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Convective-scale NWP at DWD: Plans for 2020 
Storm-scale ICON-RUC-EPS: hourly 12h ensemble forecasts based on short 
data cut-off (< 20 min); assimilation of 3D radar data, satellite (IR and VIS), 
Mode-S, etc.; 40 members for ensemble data assimilation and ensemble 
prediction.  

Convective-scale ICON-LAM-EPS: every 3 hours ensemble forecasts up to 
48h

Model domain of ICON-RUC and ICON-
LAM; 2 km for the full domain and a 2-way 
nest with a grid spacing of 1 km for 
Germany.
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A prototype experiment with the COSMO model
COSMO model with 1 km grid spacing focusing on Southern Germany 
Two-moment microphysics with hail (Seifert and Beheng 2006, Blahak 2008)  
Data assimilation using LETKF with 3d radar reflectivity and radial velocity 
(Schraff et al. 2016, Bick et al. 2016). 
Assimilation with 40 ensemble members  
and 30 min cycling using 5 min radar data. 
Forecasts with 20 ensemble members  
for 6 hours. 
Here without „Bubbles“ and without  
„dBZ transform“ instead focus on  
1mom vs 2mom microphysics. 

Model domain of COSMO1-RUC with a grid 
spacing of 1 km on a 700 x 750 grid.
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Local Ensemble Transform Kalman Filter1456 C. Schraff et al.
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Figure 2. KENDA–LETKF system set-up; ‘o−fg’ denotes observation minus first
guess, ‘K’ the Kalman gain for the analysis mean.

The background-ensemble perturbations matrix Xb has been used
to transform the analysis problem into ensemble space for Eq.
(4) and is therefore used to transform the solution in ensemble
space (Eqs (6), (8)) back to physical space. The analysis ensemble
members are then given by

xa(i) = x̄b + Xb(wa + Wa(i)) , (9)

where Wa(i) is the ith column of Wa. Thus, each analysis ensemble
member is given by a linear combination of the background
ensemble members. The analysis mean in physical space does not
need to be computed explicitly in the LETKF data assimilation
cycle. It is given by Eq. (9) without the term Wa(i). Using this
and Eq. (6), the so-called Kalman gain K can be expressed for the
ensemble mean by K = XbP̃a(Yb)TR−1, where K is defined
to determine the analysis increments given the innovations
(yo − H(xb)).

The solution in ensemble space given by Eqs (6) and (8) can
be computed on a coarser resolution analysis grid. It is then
interpolated to the model grid before being used to compute
the solution in model space by Eq. (9). For more details of this
implementation, we refer to Hunt et al. (2007) and Szunyogh
et al. (2008).

It is important to note the following properties of the above
formulation of the LETKF. Firstly, if observations are available
and used not only at analysis time but over a certain period
up to the time of the next analysis step, then the LETKF is a
truly four-dimensional data assimilation scheme. This applies
not just in the sense that the innovations (yo − H(xb, to)) can be
computed at appropriate time (i.e. observation time to). Rather,
the 4D-LETKF is based on the four-dimensional background-
error covariances evaluated in observation space and projected on
to the ensemble subspace, (k − 1)1/2 Yb(Yb)T. (Yb takes a similar
role to HMB1/2 in 4D-Var, where H is the linearized observation
operator, M the tangent-linear forward model operator and B the
background-error covariance at analysis time.) In other words,
the ensemble forecast trajectories over the assimilation window
provide an estimate of the 4D background-error covariances
at the times and locations of the observations. In the KENDA
implementation, the 4D capabilities are obtained by applying
the observation operators H(xb(i), to) within the COSMO model
during its forward integration (see Figure 2). This allows for the
operators to be evaluated at the exact observation times to. For
the data types used commonly in the LETKF and the observation
nudging, the same operators are deployed for quality control and
also for the computation of those innovations that require the
forward operator. (In the nudging scheme, a retrieval operator is
applied for some observation types and levels, e.g. surface-level
data, for which the observation increment is required at the model
orography rather than at the station height.)

