

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

from COSMO

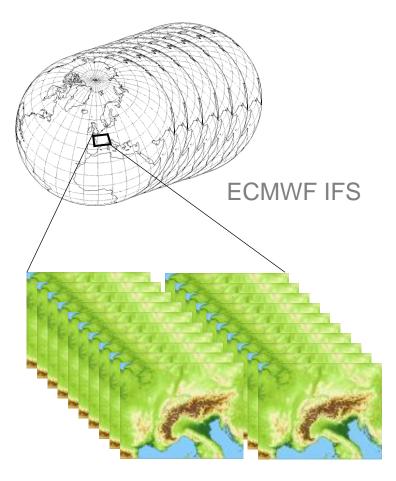
Swiss Confederation

Federal Department of Home Affairs FDHA Federal Office of Meteorology and Climatology MeteoSwiss

Additive covariance inflation in KENDA

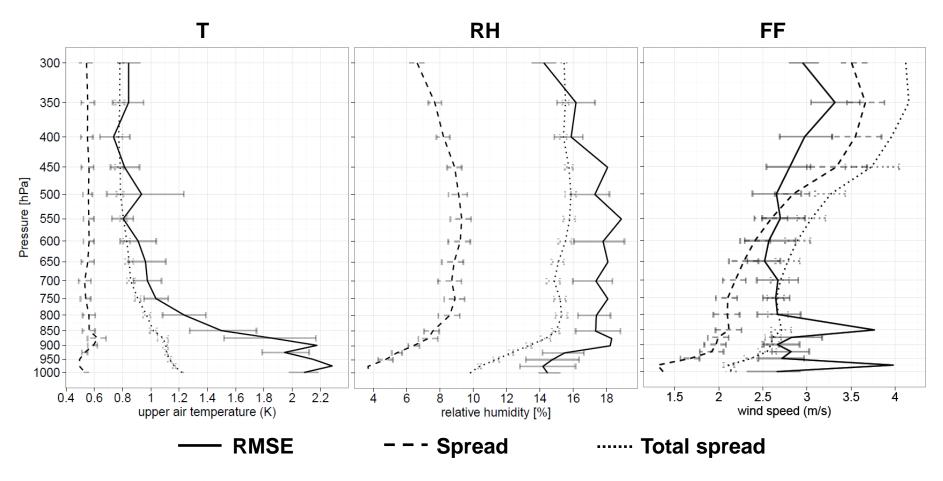
Towards a climatological error covariance matrix

COSMO EPS at MeteoSwiss

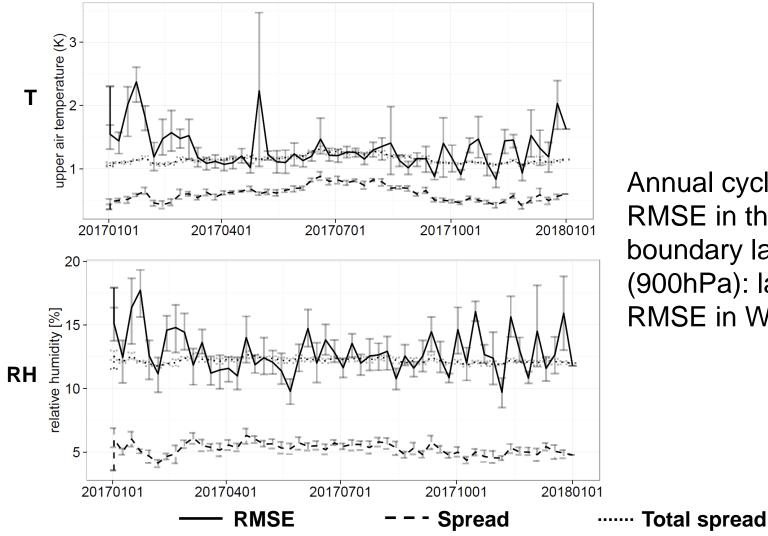

High resolution NWP over the Alpine area

COSMO-E

21 members2.2 km grid spacing2 x a day, 120h forecastSPPT


> KENDA

40 members Hourly cycling SPPT RTTP, adaptive mult. inflation



Underdispersive ensemble

Verification of first guess (det.) vs. radiosoundings, January 2017

Underdispersive ensemble

Annual cycle in the RMSE in the lower boundary layer (900hPa): larger **RMSE** in Winter

