

רמ"ד

Towards Prognostic Aerosols in COSMO Microphysics Scheme

Harel Muskatel (IMS), Uli Blahak (DWD), Pavel Khain (IMS), Alexander Khain (HUJI)

Acknowledgments: Alessio Bozo (ECMWF)

20th COSMO General Meeting- Saint-Petersburg September 3, 2018

1

Outline

- Motivation for using prognostic aerosols in radiation & microphysics schemes
- The Segal & Khain (2006) scheme
- New cloud number concentration scenarios in COSMO
- The CAMS model
- Test case of April 25-27, 2018
- Impact on precipitation, radiation, T2m, LWC, Reff
- Overall scores
- Concluding remarks and outlook

Motivation - radiation

- Effective radius in SGS clouds in operational mode is fixed number ($R_{eff} = 5 \ \mu m$)
- Effective radius in grid scale clouds in operational mode is based only on LWC
- For iradpar_cloud=4:

$$R_e = \frac{1}{2} \frac{M_3}{M_2} = c_1 \left(\frac{\rho_x}{n_x}\right)^{c_2}$$

Motivation - radiation

Sensitivity of T_{2M} in 7-day experiment to SGS Reff

COSMO-EU / COSMO-DE setup (1-moment microphysics) /COSMO-DE results:

Motivation – clouds formation & precipitation

- Cloud droplets number concentration in the default COSMO 1-mom scheme is fixed to cloud_num (500 cm⁻³). In 2-mom schemes it depends on fixed/climatology aerosols number concentrations
- But variations in the densities of aerosols which act as cloud condensation nuclei CCN can have large impact on cloud formation, dynamics and precipitation

Pristine tropical clouds with low CCN concentration can rain out too quickly to mature to long lived clouds

Polluted clouds with very high CCN concentrations may evaporate before rain can occur

Rosenfeld et al., Science, 321, 2008

Option 1: cloud_num_rad

- icloud_num_type_rad = 1
 - n_C(z) has assumed exponentially decreasing vertical profile above z₀:

$$n_C = n_{C0} \begin{cases} \exp\left(-\frac{z-z_0}{\Delta z_{1/e}}\right) & \text{if } z > z_0 \\ 1 & \text{else} \end{cases} \quad \left[\text{kg}^{-1} \right]$$

- cloud_num_rad is n_{C0} default 200 cm⁻³
- dz_oe_cloud_num = Δz_{1/e} in [m] (half its value every 6000 m).
- zref_cloud_num = z₀ in [m] (2000 m)
- $R_{e,C}$ from $n_C(z)$ and $q_C(z)$ resp.

$$R_e = c_1 \left(\frac{q_C}{n_C}\right)^{c_2}$$

Option 2: Segal & Khain

icloud_num_type_rad = 2 (Tegen) / 4 (CAMS)

- Cloud nuclei profile n_{CN}(z) is estimated from Tegen/CAMS aerosols
- Activation of n_{CN} to n_{CCN} is estimated from Segal & Khain (2006) parameterization based on the estimated vertical velocity at cloud base
- n_C is assumed equal to n_{CCN}
- 4D look-up table:

 $n_{ccn}^{SK} = f(n_{cn}, log(\sigma), r_{mod}, w_{CB})$

Option 2: Segal & Khain activation

- In "active" clouds (w_{nuc} > w_{cb,min} and q_c > 0 or clc_con > 0 over several adjacent height layers), activation is at cloud base and n_{CN} decreases exponentially above cloud base (→ autoconversion, accreation).
- All other grid points: derive n_c from lookup table based on local n_{CN} and w_{nuc}
- Let n_{CCN,SK} be the lookup table, then:

$$n_{C}(z) = \begin{cases} n_{CCN,SK} \left(n_{CN}(z_{cb}), w_{nuc}(z_{cb}) \right) \exp \left(-\frac{z-z_{cb}}{\Delta z_{a,1/e}} \right) & \text{if } w \ge w_{cb,min} \land q_{C}(z) > 0 \land z \ge z_{cb} \\ n_{CCN,SK} \left(n_{CN}(z), \max[w_{nuc}(z), w_{cb,min}] \right) & \text{else} \end{cases}$$

