR False Alarm Rate
- FBI Frequency Bias Index
- TSS True Skill Statistics
- TS Threat Score
- ETS Equitable Threat Score

station network

*MPC - Maximum Permissible Concentration

4 – 12 august 2010 year forecast on 24 hour from 00UTC

CO CONCENTRATION FORECAST

00:00 04AUG2010 (UTC) Concentration C0, ppm

Forecast on 04. COSMO-RU/ART 7 km high spatial variability

14.4

8.9

5.5

3.4

2.1

1.3

0.8

0.5

0.3

0.2

0.1

- highest concentrations in Moscow when air pollution plumes pass through city
- transfer to upper levels during midday

——MPC_{da} ~ 2,6 ppm

CO CONCENTRATION FORECAST

- MPCda maximum permissible concentration daily averaged = 3 mg/m³
- MPCmax maximum permissible concentration 20 min. averaged = 5 mg/m³

CO CONCENTRATION FORECAST SCORES

- no fire emissions anthropogenic emissions only
- fire emissions anthropogenic and pyrogenic emissions
- MPC_{da} maximum permissible concentration daily averaged = 3 mg/m³

- without pyrogenic emissions no cases of exceeding MPC_{da} were
- 211 all station average pairs forecast-

PM_{2.5} CONCENTRATION FORECAST

00:00 04,AUG2010 (UTC) Concentration PM2.5, MMg/mg3

Forecast on 04. COSMO-RU/ART '7 km high spatial variability

288

178

110

68

42

26

16

10

6

4

2

- highest concentrations in Moscow when air pollution plumes pass through city
- transfer to upper levels during midday

----MPC_{da} = 35 μg/m³

PM₁₀ CONCENTRATION FORECAST

- MPCda maximum permissible concentration daily averaged = 0.06 mg/m³
- MPCmax maximum permissible concentration 20 min. averaged = 0.3 mg/m³

PM₁₀ CONCENTRATION FORECAST SCORES²⁶

- no fire emissions anthropogenic emissions only
- fire emissions anthropogenic and pyrogenic emissions
- MPC_{da} maximum
 permissible concentration
 daily averaged = 0.06 mg/m³

- without pyrogenic emissions no cases of exceeding MPC_{da} were detected
- 211 all station average pairs forecastobservation

IMPACT OF AEROSOL-RADIATION INTERACTION ²⁷ ON AIR TEMPERATURE FORECAST

- 4 12 august 2010 forecast on 60 hour from 00UTC
- standard verification package for members of COSMO consortium VERSUS (VERification System Unified Survey) were used
- calculated mean error, mean absolue error and root-mean-square error of forecast over 164 stations in area of 30°E - 45°E, 50°N - 60°N (over all forecast domain, about 1300 pairs forecast-observation for every forecast time)
- calculated confidence intervals with 95% confidence level
- to control the quality of observations method used in the COSMO consortium was implemented: observations were excluded if their difference with forecast exceeded 30° for T2m and Td2m, 25 hPa for PMSL, 50 m/s for wind speed at 10 m

IMPACT OF AEROSOL-RADIATION INTERACTION²⁸ ON AIR TEMPERATURE FORECAST

control – experiment without aerosol radiation interaction feedback – experiment with aerosol radiation interaction

ZABAYKALSKY KRAI AND REPUBLIC OF 29 BURYATIA FORECAST 120°E The Bepulance of Bunnet Bellie 55°N Mielensy Kirel 50°N COSMO-Ru7-ART (135x150)

- forecast on 48 hours from 0:00 UTC 12.05.2015
- no anthropogenic emissions, initial and boundary conditions from ICON

FORECAST OF PM_{2.5} CONCENTRATION (MARKED IN RED) ³⁰ FOR ZABAYKALSKY KRAI AND REPUBLIC OF BURYATIA

Artificial Earth satellite AQUA/MODIS 13.05.2015 05:26 UTC (SIC "Planet") Republic of Buryatia, Zabaykalsky Krai

COMPUTATIONAL RESOURCE PROBLEM

Small domain since June 2017

Forecast of COSMO-Ru7-ART with the reduced scheme of chemical reactions

Forecast of trace gases concentration on 11.04.2017, 12:00 UTC

Forecast of COSMO-Ru7-ART with the reduced scheme of chemical reactions

Mean values over one week and difference between the experiments with full and reduced schemes of chemical reactions

	CO	NO	NO ₂	O ₃
Reference experiment, mean concentrations, ppm	0,20808	0,01565	0,01837	0,01252
Reduced reaction scheme experiment, mean concentrations, ppm	0,20873	0,01621	0,01797	0,0116
Mean difference (16 reaction experiment – reference experiment), ppm	0,00065	0,00056	-0,0004	-0,00092
Difference in %	0,3	3,6	-2,2	-7,3

Diurnal variability of pollutant concentrations with full and reduced chemical reaction scheme differ considerably, reduced reaction scheme produces less distinct daily cycle.

Additional analysis is required (possibly with ICON-ART).

2 KM GRID SPACING TEST RUNS

03:00 23ЯНВ2018 (MCK): Концентрация NO2, ppm

AND

CO

NO₂

2 KM 03:00 239НВ2018 (МСК): Концентрация СО, ррт 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1

Прогноз на Оч. от 03:00 239НВ2018 (МСК) COSMO-RU/ART 2км (пилотная версия)

03:00 239HB2018 (MCK): Концентрация NO2, ppm

COSMO-RU/ART 2км (пилотная версия)

-ПДКмр

-ПДКсс

CONCLUSIONS

- COSMO-Ru7-ART is the system for operational pollutant concentration forecast for the Moscow region
- Forecasted concentrations are compared to the measurements of "Mosecomonitoring" station network
- Model is capable of producing realistic results, which could be improved with better emission estimations
- Emissions are being estimated and tested using CTMs (chemical transport models), including 2 km emission data
- There is a module for operational estimation of biomass burning emissions
- ART module can improve temperature forecast

FUTURE PLANS

- Running all the experiments we have planned when the new computer becomes available
- ICON-ART and ICON-LAM-ART implementation
- Chemical reaction scheme optimization for our tasks
- Anthropogenic emission correction and estimation
- Aerosol climatology improvement using ART data, comparison with measurements at Meteorological Observatory of Moscow State University
- Initial and boundary conditions optimization
- Pollen forecast
- Doing all the same and more with ICON-LAM-ART

Thank you for your attention!