COSMO-E current situation

- COSMO-E is overconfident in some situations which can lead to low analysis and forecast quality, especially in Winter (fog cases...).
- The quality of the analysis/forecast is highly sensitive to the accurate representation of the model error.
- Lack of spread in the ensemble (ensemble covariance too small)
 - too much weight on model, observation impact too low in KENDA
 - needs artificially increase of the ensemble spread for the assimilation process

Increase ensemble spread

- Larger ensemble spread: expected improvement of the analysis and forecast quality
- Additive covariance inflation (ACI):
 - 40 members sample cannot always represent system's uncertainties (low-rank estimation)
 - add random draw of climatological forecast error distribution to the flow-dependent error from the ensemble spread

>climatological error covariance matrix B₀ is needed

O ACI in KENDA and plans

- Implemented in KENDA, operational at DWD
 - Post analysis ACI
 - Inherited from global forecasting system
 - Implementation expects variables: geopotential, relative humidity, stream function, velocity potential
 - Climatological B₀ matrix obtained from global ICON model
- Determine B₀ for limited area COSMO
 - Ongoing work together with DWD

Uplementation regional B₀

What is needed:


- Proxy for (unknown) model errors: NMC method (used for global models, adequate for local model, short-range)
- Computation of stream function and velocity potential (solve Poisson equation on a limited area)
- Proper approach to compress B₀ matrix for regional model (separation of horizontal and vertical correlations? resolution of auxiliary grid? representation of balances important in LAM?)

Model errors – NMC method

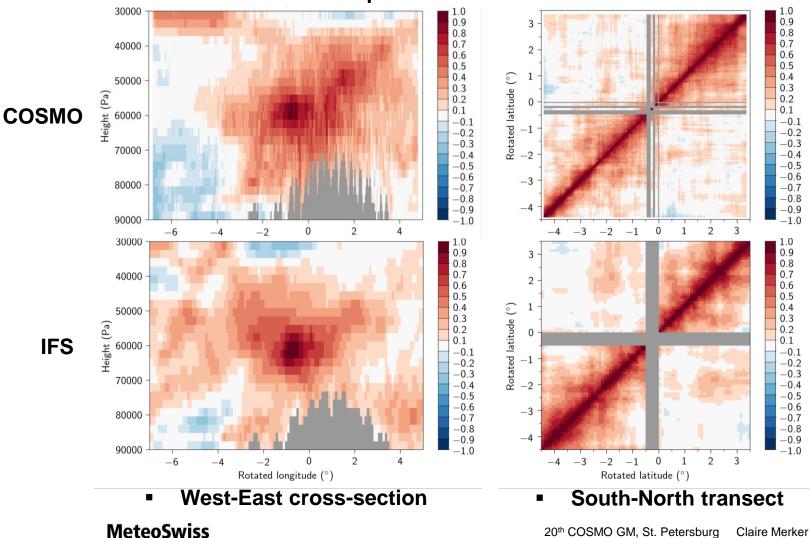
- Developed for global models
- Proxy for model error: differences between pairs of forecasts of different lengths, but valid at the same time:
 x⁴⁸ x²⁴ (NCEP)
 x³⁰ x⁶ (Met Office)
- Climatological error covariance for geopotential height, velocity potential, stream function, relative humidity
 B₀ ≈ α⟨(x⁴⁸ x²⁴)(x⁴⁸ x²⁴)^T⟩ α: tuning/scale factor
- For KENDA, B₀ should represent the large scale error covariance, small scale features are still represented by the ensemble covariance

Model errors – NMC method

High resolution allows orographic effects, domain resolves effect of Alps

Temperature error correlations

- West-East cross-section (point at 47.00°N, 8.97°E and 600hPa with surroundings)
- March 2017

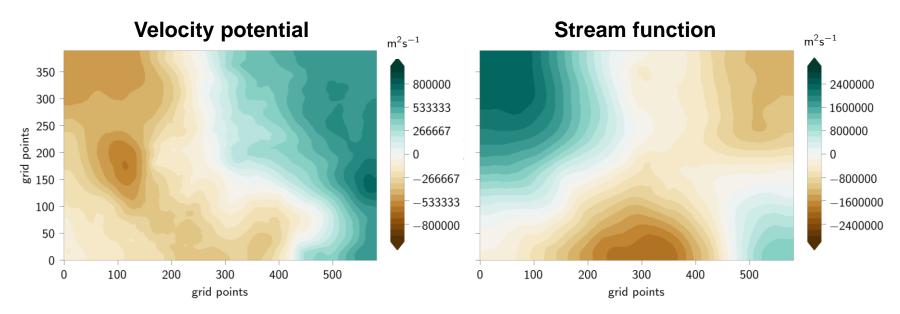

MeteoSwiss

800hPa (each point with

every other)