$$\begin{bmatrix} kg^{-1} \end{bmatrix}$$

 Effective updraft speed w_{nuc} for nucleation, including turbulence, radiative cooling an parameterized convection:

$$w_{eff} = \overline{w} + 0.7 \sqrt{\frac{2TKE}{6}} - \frac{c_p}{g} \frac{\partial T}{\partial t}\Big|_{\text{radiation}}$$

$$w_{nuc} = \max\left[w_{eff}, w^*\right]$$

$$w^* = \left(-g z_{topcon} \frac{\overline{w'\Theta'_{v,S}}}{\overline{\Theta_{v,S}}}\right)^{1/3} \text{ (convective velocity scale after Deardorff)}$$

→ z_{top_con}: PBL height as determined from Θ_v < Θ_{v,surf}+0.5 K, or upper bound of lowest continuous "clc_con" layer

R_{eff} in SGS clouds:

- SGS water clouds with a fixed R_{eff}: Tuning parameter reff_ini_c (default: 5µm) luse_reff_ini_c_as_reffc_sgs = .TRUE.
- Improvment: SGS R_{eff} treated same way as in grid scale clouds luse_reff_ini_c_as_reffc_sgs = .FALSE.

but using *LWC_{SGS}* = *QC_RAD*/(*CLC* * *radqcfact*)

QC_RAD = QCI_CON * CLC_CON + QC_SGS * CLC_SGS * (1 – CLC_CON)

$$R_e = c_1 \left(\frac{q_C}{n_C}\right)^{c_2}$$

Segal & Khain scheme in COSMO microphysics

Number concentration of cloud droplets in <u>1-mom scheme options</u>:

- icloud_num_type_gscp = 1
 - Cloud number concentration is a tuning parameter cloud_num default: 500 cm⁻³

icloud_num_type_gscp = 4

Cloud number concentration is calculated using CAMS + SK the same way as for itype_num_type_rad = 4

→ The new cloud_num (qnc) effects the 1-mom via the auto-conversion parameterization (cloud water → rain water):

$$\frac{d(qc)}{dt} \sim -\frac{qc^4}{qnc^2} = -\frac{qc^2}{xc^2} \quad (xc = \text{mean droplet mass})$$

The effects on radiation (effective radius) and on microphysics can be separated or combined

Atmosphere Monitoring Service

itype_aerosol = 4

- Built on the ECMWF NWP system with additional prognostic aerosol variables
- Input aerosols analysis:
 - NASA/MODIS Terra and Aqua Aerosol Optical Depth at 550 nm
 - NASA/CALIOP CALIPSO Aerosol Backscatter
 - > AATSR, PMAP, SEVIRI, VIIRS
- Verification based on AERONET (text adapted from Benedetti CUS2016)

Aerosol type	size bin limits (sphere radius, μm)	Refr. index source	$ ho \ (kg/m^3)$	$r_{mod} \ (\mu m)$	σ	
	0.03-0.5			19270- 72	2	
Sea Salt*	0.5-5.0	OPAC	1.183e3	0.1992,1.992	1.9,2.0	
(80% RH)	5.0-20					
	0.03-0.55	Dubovik et al. 2002/				
Dust	0.55-0.9	Woodward et al. 2001/	2.61e3	0.29	2.0	
	0.9-20	Fouquart et al. 1987				
Black carbon	0.005-0.5	OPAC (SOOT)	1.0e3	0.0118	2.0	
Sulfates	Sulfates 0.005-20 Lacis et al. (GACP)		1.76e3	0.0355	2.0	
1) 10		WASO+	1.8e3	0.0212	2.24	
Organic matter ⁺	0.005-20	OPAC INSO+	2.0e3	0.471	2.51	
		SOOT	1.0e3	0.0118	2.00	