Secondly, as seen in Eqs (6)–(9), the formulation makes explicit
use of only the full nonlinear observation operator; the linearized

and adjoint operators are not required. This allows enhanced
freedom in the formulation of the observation operators. For
instance, the operator used by Schomburg et al. (2015) for the
assimilation of cloud-top height would be difficult to invert. (It
has to be seen how well such strongly nonlinear operators work
in practice, considering that an implicit linearization is imposed
by Eq. (5).)

Thirdly, as pointed out by Hunt et al. (2007), the choice to
derive the analysis ensemble perturbations by taking the square
root of the analysis-error covariance in Eq. (8) is the solution
that minimizes the (mean-square) distance between Wa and the
identity. Thus, in this metric, the analysis ensemble perturbations
are as close as possible to the background-ensemble perturbations
subject to the constraint on their sample covariance. It also
guarantees that Wa depends continuously on P̃a. This is crucial
when localization (see Houtekamer and Mitchell, 1998; Hamill
et al., 2001) is applied, because it ensures that at neighbouring
grid points with slightly different matrices P̃a, similar linear
combinations (wa + Wa(i)) are obtained to compute the analysis
ensemble members. Otherwise, the analysis members could be
very unbalanced after localization.

Localization is achieved by calculating the weight matrix wa in
Eq. (6) independently at each grid point of the analysis grid. This
grid can be the model grid itself, or a coarser grid from which
wa is interpolated to the model grid afterwards. At each analysis
grid point, the inverse observation-error covariance matrix R−1 is
scaled according to the distance of the observations from the grid
point. The scaling makes use of a Gaspari–Cohn function (which
is similar to a Gaussian but has compact support) with specified
horizontal and vertical localization length-scale (Gaspari and
Cohn, 1999). Prior to the scaling of R−1, observations outside the
area given by the compact support of the function are discarded.
In the experiments of this study, the vertical localization scale
increases with increasing height in the range 0.075–0.5 in terms of
the logarithm of pressure, while the horizontal scale is determined
adaptively (see section 3.5).

Finally, as an initial condition for a deterministic forecast, the
analysis ensemble mean could be deployed. However, in case
of non-Gaussian distributions of the ensemble members, their
mean will in general not be in balance. Cloud-related variables,
which are of particular interest for very short-range forecasts in
the convective scale, often have smoothed fields in the ensemble
mean. Therefore, a different approach is adopted in KENDA (see
Figure 2). The analysis xa for a deterministic data assimilation and
forecast cycle is determined by applying the Kalman gain matrix
for the ensemble mean K = XbP̃a(Yb)TR−1 to the innovations
of the unperturbed deterministic (or control) run:

xa = xb + LXbP̃a(Yb)TR−1(yo − H(xb)). (10)

It is clear from Eq. (10) that the deterministic run must use
exactly the same set of observations as the ensemble in the
LETKF. Optionally, the grid resolution can be higher than that
of the ensemble and, in this case, the analysis increments on the
ensemble grid finally have to be interpolated to the fine grid of
the deterministic run by an interpolation L.

The rationale of using the gain of the ensemble mean is that both
the ensemble mean and the deterministic analysis aim to provide
an unperturbed ‘best’ estimate of the true state. This allows the
deterministic analysis to take full advantage of the flow-dependent
ensemble background covariances. The deterministic analysis will
not be optimal if its background deviates significantly from the
background ensemble mean. This is because the background-
ensemble perturbations of the LETKF would not reflect the
background errors of the deterministic run in such a case.