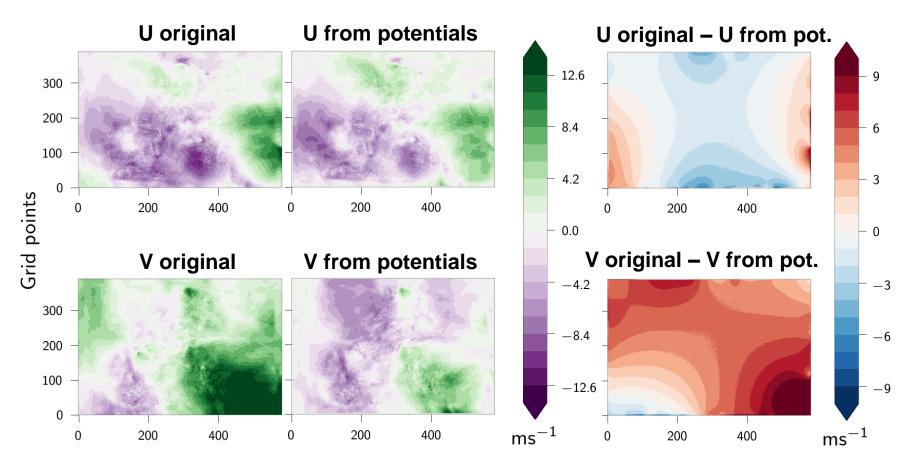
July 2017

Model errors – NMC method


Temperature error correlations

11/15

Potentials for COSMO (in progress)


Stream function and velocity potential for a limited area

- Solve the Poisson equation with source term vorticity and divergence: $\nabla^2 \psi = \eta$, $\nabla^2 \chi = div$
- Discrete cosine transform (DCT-II), Neumann BCs

Example: Computed potentials for COSMO-E ctrl, 600hPa, 08.06.2018

Potentials for COSMO (in progress)

Example: Original wind field and reconstructed wind field from potentials, 600hPa, 08.06.2018

 $u, v \text{ (original)} \rightarrow \eta, div \rightarrow \nabla^2 \psi = \eta, \nabla^2 \chi = div \rightarrow u = \frac{\partial \chi}{\partial x} - \frac{\partial \psi}{\partial y}, v = \frac{\partial \chi}{\partial y} + \frac{\partial \psi}{\partial x} \text{ (rec.)}$

Next steps

- Finalise computation of potentials
- Compute needed variables for two months reforecasts
- Analyse correlation structures and patterns
- Analyse relevant balances/correlations between variables
- Decide on how to parameterise the B₀ matrix
- Compute a B₀ matrix from COSMO on the local domain
- Apply, run a test suite and evaluate

Outlook

- Benefits from B₀ matrix from regional COSMO
 - Tailored to model and model domain
 - Catch small scale feature like orography, better resolution in lower boundary layer than matrix from global model
 - No need for expensive global model or EPS to obtain a model covariance matrix (also needed for var. methods)

Application at MeteoSwiss:

Expected improvement in forecast quality especially in the lower boundary layer and short lead times

Outlook

- Benefits from B₀ matrix from regional COSMO
 - Tailored to model and model domain
 - Catch small scale feature like orography, better resolution in lower boundary layer than matrix from global model
 - No need for expensive global model or EPS to obtain a model covariance matrix (also needed for var. methods)

Application at MeteoSwiss:

Expected improvement in forecast quality especially in the lower boundary layer and short lead times

Thank you!

Implementation global B₀

- Separability: vert. and hor. correlations independent
- Vertical correlations: nmc method
- Horizontal correlations: IO method (analytical description)
- Computation geopot., rel. humidity, stream function, velocity potential
- Interpolation to auxiliary grid (coarser)
- Spectral transformation (wavelet for sparse matrix representation)
- Forecast differences
- Coefficients for B₀ matrix (in wavelet space, on aux. grid)
- Application of random perturbations matching B₀ statistics