$$n(x, y, z) = MR(x, y, z) * \rho_{air} / \overline{m_{v}}$$

name	species	r _{mode} [µm]	σ	$\rho [kg \cdot m^{-3}]$	<u></u> <i>m</i> [<i>kg</i>]
aermr01	sea salt [0.03, 0.5]	0.1992, 1.992	1.9, 2.0	1183	7.5023E-17
aermr02	sea salt [0.5, 5]	0.1992, 1.992	1.9, 2.0	1183	3.3269E-15
aermr03	sea salt [5, 20]	0.1992, 1.992	1.9, 2.0	1183	9.3421E-15
aermr04	Dust [0.03,0.55]	0.29	2.00	2610	2.8694E-16
aermr05	Dust [0.55,0.9]	0.29	2.00	2610	4.7291E-16
aermr06	Dust [0.9,20]	0.29	2.00	2610	1.5570E-15
aermr07	OM Hydrophobic [0.005,20]	0.471, 0.0118	2.51, 2.0	1800	1.7860E-18
aermr08	OM Hydrophilic [0.005,20]	0.0212	2.24	1000	1.3411E-18
aermr09	BC Hydrophobic [0.005,5]	0.0118	2.00	1000	5.9774E-20
aermr10	BC Hydrophilic [0.005,5]	0.0118	2.00	1000	5.9774E-20
aermr11	Sulfate [0.005,20]	0.0355	2.00	1760	2.8658E-18

- Only nucleation & accumulation modes are accounted in SK
- $r_{mode,SK} = [0.02 \ \mu m, 0.04 \ \mu m]$
- Therefore, from CAMS we take only hydrophilic organic matter, black carbon & Sulfate. Other species number concentration is neglected.
- SK was calculated for NaCl. The different chemical composition effects the hygroscopicity factor (B) in the (Kholer equation)

	v_N	M_N , kg ml ⁻¹	s_N	ρ_N , kg m ⁻³	$RH_{del}, \%$ (P&K)	RH _{del} , % (Eq. 5.1.7)	В
NaCl	2	0.058	0.3	2170	75.28	80.1	1.34
KCI	2	0.074	0.3	1990	84.26	84.8	0.962
Li ₂ CO ₃	2	0.073	0.1	2100		92.8	1.02
MgO	0	0.02	0.0	3580		100.	0
(NH ₄) ₂ S	3	0.132	0.7	1770	79.97	75.1	0.72
CaCl ₂	2	0.111	0.7	2160		78.6	0.70
Na ₂ SO ₄	2	0.142	0.6	2680	82	84.6	0.68
NH ₄ NO	2	0.080	1.1	1725	61.83	58.8	0.78
NH ₄ Cl	2	0.053	0.5	1527	77.1	71.4	1.03

$$r_{\text{Nerit}} = \frac{A}{3} \left(\frac{4}{BS^2}\right)^{1/3}.$$

- $r_{crit,Kohler} \propto B^{-1/3}$. Since $B_{NaCl} \approx 2B_{Sul}$,
- $r_{crit,Sul} \approx 1.24$, $r_{crit,NaCl}$ NC does not chage more than **5%** for a large range of r_{crit}

- Three days with massive storm cells & flash floods
- 14 deaths. Judean desert and Arava
- Zafit valley disaster: 10 teenager hikers. April 26, 2018 13:15Z.

ECMWF NWP synoptic analysis layered over MODIS True Color RGB image, 26 April 12:00 UTC

Airmass RGB and ECMWF Z500 25-04-2018 06:00 UTC

ttps://www.eumetsat.int/website/home/Images/ImageLibrary/DAT_4038669.html

Models Tested:

- iradpar_cloud: 1 = old cloud_rad ; 4 = new cloud_rad
- itype_aerosols: 1 = Tanre climatology ; 4 = CAMS
- icloud_num_type_rad : $1 = N_{ccn}$ fixed ; $4 = N_{ccn}$ calculated CAMS+SK (for radiation R_{eff})
- icloud_num_type_gscp : $1 = N_{ccn}$ fixed ; $4 = N_{ccn}$ calculated CAMS+SK (for microphysics)
- luse_reff_ini_c_as_reffc_sgs: (for radiation)

F = use the same R_{eff} for SGS as for grid scale clouds

T = use fixed R_{eff} for SGS clouds

#	iradpar_cloud	itype_aerosol	icloud_num_type_rad	icloud_num_type_gscp	luse_reff_ini_c_as_reffc_sgs
1-oper	1	1	N/A	N/A	N/A
2	4	4	1	1	Т
3	4	4	4	1	Т
4	4	4	1	4	Т
5	4	4	4	4	Т
6	4	4	1	1	F
7	4	4	4	1	F
8	4	4	1	4	F
9	4	4	4	4	F