Initializing the deterministic forecast with the analysis ensem-
ble mean would be an alternative approach (we call this ‘forecast
on mean’ hereafter). However, preliminary tests over two weeks
showed increased spin-up effects on precipitation during the first
2 h of these forecasts. Thereafter, their forecast quality in terms

c⃝ 2016 Royal Meteorological Society Q. J. R. Meteorol. Soc. 142: 1453–1472 (2016)

During the COSMO runs the 
model is compared with 
observations using a forward 
operator (o-fg). 
LETKF estimates new 3d 
fields of all model variables 
based on covariances in the 
ensemble members, e.g, how 
w and T correlate with dBZ. 

Caveats: 
Works only if observations are 
well covered by ensemble. 
Non-gaussian statistics are not 
well represented. 30 min 

‚cycling‘ 

5 min data
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LETKF and model settings

Model: 

1 km grid (0.01 degree resolution), 65 vertical levels, dt = 7.5 s 
2mom microphysics scheme vs 1mom (with COSMO-DE settings) 
shallow convection, numerics and turbulence as in COSMO-DE 
superobbing of radar data at 5 km resolution, every 5 min, full radar scan 

LETKF: 

RTPS with rtps_alpha=0.75 
refl_obs_error=10, radvel_obs_error=3, min_refl=0 
h_loc=5, v_loc=0.3 (for rvel and refl.) 
adap_rho=F, rho=1.0, sat_ad=T, hyd_bal=T, adap_R=F 
Additive perturbations (as in operational COSMO-DE)
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LETKF results

• No significant difference in first-guess or analysis RMSE 
• More spread with 2mom microphysics 
• Hence, improved consistency ratio with 2mom microphysics.
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Histogram of dBZ

• The 2mom microphysics is much close to the observed dBZ statistics. 
• Operational 1mom microphysics misses everything above 45 dBZ. 
• LETKF analysis improves 1mom, but deteriorates 2mom statistics.
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CFADs (1d PDFs as function of height)
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Bias of CFADs
• First guess with 1mom 

shows positive frequency 
bias for moderate dBZ, but 
lack of high dBZ. 

• First guess of 2 mom is 
much better than 1 mom. 

• Analysis is similar for both 
microphysics schemes.
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too 
cold
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Forecast scores (for 3 days, 12, 13, 14 UTC + 6 h)

• 2mom overestimates the frequency of 30 and 45 dBZ, 1mom seems to better 
• Compensating errors in case of 1mom. The model simulations too many 

convective cells.
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Forecast scores (for 3 days, 12, 13, 14 UTC + 6 h)

• In the Fraction Skill Score the 2mom scheme shows some improvement for 
30 dBZ, but not for 20 dBZ where the 1mom is well calibrated, and 45 dBZ 
where both have low skill. 

(FSS at a scale of 21 grid points, roughly 20 km)
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Forecast scores (for 3 days, 12, 13, 14 UTC + 6 h)

• In the Brier score the 2mom scheme shows some nice but weird behavior for 
the 30 dBZ threshold. For 45 dBZ it is still better to predict nothing as the 
1mom scheme actually does. 

(reference in this BSS is a zero probability forecast)
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Braunsbach flooding on 
29th May 2016
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Braunsbach flooding on 29th May 2016

2mom forecast                 1mom forecast
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Braunsbach flooding on 29th May 2016

2mom forecast                 1mom forecast
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Conclusions:
The LETKF works reasonably well for the assimilation of radar reflectivity. 

Some advantages with 2mom microphysics scheme, but still room for 
improvement, e.g., cold bias in PBL (too strong cold pools?). 

Forecasts for the Braunsbach event look promising. 
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Planned work for next 12 months (incl. Alberto)
Careful analysis of effect of „bubbles“ and „dBZ transform“ 

Improvement of 2mom scheme for „stratiform regions of convective systems“ 
and „cold bias“, 
… but would like to have IR and VIS satellite (at least passive) otherwise the 
improvements for dBZ might deteriorate the cloud structures seen by the 
satellite. 

Horizontal diffusion for 1 km COSMO model. 

OSSE-like test with idealized supercell to better understand practical 
predictability in the LETKF-based system.