CAMS aerosols number concentration

CAMS effects on cloud number concentration [cm⁻³] 2018-04-25 01:00:00Z

icloud_num_type_gscp/rad = 4

icloud_num_type_rad = 4

icloud_num_type_rad = 1

OBS EC COSMO oper

20

Impact on radiation

Impact on radiation

Impact on T2m

Impact on T2m

Impact on LWC

CAMS effects on QC including new Reff for SGSC [g/kg] 2018-04-25 01:00:00Z

CAMS aerosols number concentration at

Peak event April 25 14Z

CAMS aerosols number concentration [cm⁻³] 2018-04-25 14:00:00Z

Peak event April 25 14Z

CAMS effects on cloud number concentration [cm⁻³] 2018-04-25 14:00:00Z

Peak event April 25 14Z

Peak event April 25 14Z

Peak event April 25 14Z

NCCLOUD(P) 2018-04-25 14:00:00Z

Peak event April 25 14Z

CAMS effects on QC including new Reff for SGSC [g/kg] 2018-04-25 14:00:00Z

Reff based on CAMS & Segal and Khain

Peak event April 25 14Z

CAMS effects on R_{eff} [µm] 2018-04-25 14:00:00Z

Reff based on CAMS & Segal and Khain

Peak event April 25 14Z

R_{eff}(QC) [µm] 2018-04-25 14:00:00Z

Peak event April 25 12Z-18Z

OBS

0.1

0.5

3

5

10

15

20

30

40

80

100

EC COSMO oper 0.97 0.97 0.96 0.96 OBS for 6h before 2018042518 1.00 0.97 0.94 0.92 0.95 0.85 0.48 0.07 Fraction: 0.98 0.88 0.77 0.71 0.60 0.30 0.06 0.00 0.89 0.74 0.34 0.05 33 33 33 32.5 32.5 32.5 30 32 32 31.5 31.5 31.5 31 31 31 30.5 30.5 30.5 30 — 34 34.5 34 35 35.5 34.5 35 35.5 36 34 34.5 35 35.5 36 34 [mm] 60 150 200

36

Peak event April 25 12Z-18Z

New cloud_rad

CAMS background aerosols

0.95 0.95 0.95 0.94 0.93 0.74 0.23 0.02

OBS

OBS for 6h before 2018042518

Fraction: 0.98 0.88 0.77 0.71 0.60 0.30 0.06 0.00

COSMO oper

0.97 0.97 0.96 0.96 0.95 0.85 0.48 0.07

0.1 0.5 1 3 5 10 15 20 30 40 60 80 100 150 200 [mm]

New cloud_rad

CAMS background aerosols

CAMS & SK Ncn → rad + microphysics

0.95 0.94 0.93 0.93 0.92 0.78 0.38 0.04

OBS for 6h before 2018042518 Fraction: 0.98 0.88 0.77 0.71 0.60 0.30 0.06 0.00

COSMO oper

0.97 0.97 0.96 0.96 0.95 0.85 0.48 0.07

[mm] 60 80 150 200 30 40 100 0.1 0.5 3 5 10 15 20

Total forecast scores

2018042500

---> Better score

Total forecast scores

- All averaged scores: T, RH, WS, Prof., Rain (except WD) showed better results for the new all-included scheme compared to the operational set-up
- More testing are on its way...

Concluding remarks and outlook

- A new cloud droplets number concentration based on CAMS prognostic aerosols concentrations and Segal & Khain nucleations scheme is implemented.
- More realistic approach to define cloud droplets densities and effective radii of grid scale and sub-grid scale clouds
- High sensitivities of radiation, T2m, rain, QC etc.
- Next steps:
 - 1. Implementation of Khain et al. approach to effective radius + LWC
 - 2. 2-mom scheme
 - 3. Ice nucleation
 - 4. Mixed aerosols types
 - 5. Testing against observations
 - 6. Test version in IMS (?)

Thank You for Listening and Happy New Hebrew Year!

